CN113215458A - 一种铝合金及铝合金的制作方法 - Google Patents

一种铝合金及铝合金的制作方法 Download PDF

Info

Publication number
CN113215458A
CN113215458A CN202110750385.3A CN202110750385A CN113215458A CN 113215458 A CN113215458 A CN 113215458A CN 202110750385 A CN202110750385 A CN 202110750385A CN 113215458 A CN113215458 A CN 113215458A
Authority
CN
China
Prior art keywords
aluminum alloy
equal
molten metal
blank
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110750385.3A
Other languages
English (en)
Other versions
CN113215458B (zh
Inventor
戴圣龙
冯朝辉
臧金鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN202110750385.3A priority Critical patent/CN113215458B/zh
Publication of CN113215458A publication Critical patent/CN113215458A/zh
Application granted granted Critical
Publication of CN113215458B publication Critical patent/CN113215458B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Continuous Casting (AREA)

Abstract

本发明提供了一种铝合金及铝合金的制作方法,铝合金的制作方法包括步骤:S100、按照质量百分比进行配料,形成制作原料;S200、在熔炼炉中将制作原料融化成金属液;S300、对金属液进行精炼;S400、采用动态控温的高温长时的工艺对精炼后的金属液进行静置处理;S500、将经过静置处理的金属液浇铸成合金铸锭;S600、对合金铸锭进行均匀化处理;S700、将合金铸锭锻造成为坯料;S800、对坯料进行热处理。本发明具有不仅使铝合金淬透厚度变得更大,同时还提高了铝合金的屈强比,进而使铝合金综合性能得到了提高。

Description

一种铝合金及铝合金的制作方法
技术领域
本发明涉及铝合金制作技术领域,特别涉及一种铝合金及铝合金的制作方法。
背景技术
铝合金材料因其具有密度低、比强度高、比刚度高、加工性能优异、可焊并具有一定的耐腐蚀性能的优点,而在航空航天、石油化工、轨道交通、新能源汽车等多个领域得到了广泛的应用。
现有的铝合金如7×××系(Al-Zn-Mg-Cu系)铝合金成分中具有Zn、Mg、Cu等元素,其因淬透厚度较小,屈强比较低,进而使综合性能受到较大的限制。
发明内容
本发明的目的是提供一种铝合金及铝合金的制作方法,不仅使淬透厚度变得更大,同时还提高了屈强比,进而使综合性能得到了提高。
为实现上述目的,本发明所采用的技术方案是:
一种铝合金,成分中含有Zn、Cu和Mg,按质量百分比,按质量百分比,5.2≥Zn/Mg≥4,6.4≥(Zn+Cu)/ Mg≥5,Cu/Mg≥1,13≥Zn+Mg+Cu≥10。
较优地,按质量百分比包括:Zn6.2~9.0%,Mg1.0~2.0%,Cu1.2~2.0%,Zr0.08~0.15%,Si≤0.06%,Fe≤0.08%,其它杂质总量≤0.15%,余量为Al。
较优地,所述其他杂质的种类为至少两个,任意一种所述其他杂质≤0.05%。
一种铝合金的制作方法,用以制作以上任意技术特征的铝合金,包括步骤:
S100、按照质量百分比进行配料,形成制作原料;
S200、在熔炼炉中将制作原料融化成金属液;
S300、对金属液进行精炼;
S400、采用动态控温的高温长时的工艺对精炼后的金属液进行静置处理;
S500、将经过静置处理的金属液浇铸成合金铸锭;
S600、对合金铸锭进行均匀化处理;
S700、将合金铸锭锻造成为坯料;
S800、对坯料进行热处理;
其中,在步骤S200中融化温度为680℃~780℃,在步骤S300中,精炼温度为690℃~750℃,在步骤S500中浇铸初始温度为700℃~720℃,并且浇铸速度为15~200mm/分钟。
较优地,在步骤S400中,对金属液进行静止处理的时间大于或等于45分钟。
较优地,步骤S400包括步骤:
S410、将金属液升温至750℃,并保温3分钟以上;
S420、将金属液升温至780℃,并保温10分钟以上;
S430、将金属液降温至750℃,并保温3分钟以上;
S440、将金属液降温至720℃,并保温3分钟以上。
较优地,步骤S600包括步骤:
S610、第一级均匀化处理,均匀化温度为400℃~420℃;
S620、第二级均匀化处理,均匀化温度为460℃~470℃,并且时间在36小时以上。
较优地,步骤S700包括步骤:
S710、将合金铸锭的表面层去除;
S720、将去除表面层的合金铸锭锻造成为坯料,并且在锻造过程中使合金铸锭的温度保持在380℃~440℃。
较优地,步骤S800包括步骤:
S810、对坯料进行固溶,固溶温度为470℃;
S820、采用室温水对坯料淬火,使其冷却至室温;
S830、对坯料进行1.0%~3.5%永久冷变形的预压缩;
S840、对坯料进行时效处理。
较优地,步骤S840包括步骤:
S841、第一级时效处理,时效处理温度为120℃,处理时间为4~8小时;
S842、第二级时效处理,时效处理温度为157℃,处理时间为8~12小时。
本发明的铝合金通过采用按质量百分比,按质量百分比,5.2≥Zn/Mg≥4,6.4≥(Zn+Cu)/ Mg≥5,Cu/Mg≥1,13≥Zn+Mg+Cu≥10的技术方案,不仅使淬透厚度变得更大,同时还提高了屈强比,进而使综合性能得到了提高。
附图说明
图1为实施例一中的铝合金的Zn/Mg比值与屈强比的关系曲线图。
图2为实施例一中的铝合金的Zn/Mg比值与淬透厚度的关系曲线图。
图3为实施例一中的铝合金的(Zn+Cu)/Mg比值与屈强比的关系曲线图。
图4为实施例一中的铝合金的(Zn+Cu)/Mg比值与淬透厚度的关系曲线图。
图5为实施二中的铝合金制作方法流程图。
图6为图5中的步骤S400流程图。
图7为图5中的步骤S600流程图。
图8为图5中的步骤S700流程图。
图9为图5中的步骤S800流程图。
图10为图9中的步骤S840流程图。
图11为实施例二制作的铝合金Fe含量为0.05%的杂质相形貌图。
图12为实施例二制作的铝合金Fe含量为0.07%的杂质相形貌图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明的铝合金及制作方法进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例一
一种铝合金,成分中含有Zn、Cu和Mg,按质量百分比,按质量百分比,5.2≥Zn/Mg≥4,6.4≥(Zn+Cu)/ Mg≥5,Cu/Mg≥1,13≥Zn+Mg+Cu≥10。
发明人通过有限次试验得出结论,当Mg 元素重量比为1.0~2.0%,且Zn 不高于9.0%, Cu 不高于2.0%时,适当调整合金元素Zn/Mg比值,可获得高屈强比及高淬透性材料。其中屈强比与Zn/Mg比的关系如图1所示,随Zn/Mg比值增大,屈强比逐渐增大。可淬透厚度与Zn/Mg比的关系如图2所示,随Zn/Mg比值增大,淬透厚度逐渐增大。屈强比与(Zn+Cu)/Mg比的关系如图3所示,随(Zn+Cu)/Mg比值增大,屈强比逐渐增大。可淬透厚度与(Zn+Cu)/Mg比的关系如图4所示,随(Zn+Cu)/Mg比值增大,淬透厚度逐渐增大。
具体地,按质量百分比包括:Zn6.2~9.0%,Mg1.0~2.0%,Cu1.2~2.0%,Zr0.08~0.15%,Si≤0.06%,Fe≤0.08%,其它杂质总量≤0.15%,余量为Al。
以下列举本实施例中的铝合金的四种典型的化学成分:
(1)Zn7.50%,Mg1.60%,Cu1.65%,Zr0.12%,Si≤0.06%,Fe≤0.08%,总量≤0.15%,余量为Al。
(2)Zn7.5%,Mg1.5%,Cu1.6%,Zr0.12%,Si≤0.06%,Fe≤0.08%,总量≤0.15%,余量为Al。
(3)Zn8.5%,Mg1.7%,Cu1.7%,Zr0.12%,Si≤0.06%,Fe≤0.08%,总量≤0.15%,余量为Al。
(4)Zn6.6%,Mg1.4%,Cu1.6%,Zr0.12%,Si≤0.06%,Fe≤0.08%,总量≤0.15%,余量为Al。
需要说明的是,其他杂质的种类为至少两个,任意一种其他杂质≤0.05%。
实施例二
本实施例提供一种铝合金的制作方法,用以制作实施例一中的铝合金,如图5所示,包括步骤:
S100、按照质量百分比进行配料,形成制作原料;
S200、在熔炼炉中将制作原料融化成金属液;
S300、对金属液进行精炼;
S400、采用动态控温的高温长时的工艺对精炼后的金属液进行静置处理;
S500、将经过静置处理的金属液浇铸成合金铸锭;
S600、对合金铸锭进行均匀化处理;
S700、将合金铸锭锻造成为坯料;
S800、对坯料进行热处理;
其中,在步骤S200中融化温度为680℃~780℃,在步骤S300中,精炼温度为690℃~750℃,在步骤S500中浇铸初始温度为700℃~720℃,并且浇铸速度为15~200mm/分钟。
采用以上技术方案所生产的铝合金具有优异的强度和断裂韧性,极限抗拉强度可达500MPa以上,屈服强度475MPa以上,同时延伸率能够提高10%、T-L向KⅠc可达32MPam1/2以上,淬透厚度可达300mm以上。
具体地,在步骤S400中,对金属液进行静止处理的时间大于或等于45分钟。进一步地,如图6所示,步骤S400包括步骤:
S410、将金属液升温至750℃,并保温3分钟以上;
S420、将金属液升温至780℃,并保温10分钟以上;
S430、将金属液降温至750℃,并保温3分钟以上;
S440、将金属液降温至720℃,并保温3分钟以上。
采用这样的技术方案,含Fe、Si的杂质相在合金熔铸过程中产生,可以在热塑性变形过程中破碎,但难以融入机体内部。Al7Cu2Fe等杂质相尺寸可达微米级存在晶界处,还消耗一定主合金元素Cu。晶界上的A17Cu2Fe等杂质相对疲劳性能、塑性及韧度损伤较大,控制合金Fe、Si元素含量可以降低杂质数量,熔铸时采用高温长时的工艺可以促进Fe、Si元素向晶内扩散,控制其在晶界上的数量及其尺寸。如图11、12所示,采用这样的技术方案,晶界处杂质相数量及尺寸显著减少。
具体地,如图7所示,步骤S600包括步骤:
S610、第一级均匀化处理,均匀化温度为400℃~420℃;
S620、第二级均匀化处理,均匀化温度为460℃~470℃,并且时间在36小时以上。
采用这种双级均匀化处理的技术方案,能够有效降低铝合金的各向异性差异,提高了均匀化效果,进而使铝合金的综合性能得到提高。
作为一种可实施方式,如图8所示,步骤S700包括步骤:
S710、将合金铸锭的表面层去除;
S720、将去除表面层的合金铸锭锻造成为坯料,并且在锻造过程中使合金铸锭的温度保持在380℃~440℃。
其中在步骤S710可以采用机加工的方式将合金铸锭的表面部分切除掉。
作为一种可实施方式,如图9所示,步骤S800包括步骤:
S810、对坯料进行固溶,固溶温度为470℃;
S820、采用室温水对坯料淬火,使其冷却至室温;
S830、对坯料进行1.0%~3.5%永久冷变形的预压缩;
S840、对坯料进行时效处理。
进一步地,如图10所示,步骤S840包括步骤:
S841、第一级时效处理,时效处理温度为120℃,处理时间为4~8小时;
S842、第二级时效处理,时效处理温度为157℃,处理时间为8~12小时。
通过采用这种双级时效处理的技术方案,能够有效降低铝合金的各向异性差异,提高了均匀化效果,进而使铝合金的综合性能得到提高。
为了验证本发明制作的铝合金性能,发明人对合金主成分控制在Zn6.6~9.0%,Mg1.2~2.0%,Cu1.3~2.0%,加入适量的微合金元素,控制再结晶,并通过本发明的铝合金的制作方法的流程浇铸出φ320mm圆锭,得出如下结论:
1、当Zn为7.5%,Mg为1.6% ,Cu为1.65%,Zr为0.12%,Fe为小于0.08%,Si为小于0.06%时,同时在步骤S600中采用双级均匀化处理,在步骤S800中,采用470℃固溶处理,淬火介质中急冷,并采用双级时效处理,最终获得的铝合金抗拉强度为525MPa,屈服强度为480 MPa,延伸率为11.2 %,断裂韧度为38.9 MPam1/2
2、当Zn为7.5%,Mg为1. 5 % ,Cu为1.6%,Zr为0.12%,Fe为小于0.08%,Si为小于0.06%时,同时在步骤S600中采用双级均匀化处理,在步骤S800中,采用470℃固溶处理,淬火介质中急冷,并采用双级时效处理,最终获得的铝合金抗拉强度为530MPa,屈服强度为485 MPa,延伸率为12.3%,断裂韧度为36.8 MPam1/2
3、当Zn为7.5%,Mg为1.6 % ,Cu为1.6%,Zr为0.12%,Fe为小于0.08%,Si为小于0.06%时,同时在步骤S600中采用双级均匀化处理,在步骤S800中,采用470℃固溶处理,淬火介质中急冷,并采用双级时效处理,最终获得的铝合金抗拉强度为515MPa,屈服强度为481 MPa,延伸率为13.5%,断裂韧度为37.2 MPam1/2
4、当Zn为7.0%,Mg为1.2 % ,Cu为1.3%,Zr为0.12%,Fe为小于0.08%,Si为小于0.06%时,同时在步骤S600中采用双级均匀化处理,在步骤S800中,采用470℃固溶处理,淬火介质中急冷,并采用双级时效处理,最终获得的铝合金抗拉强度为500MPa,屈服强度为440 MPa,延伸率为12%,断裂韧度为39.1 MPam1/2
5、当Zn为8.0%,Mg为1.8 % ,Cu为2%,Zr为0.12%,Fe为小于0.08%,Si为小于0.06%时,同时在步骤S600中采用双级均匀化处理,在步骤S800中,采用470℃固溶处理,淬火介质中急冷,并采用双级时效处理,最终获得的铝合金抗拉强度为523MPa,屈服强度为481 MPa,延伸率为12.4%,断裂韧度为36.5 MPam1/2
6、当Zn为8.5%,Mg为1.7 % ,Cu为1.7%,Zr为0.12%,Fe为小于0.08%,Si为小于0.06%时,同时在步骤S600中采用双级均匀化处理,在步骤S800中,采用470℃固溶处理,淬火介质中急冷,并采用双级时效处理,最终获得的铝合金抗拉强度为532MPa,屈服强度为488 MPa,延伸率为13.2%,断裂韧度为37.2 MPam1/2
7、当Zn为6.6%,Mg为1.4 % ,Cu为1.6%,Zr为0.12%,Fe为小于0.08%,Si为小于0.06%时,同时在步骤S600中采用双级均匀化处理,在步骤S800中,采用470℃固溶处理,淬火介质中急冷,并采用双级时效处理,最终获得的铝合金抗拉强度为501MPa,屈服强度为471 MPa,延伸率为12.8%,断裂韧度为38.1 MPam1/2
8、当Zn为9%,Mg为2% ,Cu为1.8%,Zr为0.12%,Fe为小于0.08%,Si为小于0.06%时,同时在步骤S600中采用双级均匀化处理,在步骤S800中,采用470℃固溶处理,淬火介质中急冷,并采用双级时效处理,最终获得的铝合金抗拉强度为540MPa,屈服强度为493 MPa,延伸率为12.1%,断裂韧度为37.4 MPam1/2
综上所述采用以上技术方案所生产的铝合金具有优异的强度和断裂韧性,极限抗拉强度可达500MPa以上,屈服强度475MPa以上,同时延伸率能够提高10%、T-L向KⅠc(断裂韧度)可达32MPam1/2以上,淬透厚度可达300mm以上。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种铝合金,其特征在于:
成分中含有Zn、Cu和Mg,按质量百分比,5.2≥Zn/Mg≥4,6.4≥(Zn+Cu)/ Mg≥5,Cu/Mg≥1,13≥Zn+Mg+Cu≥10。
2.根据权利要求1所述的铝合金,其特征在于:
按质量百分比包括:Zn6.2~9.0%,Mg1.0~2.0%,Cu1.2~2.0%,Zr0.08~0.15%,Si≤0.06%,Fe≤0.08%,其它杂质总量≤0.15%,余量为Al。
3.根据权利要求2所述的铝合金,其特征在于:
所述其他杂质的种类为至少两个,任意一种所述其他杂质≤0.05%。
4.一种铝合金的制作方法,用以制作如权利要求1至3任意一项所述的铝合金,其特征在于:
包括步骤:
S100、按照质量百分比进行配料,形成制作原料;
S200、在熔炼炉中将制作原料融化成金属液;
S300、对金属液进行精炼;
S400、采用动态控温的高温长时的工艺对精炼后的金属液进行静置处理;
S500、将经过静置处理的金属液浇铸成合金铸锭;
S600、对合金铸锭进行均匀化处理;
S700、将合金铸锭锻造成为坯料;
S800、对坯料进行热处理;
其中,在步骤S200中融化温度为680℃~780℃,在步骤S300中,精炼温度为690℃~750℃,在步骤S500中浇铸初始温度为700℃~720℃,并且浇铸速度为15~200mm/分钟。
5.根据权利要求4所述的铝合金的制作方法,其特征在于:
在步骤S400中,对金属液进行静置处理的时间大于或等于45分钟。
6.根据权利要求5所述的铝合金的制作方法,其特征在于:
步骤S400包括步骤:
S410、将金属液升温至750℃,并保温3分钟以上;
S420、将金属液升温至780℃,并保温10分钟以上;
S430、将金属液降温至750℃,并保温3分钟以上;
S440、将金属液降温至720℃,并保温3分钟以上。
7.根据权利要求4至6任意一项所述的铝合金的制作方法,其特征在于:
步骤S600包括步骤:
S610、第一级均匀化处理,均匀化温度为400℃~420℃;
S620、第二级均匀化处理,均匀化温度为460℃~470℃,并且时间在36小时以上。
8.根据权利要求4至6任意一项所述的铝合金的制作方法,其特征在于:
步骤S700包括步骤:
S710、将合金铸锭的表面层去除;
S720、将去除表面层的合金铸锭锻造成为坯料,并且在锻造过程中使合金铸锭的温度保持在380℃~440℃。
9.根据权利要求4至6任意一项所述的铝合金的制作方法,其特征在于:
步骤S800包括步骤:
S810、对坯料进行固溶,固溶温度为470℃;
S820、采用室温水对坯料淬火,使其冷却至室温;
S830、对坯料进行1.0%~3.5%永久冷变形的预压缩;
S840、对坯料进行时效处理。
10.根据权利要求9的铝合金的制作方法,其特征在于:
步骤S840包括步骤:
S841、第一级时效处理,时效处理温度为120℃,处理时间为4~8小时;
S842、第二级时效处理,时效处理温度为157℃,处理时间为8~12小时。
CN202110750385.3A 2021-07-02 2021-07-02 一种铝合金及铝合金的制作方法 Active CN113215458B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110750385.3A CN113215458B (zh) 2021-07-02 2021-07-02 一种铝合金及铝合金的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110750385.3A CN113215458B (zh) 2021-07-02 2021-07-02 一种铝合金及铝合金的制作方法

Publications (2)

Publication Number Publication Date
CN113215458A true CN113215458A (zh) 2021-08-06
CN113215458B CN113215458B (zh) 2023-02-24

Family

ID=77081072

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110750385.3A Active CN113215458B (zh) 2021-07-02 2021-07-02 一种铝合金及铝合金的制作方法

Country Status (1)

Country Link
CN (1) CN113215458B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115233008A (zh) * 2022-08-30 2022-10-25 西南铝业(集团)有限责任公司 一种铸锭成分控制方法和应用
CN115976380A (zh) * 2022-12-28 2023-04-18 山东泰和能源股份有限公司 一种7系铝合金及其生产工艺和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030219353A1 (en) * 2002-04-05 2003-11-27 Timothy Warner Al-Zn-Mg-Cu alloys and products with improved ratio of static mechanical characteristics to damage tolerance
CN101407876A (zh) * 2008-09-17 2009-04-15 北京有色金属研究总院 适于大截面主承力结构件制造的铝合金材料及其制备方法
CN101698914A (zh) * 2009-11-13 2010-04-28 中国航空工业集团公司北京航空材料研究院 一种新型超高强铝合金及其制备方法
CN101698916A (zh) * 2009-11-13 2010-04-28 中国航空工业集团公司北京航空材料研究院 一种新型高强高韧铝合金及其制备方法
CN101967588A (zh) * 2010-10-27 2011-02-09 中国航空工业集团公司北京航空材料研究院 一种耐损伤铝锂合金及其制备方法
CN102732761A (zh) * 2012-06-18 2012-10-17 中国航空工业集团公司北京航空材料研究院 一种7000系铝合金材料及其制备方法
CN105401021A (zh) * 2015-10-29 2016-03-16 中国航空工业集团公司北京航空材料研究院 一种700MPa级铝合金挤压型材
CN105803277A (zh) * 2016-05-03 2016-07-27 中国航空工业集团公司北京航空材料研究院 一种高锌含量的铝合金的热处理工艺
JP2017052989A (ja) * 2015-09-08 2017-03-16 株式会社Uacj 構造用アルミニウム合金板及びその製造方法
CN110396629A (zh) * 2019-08-16 2019-11-01 中国航发北京航空材料研究院 一种800MPa级铝合金挤压型材及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030219353A1 (en) * 2002-04-05 2003-11-27 Timothy Warner Al-Zn-Mg-Cu alloys and products with improved ratio of static mechanical characteristics to damage tolerance
CN101407876A (zh) * 2008-09-17 2009-04-15 北京有色金属研究总院 适于大截面主承力结构件制造的铝合金材料及其制备方法
CN101698914A (zh) * 2009-11-13 2010-04-28 中国航空工业集团公司北京航空材料研究院 一种新型超高强铝合金及其制备方法
CN101698916A (zh) * 2009-11-13 2010-04-28 中国航空工业集团公司北京航空材料研究院 一种新型高强高韧铝合金及其制备方法
CN101967588A (zh) * 2010-10-27 2011-02-09 中国航空工业集团公司北京航空材料研究院 一种耐损伤铝锂合金及其制备方法
CN102732761A (zh) * 2012-06-18 2012-10-17 中国航空工业集团公司北京航空材料研究院 一种7000系铝合金材料及其制备方法
JP2017052989A (ja) * 2015-09-08 2017-03-16 株式会社Uacj 構造用アルミニウム合金板及びその製造方法
CN105401021A (zh) * 2015-10-29 2016-03-16 中国航空工业集团公司北京航空材料研究院 一种700MPa级铝合金挤压型材
CN105803277A (zh) * 2016-05-03 2016-07-27 中国航空工业集团公司北京航空材料研究院 一种高锌含量的铝合金的热处理工艺
CN110396629A (zh) * 2019-08-16 2019-11-01 中国航发北京航空材料研究院 一种800MPa级铝合金挤压型材及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115233008A (zh) * 2022-08-30 2022-10-25 西南铝业(集团)有限责任公司 一种铸锭成分控制方法和应用
CN115976380A (zh) * 2022-12-28 2023-04-18 山东泰和能源股份有限公司 一种7系铝合金及其生产工艺和应用

Also Published As

Publication number Publication date
CN113215458B (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
CN113215458B (zh) 一种铝合金及铝合金的制作方法
JP5918158B2 (ja) 室温時効後の特性に優れたアルミニウム合金板
CN107190186A (zh) 一种新型超高强高韧铝合金及其制备方法
JP2006257506A (ja) 伸びフランジ性および曲げ加工性に優れたアルミニウム合金板およびその製造方法
KR100540234B1 (ko) 알루미늄 기초 합금 및 알루미늄 기초 합금의 열처리 방법
JP5379471B2 (ja) 冷間プレス成形用アルミニウム合金板の製造方法、および冷間プレス成形方法
JP4229307B2 (ja) 耐応力腐食割れ性に優れた航空機ストリンガー用アルミニウム合金板およびその製造方法
JP7401307B2 (ja) 高性能5000系アルミニウム合金
JP2006257505A (ja) 伸びフランジ性に優れたアルミニウム合金板
JP3845312B2 (ja) 成形加工用アルミニウム合金板およびその製造方法
JP4515363B2 (ja) 成形性に優れたアルミニウム合金板およびその製造方法
JP2007270204A (ja) 伸びフランジ性に優れたアルミニウム合金板およびその製造方法
JP2004027253A (ja) 成形加工用アルミニウム合金板およびその製造方法
JP2005139537A (ja) 焼付け塗装硬化性に優れたアルミニウム合金板
JP2009148822A (ja) 高強度アルミニウム合金板の温間プレス成形方法
JP2001131666A (ja) ケース成形用Al−Mn−Mg系合金板およびその製造方法
CN1266462A (zh) 耐自然时效和镶板性能优异的冷轧钢板的制造方法
JP2009299104A (ja) Al−Mg−Si系合金板の高温成形方法および成形品
JP4771791B2 (ja) 成形加工用アルミニウム合金板の製造方法
JPH05171328A (ja) 曲げ加工性に優れたアルミニウム合金薄肉中空形材及びその製造方法
JPH05331588A (ja) フランジ成形性に優れた成形加工用アルミニウム合金板およびその製造方法
JP3686146B2 (ja) 成形加工用アルミニウム合金板の製造方法
JPH0681066A (ja) 極低温成形加工用Al−Mg−Si系合金材
KR960007633B1 (ko) 고성형성 고강도 알루미늄-마그네슘계 합금 및 그 제조방법
JP3218099B2 (ja) 耳率が低く成形性に優れたアルミニウム合金板の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant