CN113299651A - 半导体结构制备方法和半导体结构 - Google Patents

半导体结构制备方法和半导体结构 Download PDF

Info

Publication number
CN113299651A
CN113299651A CN202010110965.1A CN202010110965A CN113299651A CN 113299651 A CN113299651 A CN 113299651A CN 202010110965 A CN202010110965 A CN 202010110965A CN 113299651 A CN113299651 A CN 113299651A
Authority
CN
China
Prior art keywords
dielectric layer
electrode
layer
semiconductor structure
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010110965.1A
Other languages
English (en)
Other versions
CN113299651B (zh
Inventor
鲍锡飞
储瑶瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changxin Memory Technologies Inc
Original Assignee
Changxin Memory Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changxin Memory Technologies Inc filed Critical Changxin Memory Technologies Inc
Priority to CN202010110965.1A priority Critical patent/CN113299651B/zh
Priority to PCT/CN2021/076099 priority patent/WO2021169797A1/zh
Publication of CN113299651A publication Critical patent/CN113299651A/zh
Priority to US17/446,454 priority patent/US11855131B2/en
Application granted granted Critical
Publication of CN113299651B publication Critical patent/CN113299651B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/86Electrodes with an enlarged surface, e.g. formed by texturisation having horizontal extensions
    • H01L28/87Electrodes with an enlarged surface, e.g. formed by texturisation having horizontal extensions made by depositing layers, e.g. by depositing alternating conductive and insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/90Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions
    • H01L28/91Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions made by depositing layers, e.g. by depositing alternating conductive and insulating layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
    • H10B12/373DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate the capacitor extending under or around the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/318DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor the storage electrode having multiple segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明公开了一种半导体结构制备方法和半导体结构。本发明中,半导体结构制备方法包括:提供基底并刻蚀基底形成凹槽;在凹槽侧壁形成第一介质层;在凹槽底部和第一介质层内表面形成第一电极;在第一电极表面形成第二介质层;在第二介质层表面形成第二电极。本发明通过在沉积第一电极之前预先沉积第一介质层,将第一电极隔离,避免在凹槽侧壁出现凹陷时使得相邻两个凹槽内的第一电极相连接而导致短路。

Description

半导体结构制备方法和半导体结构
技术领域
本发明涉及半导体技术领域,特别涉及一种半导体结构制备方法和半导体结构。
背景技术
动态随机存取存储器(DRAM)单元包括用于存储电荷的电容器和存取电容器的晶体管。DRAM以电容器上的电荷存储数据,所以需要在每几个毫秒的间隔即将电容器作规则性的再充电,而电容器的电容越大,储存在DRAM中的数据也可被维持得越久。因此,现有技术中动态随机存取存储器电容的深宽比都较高。
然而由于动态随机存取存储器电容孔深宽比的不断提高导致电容孔的形貌控制越来越困难,相邻的电容孔在沉积第一电极时易产生缺陷,从而降低良率。
发明内容
本发明实施方式的目的在于提供一种半导体结构制备方法和半导体结构,能够有效避免相邻凹槽内的第一电极连接而产生缺陷。
为解决上述技术问题,本发明的实施例提供了一种半导体结构制备方法,包括:提供基底;在所述基底上形成凹槽;在所述凹槽侧壁形成第一介质层;在所述凹槽底部和所述第一介质层内表面形成第一电极;在所述第一电极表面形成第二介质层;在所述第二介质层表面形成第二电极。
另外,所述凹槽侧壁具有凹陷区域,所述第一介质层覆盖所述凹陷区域。如此,有利于避免因凹陷区域的存在导致相邻电极产生接触导致短路。
另外,在所述凹槽侧壁上的凹陷区域形成的所述第一介质层与其邻近凹槽侧壁上的所述第一介质层直接接触。
另外,所述第一介质层的材料包含高K材料。如此,有利于增加相邻凹槽之间的电极隔离效果。
另外,所述高K材料包括Zr、Hf、Nb、Al或O中的任一元素或其任意组合。
另外,所述基底包括支撑层和牺牲层,所述支撑层位于所述牺牲层上方;在所述第一电极表面形成第二介质层之后,在所述第二介质层表面形成第二电极之前,还包括:刻蚀所述支撑层形成至少暴露部分所述牺牲的开口;通过所述开口刻蚀去除所述牺牲层形成暴露出所述第一介质层外表面的空间区域;在所述空间区域内形成所述第二电极。
另外,所述刻蚀所述支撑层形成至少暴露部分所述牺牲层的开口还包括:所述开口暴露出所述第一电极;在所述通过所述开口刻蚀去除所述牺牲层形成暴露出所述第一介质层外表面的空间区域后,且在所述第二介质层表面形成第二电极之前,还包括:在暴露的所述第一电极上沉积第三介质层。如此,有利于避免第一电极与第二电极接触而发生短路,进而提高半导体结构的良率。
本发明实施例还提供了一种半导体结构,包括:基底,所述基底具有凹槽;第一介质层,所述第一介质层位于凹槽侧壁;第一电极,第一电极位于所述凹槽底部和所述第一介质层内表面;第二介质层,所述第二介质层位于所述第一电极表面;第二电极,所述第二电极位于所述第二介质层表面。
另外,所述基底包括支撑层,所述凹槽贯穿所述支撑层形成支撑层侧面,所述第一介质层与所述支撑层侧面直接接触。
另外,所述第二电极还位于所述第一介质层的外表面。
另外,第一介质层的材料包含高K材料。
另外,所述高K材料包含Zr、Hf、Nb、Al或O中的任一元素或其任意组合。
另外,所述半导体结构还包括第三介质层,所述第三介质层位于所述第一电极的顶部和所述第二电极之间,并与所述第一电极和所述第二电极直接接触。
另外,所述第三介质层的材料包含高K材料。
另外,所述凹槽侧壁具有凹陷区域;所述第一介质层覆盖所述凹陷区域。
另外,所述凹槽侧壁凹陷区域上的所述第一介质层与其邻近凹槽侧壁上的所述第一介质层直接接触。
本发明实施例相对于现有技术而言,在凹槽内制备第一电极之前先沉积第一介质层,然后依次在凹槽内形成第一电极和第二介质层以及在凹槽内和基底上表面形成第二电极,通过预先沉积一层第一介质层,保证相邻第一电极之间的隔离效果,避免在沉积第一电极时相邻两个凹槽内第一电极因凹陷区域的存在而发生接触,从而保证半导体结构的有效性。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1至图8是本发明一实施例提供的半导体结构的制造方法各步骤对应的结构示意图;
图9至图12是本发明又一实施例提供的半导体结构的制造方法各步骤对应的结构示意图;
图13至图16是本发明另一实施例提供的半导体结构的制造方法各步骤对应的结构示意图。
具体实施方式
本发明实施例提供了一种半导体结构制备方法,包括:提供基底;在所述基底上形成凹槽;在凹槽侧壁形成第一介质层;在凹槽底部和第一介质层内表面形成第一电极;在第一电极表面形成第二介质层;在第二介质层表面形成第二电极。通过在沉积第一电极之前预先沉积一层第一介质层,使相邻第一电极被隔离,避免在沉积第一电极时相邻两个凹槽内的第一电极因凹陷区域的存在而发生接触,进而保证半导体结构的有效性。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。
图1至图8为本发明一实施例提供的一种半导体结构的制作方法各步骤对应的剖面结构示意图。
参考图1,提供基底11,基底11包括衬底111和位于衬底111上的中间介质层113;衬底111内设有导电结构112。中间介质层113用于定义图案,其中,中间介质层113可以采用原子层沉积工艺、化学气相沉积工艺等沉积工艺形成。
本实施例中,导电结构112用于与每一后续形成的电容连接,起到存储数据的作用。需要说明的是,衬底111内部还可以形成有字线、位线、晶体管和隔离槽等结构。
参考图2,在基底11上形成凹槽12。
本实施例中,凹槽12为圆柱孔;在其他实施例中,凹槽也可以为其他形状,本实施例不做限制。此外,凹槽12可采用多重图形化光刻和刻蚀工艺对中间介质层113进行刻蚀得到,以提高光刻和刻蚀精度。
本实施例中,凹槽12侧壁具有凹陷区域13,凹陷区域13朝向远离凹槽12中心轴线的方向凹陷。
参考图3至图4,在凹槽12侧壁形成第一介质层14。
具体地,通过化学气相沉积或原子层沉积等方法在凹槽12底部和侧壁以及中间介质层113上表面形成第一介质膜141;采用干法刻蚀工艺去除位于凹槽12底部以及中间介质层113顶部的第一介质膜141,以形成第一介质层14。
需要说明的是,采用高功率的干法刻蚀工艺对第一介质膜141进行刻蚀以形成第一介质层14,有利于提高第一介质层14的刻蚀精度。
本实施例中,凹陷区域13贯穿中间介质层113,如此,在凹槽12侧壁上的凹陷区域13形成的第一介质层14与其邻近凹槽12侧壁上的第一介质层14直接接触。
本实施例中,第一介质层14的材料包含高K材料,如此,有利于保证第一介质层14的隔离效果,避免后续形成的位于相邻两个凹槽12内的第一电极相连。具体地,第一介质层14的材料包含Zr、Hf、Nb、Al或O中的任一元素或其任意组合。具体的,第一介质层14为ZrO,AlO,ZrNbO,ZrHfO,ZrAlO中的任一种或其任一组合。
此外,本实施例中,第一介质层14的厚度范围为2~10nm,例如为4mm、6mm或8mm。需要说明的是,在实际应用中,第一介质层14的厚度根据凹槽12的直径以及后续形成的第一电极、第二介质层和第二电极的厚度决定,既要保证给后续第一电极、第二介质层和第二电极预留足够的沉积空间,又要保证第一介质层14的厚度足以隔离两个相邻凹槽12内的第一电极。优选的,第一介质层14的厚度大于第二介质层的厚度和第二电极的厚度,以使得第一介质层14有足够的支撑能力防止倒塌。
参考图5至图6,在凹槽12底部和第一介质层14内表面形成第一电极15。
具体地,可采用原子层沉积工艺、物理气相沉积工艺或等离子体沉积工艺等沉积工艺沉积第一电极膜151,第一电极膜151位于凹槽12底部和侧壁以及中间介质层113顶部;采用干法刻蚀或湿法刻蚀去除位于中间介质层113顶部的第一电极膜151,以形成第一电极15。
本实施例中,第一电极15的材料包括氮化钛、氮化钽、铜或钨等金属材料中的任一种或任意组合。此外,采用低功率的干法刻蚀工艺对第一电极膜151进行刻蚀,可提高第一电极15的刻蚀精度。
参考图7,在第一电极15表面形成第二介质层16。
本实施例中,采用化学气相沉积工艺或原子层沉积工艺等方法在第一电极15表面以及基底11顶部表面沉积第二介质层16;其他实施例中,第二介质层也可以仅覆盖第一电极表面。
本实施例中,第二介质层16的材料包含高K材料。第二介质层16的材料可以与第一介质层14的材料相同也可以不同,本实施例不做限制。
参考图8,在第二介质层16表面形成第二电极17。
具体地,本实施例中,第二电极17覆盖第二介质层16表面且填充整个凹槽12;在其他实施例中,第二电极仅覆盖第二介质层表面。其中,第二电极17的材料包括金属氮化物及金属硅化物中的一种或两种所形成的化合物,如氮化钛、硅化钛(Titanium Silicide)、硅化镍(TitaniumSilicide)、硅氮化钛(TiSixNy)或者其他导电材料。第二电极17的材料也可以为导电的半导体材料,如多晶硅,锗硅等。
上述半导体结构制备方法中,通过预先沉积一层第一介质层14,使相邻凹槽12内的第一电极15被隔离,避免在沉积第一电极15时因为凹陷区域13的存在导致相邻两个凹槽12内的第一电极15相连接,进而保证电容的有效性。
本发明又一实施例还提供一种半导体结构制备方法,本实施例提供的技术方案与上一实施例大体相同,主要改进之处在于:第二电极位于第一介质层与第一电极相对的另一侧。
图9至图12是本发明又一实施例提供的半导体结构制备方法各步骤对应的结构示意图,与前一实施例相同或者相应的部分,可参考前一实施例的说明,在此不再赘述。
本实施例中,中间介质层213包括支撑层和牺牲层,具体地,中间介质层213包括位于顶部的第一支撑层221、位于中间的第二支撑层222、位于底部的第三支撑层223,以及位于第一支撑层221和第二支撑层222之间的第一牺牲层231、位于第二支撑层222和第三支撑层223之间的第二牺牲层232。通过在中间介质层213顶部、中间和底部各设置一支撑层,在中间介质层213较厚的情况下,刻蚀形成具有较大深宽比的凹槽22时,也能确保后续形成的第一介质层24不会塌陷。
在其他实施例中,支撑层和牺牲层的数量和位置不受限制,可以适当增加支撑层和牺牲层的层数,从而提高电容器的高度,进一步提高电容器的电容值。也可以适当减少支撑层的层数,例如仅包括第一支撑层和第二支撑层。
本实施例中,第一支撑层221、第二支撑层222以及第三支撑层223的材料为氮化硅,第一牺牲层231和第二牺牲层232的材料为氧化硅、BPSG、PSG、BSG和TEOS中的任一种或其任意组合。
参考图10至图11,刻蚀支撑层形成至少暴露部分牺牲层的开口261;通过开口261刻蚀去除牺牲层形成暴露出第一介质层24外表面的空间区域28。
具体地,图10为本步骤对应的半导体结构俯视结构图,如图10所示,本实施例中,开口261位于各个凹槽22之间,与凹槽22没有公共部分,开口261俯视图为圆形;在其他实施例中,开口也可以为其他形状。
需要说明的是,本实施例中,基底21顶部,即第一支撑层221顶部表面沉积有第二介质层26,在刻蚀支撑层之前,需先刻蚀去除位于第一支撑层221顶部的部分第二介质层26,再刻蚀第一支撑层221形成开口261。
本实施例中,先刻蚀第一支撑层221暴露部分第一牺牲层231,酸洗去除第一牺牲层231暴露出第二支撑层222;再刻蚀第二支撑层222暴露部分第二牺牲层232,酸洗去除第二牺牲层232。其中,可以通过多重图形化光刻工艺定义出开口261的形状,并可采用干法刻蚀工艺刻蚀第二介质层26和第一支撑层221。
参考图12,在第二介质层26表面形成第二电极27。
本实施例中,通过刻蚀去除牺牲层形成暴露出第一介质层24外表面的空间区域28,并在空间区域28和凹槽22内填充第二电极27,使得第二电极27环绕第一电极25内外两侧,如此,有利于增加电容器的电容值。
本发明另一实施例还提供一种半导体结构制备方法,本实施例提供的技术方案与上一实施例大体相同,主要不同之处在于:刻蚀支撑层形成至少暴露部分牺牲层的开口暴露出第一电极,并在暴露的第一电极上沉积第三介质层。
图13为本实施例对应的半导体结构俯视结构图,图14为对应的剖面结构示意图。
具体地,如图13和图14所示,开口361与凹槽32有公共部分,刻蚀中间介质层313形成开口361的过程中,刻蚀掉了位于第一电极35顶部的部分第二介质层36,从而暴露出第一电极35顶部表面。
如图15和图16所示,在沉积第二电极37之前,在暴露出的第一电极35顶部沉积第三介质层39。如此,在后续沉积第二电极37时,能够避免第一电极35与第二电极37接触,从而保证电容的有效性。
其中,第三介质层39包含高K材料,例如为Zr、Hf、Nb、Al或O中的任一元素或其任意组合。如此,有利于进一步提高第三介质层39的隔离效果。
本实施例中,开口361暴露出第一电极35部分顶部表面,因此,在沉积第二电极37之前形成覆盖暴露出的第一电极35顶部表面,以避免第一电极35与第二电极37接触,从而保证电容的有效性。
相应的,本发明实施例还提供一种半导体结构,可以采用上述任一方法制作。图16为本发明一实施例提供的半导体结构的剖面结构示意图。
参考图16,本实施例中,半导体结构包括:基底31,基底31具有凹槽32;第一介质层34,第一介质层34位于凹槽32侧壁;第一电极35,第一电极35位于凹槽32底部和第一介质层34内表面;第二介质层36,第二介质层36位于第一电极35表面;第二电极37,第二电极37位于第二介质层36表面。
具体地,基底31包括衬底311和中间介质层(未标示);衬底311内设有导电结构312;凹槽32贯穿中间介质层,并暴露出导电结构312。基底31用于承载形成的存储电容,中间介质层用于将各个电容相隔离。
本实施例中,中间介质层具体包括若干个与第一介质层34相连的支撑层314;凹槽32贯穿支撑层314形成支撑层侧面,第一介质层34与支撑层314侧面直接接触。设置在中间介质层内的支撑层314能够保证中间介质层的稳定性,支撑层314可以位于中间介质层的顶部、底部或中部中的任一位置或多个位置,且支撑层314的位置和数量不受限制。
本实施例中,凹槽32侧壁具有凹陷区域33;第一介质层34覆盖凹陷区域33。
本实施例中,凹槽32侧壁凹陷区域33上的第一介质层34与其邻近凹槽32侧壁凹陷区域33上的第一介质层34直接接触;在其他实施例中,凹槽侧壁凹陷区域上的第一介质层与其邻近凹槽侧壁凹陷区域上的第一介质层之间存在间距。
此外,本实施例中,第一介质层34的材料包含高K材料,高K材料包含Zr、Hf、Nb、Al或O中的任一元素或其任意组合。如此,有利于提高相邻凹槽32之间的隔离效果。
本实施例中,第二电极37还位于第一介质层34的外表面。具体地,第一电极35位于第一介质层34内表面,第二电极37位于第一介质层34外表面。如此,第二电极37能够环绕于第一电极35两侧分布,从而提高电容器的电容值。
本实施例中,半导体结构还包括第三介质层39,第三介质层39位于第一电极35的顶部与第二电极37之间,并与第一电极35和第二电极37直接接触。其中,第三介质层39包含高K材料。
本实施例中,通过第一介质层34将相邻的第一电极35隔离,并且第二电极37环绕整个第一电极35内外,既能够避免相邻第一电极35相连接和第一电极35与第二电极37相连接导致电容失效,同时也能够增加电容器的电容值。
本领域的普通技术人员可以理解,上述各实施例是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各自更动与修改,因此本发明的保护范围应当以权利要求限定的范围为准。

Claims (16)

1.一种半导体结构制备方法,其特征在于,包括:
提供基底;
在所述基底上形成凹槽;
在所述凹槽侧壁形成第一介质层;
在所述凹槽底部和所述第一介质层内表面形成第一电极;
在所述第一电极表面形成第二介质层;
在所述第二介质层表面形成第二电极。
2.根据权利要求1所述的半导体结构制备方法,其特征在于,所述凹槽侧壁具有凹陷区域,所述第一介质层覆盖所述凹陷区域。
3.根据权利要求2所述的半导体结构制备方法,其特征在于,在所述凹槽侧壁上的凹陷区域形成的所述第一介质层与其邻近凹槽侧壁上的所述第一介质层直接接触。
4.根据权利要求1至3中任一项所述的半导体结构制备方法,其特征在于,所述第一介质层的材料包含高K材料。
5.根据权利要求4所述的半导体结构制备方法,其特征在于,所述高K材料包含Zr、Hf、Nb、Al或O中的任一元素或其任意组合。
6.根据权利要求1所述的半导体结构制备方法,其特征在于,所述基底包括支撑层和牺牲层;
在所述第一电极表面形成第二介质层之后,在所述第二介质层表面形成第二电极之前,还包括:刻蚀所述支撑层形成至少暴露部分所述牺牲层的开口;
通过所述开口刻蚀去除所述牺牲层形成暴露出所述第一介质层外表面的空间区域;
在所述空间区域内形成所述第二电极。
7.根据权利要求6所述的半导体结构制备方法,其特征在于,所述刻蚀所述支撑层形成至少暴露部分所述牺牲层的开口还包括:所述开口暴露出所述第一电极;
在所述通过所述开口刻蚀去除所述牺牲层形成暴露出所述第一介质层外表面的空间区域之后,且在所述第二介质层表面形成第二电极之前,还包括:在暴露的所述第一电极上沉积第三介质层。
8.一种半导体结构,其特征在于,包括:
基底,所述基底具有凹槽;
第一介质层,所述第一介质层位于所述凹槽侧壁;
第一电极,所述第一电极位于所述凹槽底部和所述第一介质层内表面;
第二介质层,所述第二介质层位于所述第一电极表面;
第二电极,所述第二电极位于所述第二介质层表面。
9.根据权利要求8所述的半导体结构,其特征在于,所述基底包括支撑层,所述凹槽贯穿所述支撑层形成支撑层侧面,所述第一介质层与所述支撑层侧面直接接触。
10.根据权利要求8所述的半导体结构,其特征在于,所述第二电极还位于所述第一介质层的外表面。
11.根据权利要求8至10中任一项所述的半导体结构,其特征在于,所述第一介质层的材料包含高K材料。
12.根据权利要求11所述的半导体结构,其特征在于,所述高K材料包含Zr、Hf、Nb、Al或O中的任一元素或其任意组合。
13.根据权利要求8所述的半导体结构,其特征在于,所述半导体结构还包括第三介质层,所述第三介质层位于所述第一电极的顶部和所述第二电极之间,并与所述第一电极和所述第二电极直接接触。
14.根据权利要求13所述的半导体结构,其特征在于,所述第三介质层的材料包含高K材料。
15.根据权利要求8所述的半导体结构,其特征在于,所述凹槽侧壁具有凹陷区域;所述第一介质层覆盖所述凹陷区域。
16.根据权利要求15所述的半导体结构,其特征在于,所述凹槽侧壁凹陷区域上的所述第一介质层与其邻近凹槽侧壁上的所述第一介质层直接接触。
CN202010110965.1A 2020-02-24 2020-02-24 半导体结构制备方法和半导体结构 Active CN113299651B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010110965.1A CN113299651B (zh) 2020-02-24 2020-02-24 半导体结构制备方法和半导体结构
PCT/CN2021/076099 WO2021169797A1 (zh) 2020-02-24 2021-02-08 半导体结构制备方法和半导体结构
US17/446,454 US11855131B2 (en) 2020-02-24 2021-08-30 Semiconductor structure and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010110965.1A CN113299651B (zh) 2020-02-24 2020-02-24 半导体结构制备方法和半导体结构

Publications (2)

Publication Number Publication Date
CN113299651A true CN113299651A (zh) 2021-08-24
CN113299651B CN113299651B (zh) 2023-06-16

Family

ID=77317711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010110965.1A Active CN113299651B (zh) 2020-02-24 2020-02-24 半导体结构制备方法和半导体结构

Country Status (3)

Country Link
US (1) US11855131B2 (zh)
CN (1) CN113299651B (zh)
WO (1) WO2021169797A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023065385A1 (zh) * 2021-10-18 2023-04-27 长鑫存储技术有限公司 一种电容结构及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070111434A1 (en) * 2005-11-14 2007-05-17 Elpida Memory, Inc. Method for manufacturing capacitor
CN107331655A (zh) * 2017-07-04 2017-11-07 睿力集成电路有限公司 半导体存储器及其电容轮廓形成方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360414B1 (ko) 2001-01-05 2002-11-13 삼성전자 주식회사 트윈 비트 결함을 방지하는 실린더형 커패시터의 하부전극형성방법
US7208095B2 (en) * 2004-12-15 2007-04-24 Infineon Technologies Ag Method for fabricating bottom electrodes of stacked capacitor memory cells and method for cleaning and drying a semiconductor wafer
CN100479166C (zh) * 2006-03-29 2009-04-15 联华电子股份有限公司 静态随机存取存储器单元
US7560392B2 (en) * 2006-05-10 2009-07-14 Micron Technology, Inc. Electrical components for microelectronic devices and methods of forming the same
US20070269946A1 (en) * 2006-05-19 2007-11-22 Chien-Kuo Wang Dynamic random access memory and fabrication method thereof
JP5128851B2 (ja) * 2007-05-30 2013-01-23 ルネサスエレクトロニクス株式会社 半導体装置及びその製造方法
CN101609795A (zh) 2008-06-17 2009-12-23 华亚科技股份有限公司 半导体存储器元件的制作方法
US7951668B2 (en) * 2009-01-14 2011-05-31 Powerchip Semiconductor Corp. Process for fabricating crown capacitors of dram and capacitor structure
US20130122712A1 (en) 2011-11-14 2013-05-16 Jong Mun Kim Method of etching high aspect ratio features in a dielectric layer
US8865544B2 (en) * 2012-07-11 2014-10-21 Micron Technology, Inc. Methods of forming capacitors
CN107895721B (zh) 2017-12-08 2023-10-13 长鑫存储技术有限公司 存储器及其形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070111434A1 (en) * 2005-11-14 2007-05-17 Elpida Memory, Inc. Method for manufacturing capacitor
CN1967809A (zh) * 2005-11-14 2007-05-23 尔必达存储器股份有限公司 用于制造电容器的方法
CN107331655A (zh) * 2017-07-04 2017-11-07 睿力集成电路有限公司 半导体存储器及其电容轮廓形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023065385A1 (zh) * 2021-10-18 2023-04-27 长鑫存储技术有限公司 一种电容结构及其制备方法

Also Published As

Publication number Publication date
US11855131B2 (en) 2023-12-26
US20210391415A1 (en) 2021-12-16
WO2021169797A1 (zh) 2021-09-02
CN113299651B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
US7321150B2 (en) Semiconductor device precursor structures to a double-sided capacitor or a contact
US7525143B2 (en) Dram device having capacitor
US8481398B2 (en) Method of forming semiconductor device having a capacitor
CN114582809B (zh) 电容器的制作方法、电容器以及存储器
US9349724B2 (en) Semiconductor device having capacitors
US11984472B2 (en) Double-sided capacitor structure and method for forming the same
KR20120093731A (ko) 반도체소자의 스토리지노드 형성방법 및 이를 이용한 커패시터 형성방법
US11855131B2 (en) Semiconductor structure and preparation method thereof
CN115241372A (zh) 存储器件、半导体结构及其形成方法
US9362421B2 (en) Semiconductor device including a support structure
US20230187482A1 (en) Method of manufacturing semiconductor structure and semiconductor structure
WO2023015642A1 (zh) 半导体结构的制作方法及半导体结构
CN214797421U (zh) 半导体器件
US7781297B2 (en) Semiconductor device and method of fabricating the same
KR20000006120A (ko) 반도체메모리장치및그제조방법
WO2023029392A1 (zh) 半导体结构及其形成方法
US20090152677A1 (en) Semiconductor device and method for manufacturing semiconductor device
US20230016959A1 (en) Manufacturing method of semiconductor structure and semiconductor structure
US11894419B2 (en) Double-sided capacitor and fabrication method thereof
CN113130495B (zh) 半导体器件及其形成方法
US20230354574A1 (en) Method of manufacturing capacitor, capacitor, and memory
US20220208764A1 (en) Memory and fabrication method thereof
US20230065654A1 (en) Semiconductor structure and method for forming semiconductor structure
WO2023097901A1 (zh) 半导体结构及其制作方法
KR20080003031A (ko) 실린더형 엠아이엠 캐패시터 형성방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant