CN113213938A - 一种微细硫化铟粉体及靶材的制备方法 - Google Patents

一种微细硫化铟粉体及靶材的制备方法 Download PDF

Info

Publication number
CN113213938A
CN113213938A CN202110550527.1A CN202110550527A CN113213938A CN 113213938 A CN113213938 A CN 113213938A CN 202110550527 A CN202110550527 A CN 202110550527A CN 113213938 A CN113213938 A CN 113213938A
Authority
CN
China
Prior art keywords
indium sulfide
target material
sulfide powder
fine
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110550527.1A
Other languages
English (en)
Other versions
CN113213938B (zh
Inventor
沈文兴
白平平
童培云
谢小豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leading Film Materials Anhui Co ltd
Original Assignee
Pilot Film Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pilot Film Materials Co ltd filed Critical Pilot Film Materials Co ltd
Priority to CN202110550527.1A priority Critical patent/CN113213938B/zh
Publication of CN113213938A publication Critical patent/CN113213938A/zh
Application granted granted Critical
Publication of CN113213938B publication Critical patent/CN113213938B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种微细硫化铟粉体及靶材的制备方法,所述微细硫化铟粉体的制备方法包括如下步骤:将H2S气体通入In2(SO4)3溶液中,搅拌下反应合成硫化铟,反应结束后,对合成产物进行漂洗、过滤、煅烧、球磨及过筛,得到粒度D90为20~40μm的硫化铟粉体;将硫化铟粉体进行气流粉碎,气流粉碎的加料压力和粉碎压力为8~12kg,加料速度为3~5kg/h的匀速,加料结束后继续通气3~5min,得到D90<5μm的微细硫化铟粉体。本发明制得的硫化铟粉体为四方结构的β‑In2S3,粒度D90<5μm,将其用于制备靶材,利于提高靶材的品质,使靶材的平均晶粒度<5μm,电阻率<0.5KΩ/cm,相对密度≥97%,杂质含量低,溅射所形成薄膜的稳定性好、厚度分布均匀、及晶粒大小一致。

Description

一种微细硫化铟粉体及靶材的制备方法
技术领域
本发明涉及太阳能电池材料技术领域,具体涉及一种微细硫化铟粉体及靶材的制备方法。
背景技术
随着世界人口的不断增长和经济的持续发展,人类社会对于能源的需求越来越大。其中,以石油、煤炭等为代表的传统能源的供应已经越来越难以满足日益增长的能源消耗。为此,太阳能、风能、地热能、生物质能、潮汐能等新能源的开发迫在眉睫。
硫化铟(In2S3)是一种重要的半导体材料,具有特殊的光电、光致发光等性能,在燃料电池、电化学传感器及光电功能材料等领域有很大的应用价值。In2S3有3种不同的缺陷结构:α-In2S3(缺陷立方)、β-In2S3(缺陷尖晶石,以立方或四方的结构形式存在)和γ-In2S3(层状六方)。β-In2S3是一种N型半导体,禁带宽度为2.00~2.30eV,是典型的III~VI族硫化物;它是一种很有应用潜力的光电材料,由于其光电特性及荧光性能,已作为绿色和红色无机发光材料应用于彩电显像管和光伏发电机中。同时,硫化铟还作为缓冲层被应用于Cu(In,Ga)Se2太阳能电池中,有效地替代了有毒的CdS。据报道,用β-In2S3作为缓冲层材料的太阳能电池的光电转换率可达16.4%,非常接近于标准的CdS缓冲层的光电转换率。
靶材是用于溅射沉积功能薄膜的源材料,而靶材的制备工艺分为熔融铸造和粉末冶金两大类。由于熔融铸造法无法实现难熔金属溅射靶材的制作,而粉末冶金工艺可以解决这一技术难题,因此,粉末冶金工艺目前已成为靶材的主要制备方法。在粉末冶金工艺中,对粉体的性能有严格的要求,粉体的晶体结构、C和O的含量、粒度、微观形貌、BET比表面积等均会影响成型后的靶材的密度和均匀性。硫化铟靶材主要应用于太阳能电池和光电领域,该领域对膜层的均匀性等性能的要求非常高,而靶材的晶粒尺寸对膜层的均匀性有重要影响,在粉末冶金工艺中,决定靶材晶粒尺寸的主要因素有粉体的颗粒大小、制备靶材的烧结温度和烧结时间等参数。
目前,虽然有关硫化铟粉体的合成方法已有报道,但这些粉体的粒度较大,不利于获得晶粒尺寸小和致密度高的靶材。
发明内容
为解决上述现有技术中存在的缺点和不足,本发明的目的在于提供一种微细硫化铟粉体及靶材的制备方法。
为实现上述目的,本发明采取的技术方案为:
一种微细硫化铟粉体的制备方法,其包括如下步骤:
(1)湿法合成硫化铟
将H2S气体通入In2(SO4)3溶液中,搅拌下反应合成硫化铟,反应结束后,对合成产物进行漂洗、过滤、煅烧、球磨及过筛,得到粒度D90为20~40μm的硫化铟粉体;
(2)气流粉碎
将步骤(1)得到的硫化铟粉体进行气流粉碎,气流粉碎的加料压力和粉碎压力为8~12kg,加料速度为3~5kg/h的匀速,加料结束后继续通气3~5min,得到D90<5μm的微细硫化铟粉体。
优选地,所述步骤(1)中,In2(SO4)3溶液的In3+浓度为100~200g/L,H2S气体的流量为2~3L/min,搅拌速率为200~300RPM。
优选地,所述In2(SO4)3溶液的纯度为5N以上,所述H2S气体的纯度为2N以上。
优选地,所述气流粉碎使用MQW03气流粉碎机。用该型号的气流粉碎机进行气流粉碎,可获得粒度均匀度较高的粉体,且该气流粉碎机有陶瓷保护,不会向粉体中引入其它金属杂质。其工作原理为:保护气体经过滤干燥后,通过拉瓦尔喷嘴以一定角度高速喷入粉碎腔中。在多股高压气流的交汇处,物料被反复碰撞、磨擦、剪切而粉碎,粉碎后的物料在引风机抽力作用下运动至分级区,同时又在高速旋转的分级涡轮产生的强大离心力作用下,使粗细物料分离,符合粒度要求的细颗粒通过分级轮进入除尘器收集,粗颗粒则下降至粉碎区继续粉碎。
本发明先采用湿法工艺制备颗粒度较大的硫化铟粉体,然后结合湿法后粉体颗粒度易破碎的特性,再利用MQW03气流粉碎机对粉体进行破碎,减小粉体粒度,最终得到粒度D90<5μm的微细硫化铟粉体,且所述微细硫化铟粉体为四方结构的β-In2S3,在太阳能电池领域具有很大的应用价值。用于制备靶材时,利于提高靶材的品质,可减小靶材的晶粒尺寸,增大靶材的密度。
本发明还提供了一种硫化铟靶材的制备方法,使用本发明所述的微细硫化铟粉体的制备方法制备的微细硫化铟粉体进行制备。
优选地,所述硫化铟靶材的制备方法,包括如下步骤:
(a)将所述微细硫化铟粉体装入模具中,然后将模具放入真空热压烧结炉中;
(b)先以2~3t/min加压至5~10MPa进行预压,以排除模具中的空气,保压3~5min后卸压,得到硫化铟坯体;
(c)然后关闭炉门,将炉内抽真空至真空度为5~10Pa,开始加热,以5~10℃/min升温至700~750℃,保温120~150min,其中,保温20~30min后开始加压,加压至30~35MPa后保温保压40~60min,然后降压至10MPa,保温结束后,随炉冷却,脱模后得到硫化铟毛坯靶材;
(d)将硫化铟毛坯靶材加工成所需尺寸,得到所述硫化铟靶材。
采用本发明制备的微细硫化铟粉体,同时结合本发明的真空热压烧结条件,可成功制得杂质含量低、晶粒度较细、电阻率均匀、以及致密度较高的硫化铟靶材。经试验检测,本发明制备的硫化铟靶材的平均晶粒度<5μm,电阻率<0.5KΩ/cm,相对密度≥97%,具有优异的溅射性能,溅射时不异常放电、不节流,溅射所形成的薄膜稳定性好,薄膜厚度分布均匀,薄膜晶粒大小一致。
优选地,所述模具为石墨模具。
与现有技术相比,本发明的有益效果在于:本发明提供了一种硫化铟粉体的制备方法,所制得的硫化铟粉体为四方结构的β-In2S3,粒度D90<5μm,将其用于制备靶材,利于提高靶材的品质,可减小靶材的晶粒尺寸,增大靶材的密度。本发明还提供了一种硫化铟靶材的制备方法,所制得的硫化铟靶材具有较高的品质,晶粒度较细,平均晶粒度<5μm,电阻率均匀,电阻率<0.5KΩ/cm,致密度较高,相对密度≥97%,杂质含量低,溅射效果好,溅射所形成薄膜的稳定性好、厚度分布均匀、及晶粒大小一致。
附图说明
图1为实施例1制备的硫化铟粉体在气流粉碎前后的XRD图;
图2为实施例1制备的硫化铟粉体在气流粉碎前的SEM图;
图3为实施例1制备的硫化铟粉体在气流粉碎后的SEM图。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将通过下列实施例进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围。实施例中,所用方法如无特别说明,均为常规方法;所用原料和设备,均可市售购买获得。实施例中使用的In2(SO4)3溶液的纯度为5N,H2S气体的纯度为2N。
实施例1
一种微细硫化铟粉体的制备方法,步骤如下:
将In3+浓度为100g/L的In2(SO4)3溶液加入玻璃反应釜中,开启搅拌桨,搅拌桨速率控制在200RPM。然后,将H2S气体以2L/min的流量通入In2(SO4)3溶液中,直至反应结束为止。然后,经纯水漂洗,多次循环过滤,直至反应釜内的液体不浑浊。取出滤袋中的硫化铟湿料,放入洁净的石英舟中,再放入石英管中煅烧,煅烧温度为450℃,保温120min,冷却至室温,出料。将物料放入球磨桶中球磨10min,然后用325目不锈钢筛网进行过筛,得到硫化铟粉体。取样,对硫化铟粉体进行XRD和SEM分析,分析结果见图1和图2。
将上述制备的硫化铟粉体装入MQW03气流粉碎机的喂料仓,打开电源,调节气压,加料压力设置为9kg,粉碎压力设置为9kg,然后调节变频器调速,将加料速度调节至3kg/h匀速地进入加料仓口。加料结束后,继续通气3min后再停止通气。气流粉碎过程保证气源压力充足,待物料添加完毕后持续运行3min,保证设备内的物料充分粉碎。设备停止运行后,待物料沉降30min,出料,得到微细硫化铟粉体。取样,对微细硫化铟粉体进行XRD、SEM、PSD和纯度(ICP-OES)分析。XRD结果见图1,SEM结果见图3,PSD分析结果见表1,纯度分析结果显示粉体纯度达到4N5以上。
从分析结果可看出,本实施例1制备的微细硫化铟粉体为四方结构的β-In2S3,经气流粉碎后,微细硫化铟粉体的粒度D90为4.83μm,且纯度达到4N5以上。
实施例2
一种硫化铟靶材的制备方法,步骤如下:
将实施例1制备的微细硫化铟粉体铺平后装入石墨模具中,然后将石墨模具放入真空热压烧结炉中。首先,以2t/min加压至10MPa进行预压,以排除石墨模具中的空气,保压3min后卸压,得到硫化铟坯体。然后,关闭炉门,将炉内抽真空至真空度为5Pa时,开始加热,以5℃/min升温至700℃,保温120min;其中,保温20min后开始加压,加压至30MPa后保温保压40min,保温保压结束后,缓慢降压至10MPa,直至保温结束。最后,随炉冷却,打开炉门,脱模,得到硫化铟毛坯靶材。将硫化铟毛坯靶材加工成所需尺寸,得到硫化铟靶材。
对硫化铟靶材进行密度、电阻率和晶粒度检测。检测结果显示,本实施例2制备的硫化铟靶材的相对密度为97.1%,电阻率为0.48KΩ/cm,晶粒度小于5μm。
实施例3
一种微细硫化铟粉体的制备方法,步骤如下:
将In3+浓度为200g/L的In2(SO4)3溶液加入玻璃反应釜中,开启搅拌桨,搅拌桨速率控制在300RPM。然后,将H2S气体以3L/min的流量通入In2(SO4)3溶液中,直至反应结束为止。然后,经纯水漂洗,多次循环过滤,直至反应釜内的液体不浑浊。取出滤袋中的硫化铟湿料,放入洁净的石英舟中,再放入石英管中煅烧,煅烧温度为450℃,保温120min,冷却至室温,出料。将物料放入球磨桶中球磨10min,然后用325目不锈钢筛网进行过筛,得到硫化铟粉体。取样,对硫化铟粉体进行XRD和SEM分析,分析结果同实施例1气流粉碎前的硫化铟粉体的分析结果,不再赘举。
将上述制备的硫化铟粉体装入MQW03气流粉碎机的喂料仓,打开电源,调节气压,加料压力设置为9kg,粉碎压力设置为11kg,然后调节变频器调速,将加料速度调节至3kg/h匀速地进入加料仓口。加料结束后,继续通气3min后再停止通气。气流粉碎过程保证气源压力充足,待物料添加完毕后持续运行3min,保证设备内的物料充分粉碎。设备停止运行后,待物料沉降30min,出料,得到微细硫化铟粉体。取样,对微细硫化铟粉体进行XRD、SEM、PSD和纯度分析。
分析结果显示,本实施例3制备的微细硫化铟粉体为四方结构的β-In2S3,经气流粉碎后,微细硫化铟粉体的粒度D90为4.76μm,且纯度达到4N5以上。
实施例4
一种硫化铟靶材的制备方法,步骤如下:
将实施例3制备的微细硫化铟粉体铺平后装入石墨模具中,然后将石墨模具放入真空热压烧结炉中。首先,以3t/min加压至10MPa进行预压,以排除石墨模具中的空气,保压3min后卸压,得到硫化铟坯体。然后,关闭炉门,将炉内抽真空至真空度为10Pa时,开始加热,以10℃/min升温至750℃,保温150min;其中,保温30min后开始加压,加压至35MPa后保温保压60min,保温保压结束后,缓慢降压至10MPa,直至保温结束。最后,随炉冷却,打开炉门,脱模,得到硫化铟毛坯靶材。将硫化铟毛坯靶材加工成所需尺寸,得到硫化铟靶材。
对硫化铟靶材进行密度、电阻率和晶粒度检测。检测结果显示,本实施例4制备的硫化铟靶材的相对密度为97.6%,电阻率为0.45KΩ/cm,晶粒度小于5μm。
实施例5
一种微细硫化铟粉体的制备方法,步骤如下:
将In3+浓度为150g/L的In2(SO4)3溶液加入玻璃反应釜中,开启搅拌桨,搅拌桨速率控制在280RPM。然后,将H2S气体以2.5L/min的流量通入In2(SO4)3溶液中,直至反应结束为止。然后,经纯水漂洗,多次循环过滤,直至反应釜内的液体不浑浊。取出滤袋中的硫化铟湿料,放入洁净的石英舟中,再放入石英管中煅烧,煅烧温度为450℃,保温120min,冷却至室温,出料。将物料放入球磨桶中球磨10min,然后用325目不锈钢筛网进行过筛,得到硫化铟粉体。取样,对硫化铟粉体进行XRD和SEM分析,分析结果同实施例1气流粉碎前的硫化铟粉体的分析结果,不再赘举。
将上述制备的硫化铟粉体装入MQW03气流粉碎机的喂料仓,打开电源,调节气压,加料压力设置为9kg,粉碎压力设置为10kg,然后调节变频器调速,将加料速度调节至3kg/h匀速地进入加料仓口。加料结束后,继续通气5min后再停止通气。气流粉碎过程保证气源压力充足,待物料添加完毕后持续运行3min,保证设备内的物料充分粉碎。设备停止运行后,待物料沉降60min,出料,得到微细硫化铟粉体。取样,对微细硫化铟粉体进行XRD、SEM、PSD和纯度分析。
分析结果显示,本实施例5制备的微细硫化铟粉体为四方结构的β-In2S3,经气流粉碎后,微细硫化铟粉体的粒度D90为4.81μm,且纯度达到4N5以上。
实施例6
一种硫化铟靶材的制备方法,步骤如下:
将实施例5制备的微细硫化铟粉体铺平后装入石墨模具中,然后将石墨模具放入真空热压烧结炉中。首先,以3t/min加压至10MPa进行预压,以排除石墨模具中的空气,保压3min后卸压,得到硫化铟坯体。然后,关闭炉门,将炉内抽真空至真空度为10Pa时,开始加热,以10℃/min升温至720℃,保温120min;其中,保温30min后开始加压,加压至32MPa后保温保压60min,保温保压结束后,缓慢降压至10MPa,直至保温结束。最后,随炉冷却,打开炉门,脱模,得到硫化铟毛坯靶材。将硫化铟毛坯靶材加工成所需尺寸,得到硫化铟靶材。
对硫化铟靶材进行密度、电阻率和晶粒度检测。检测结果显示,本实施例6制备的硫化铟靶材的相对密度为97.5%,电阻率为0.46KΩ/cm,晶粒度小于5μm。
对比例1
一种硫化铟靶材的制备方法,步骤如下:
将In3+浓度为150g/L的In2(SO4)3溶液加入玻璃反应釜中,开启搅拌桨,搅拌桨速率控制在280RPM。然后,将H2S气体以2.5L/min的流量通入In2(SO4)3溶液中,直至反应结束为止。然后,经纯水漂洗,多次循环过滤,直至反应釜内的液体不浑浊。取出滤袋中的硫化铟湿料,放入洁净的石英舟中,再放入石英管中煅烧,煅烧温度为450℃,保温120min,冷却至室温,出料。将物料放入球磨桶中球磨10min,然后用325目不锈钢筛网进行过筛,得到硫化铟粉体。取样,对硫化铟粉体进行PSD分析,分析结果显示其D90粒度为36.2μm。
将上述制备的硫化铟粉体铺平后装入石墨模具中,然后将石墨模具放入真空热压烧结炉中。首先,以3t/min加压至10MPa进行预压,以排除石墨模具中的空气,保压3min后卸压,得到硫化铟坯体。然后,关闭炉门,将炉内抽真空至真空度为10Pa时,开始加热,以10℃/min升温至720℃,保温120min;其中,保温30min后开始加压,加压至32MPa后保温保压60min,保温保压结束后,缓慢降压至10MPa,直至保温结束。最后,随炉冷却,打开炉门,脱模,得到硫化铟毛坯靶材。将硫化铟毛坯靶材加工成所需尺寸,得到硫化铟靶材。
对硫化铟靶材进行密度、电阻率和晶粒度检测。检测结果显示,对比例1制备的硫化铟靶材的相对密度为95.2%,电阻率为0.94KΩ/cm,晶粒度小于25μm。
对比例2
对比例2与实施例6的区别仅在于真空热压条件不同,其它相同。对比例2的真空热压条件为:将炉内抽真空至真空度为10Pa时,开始加热,以15℃/min升温至650℃,保温120min;其中,保温30min后开始加压,加压至32MPa后保温保压60min,保温保压结束后,缓慢降压至10MPa,直至保温结束。
对硫化铟靶材进行密度、电阻率和晶粒度检测。检测结果显示,对比例2制备的硫化铟靶材的相对密度为91.8%,电阻率为1.73KΩ/cm,晶粒度小于5μm。
对比例3
对比例3与实施例6的区别仅在于真空热压条件不同,其它相同。对比例3的真空热压条件为:将炉内抽真空至真空度为10Pa时,开始加热,以10℃/min升温至800℃,保温120min;其中,保温30min后开始加压,加压至32MPa后保温保压60min,保温保压结束后,缓慢降压至10MPa,直至保温结束。
对硫化铟靶材进行密度、电阻率和晶粒度检测。检测结果显示,对比例3制备的硫化铟靶材的相对密度为96.1%,电阻率为0.62KΩ/cm,晶粒度小于5μm。
表1
Figure BDA0003075248880000091
Figure BDA0003075248880000101
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (9)

1.一种微细硫化铟粉体的制备方法,其特征在于,包括如下步骤:
(1)湿法合成硫化铟
将H2S气体通入In2(SO4)3溶液中,搅拌下反应合成硫化铟,反应结束后,对合成产物进行漂洗、过滤、煅烧、球磨及过筛,得到粒度D90为20~40μm的硫化铟粉体;
(2)气流粉碎
将步骤(1)得到的硫化铟粉体进行气流粉碎,气流粉碎的加料压力和粉碎压力为8~12kg,加料速度为3~5kg/h的匀速,加料结束后继续通气3~5min,得到D90<5μm的微细硫化铟粉体。
2.如权利要求1所述的微细硫化铟粉体的制备方法,其特征在于,所述步骤(1)中,In2(SO4)3溶液的In3+浓度为100~200g/L,H2S气体的流量为2~3L/min。
3.如权利要求1所述的微细硫化铟粉体的制备方法,其特征在于,所述步骤(1)中,搅拌速率为200~300RPM。
4.如权利要求1所述的微细硫化铟粉体的制备方法,其特征在于,所述In2(SO4)3溶液的纯度为5N以上,所述H2S气体的纯度为2N以上。
5.如权利要求1所述的微细硫化铟粉体的制备方法,其特征在于,所述气流粉碎使用MQW03气流粉碎机。
6.一种硫化铟靶材的制备方法,其特征在于,使用如权利要求1~5任一项所述的微细硫化铟粉体的制备方法制备的微细硫化铟粉体进行制备。
7.如权利要求6所述的硫化铟靶材的制备方法,其特征在于,包括如下步骤:
(a)将所述微细硫化铟粉体装入模具中,然后将模具放入真空热压烧结炉中;
(b)先以2~3t/min加压至5~10MPa进行预压,以排除模具中的空气,保压3~5min后卸压,得到硫化铟坯体;
(c)然后关闭炉门,将炉内抽真空至真空度为5~10Pa,开始加热,以5~10℃/min升温至700~750℃,保温120~150min,其中,保温20~30min后开始加压,加压至30~35MPa后保温保压40~60min,然后降压至10MPa,保温结束后,随炉冷却,脱模后得到硫化铟毛坯靶材;
(d)将硫化铟毛坯靶材加工成所需尺寸,得到所述硫化铟靶材。
8.如权利要求7所述的硫化铟靶材的制备方法,其特征在于,所述模具为石墨模具。
9.如权利要求7所述的硫化铟靶材的制备方法,其特征在于,所述硫化铟靶材的平均晶粒度<5μm,电阻率<0.5KΩ/cm,相对密度≥97%。
CN202110550527.1A 2021-05-20 2021-05-20 一种微细硫化铟粉体及靶材的制备方法 Active CN113213938B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110550527.1A CN113213938B (zh) 2021-05-20 2021-05-20 一种微细硫化铟粉体及靶材的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110550527.1A CN113213938B (zh) 2021-05-20 2021-05-20 一种微细硫化铟粉体及靶材的制备方法

Publications (2)

Publication Number Publication Date
CN113213938A true CN113213938A (zh) 2021-08-06
CN113213938B CN113213938B (zh) 2022-12-20

Family

ID=77093669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110550527.1A Active CN113213938B (zh) 2021-05-20 2021-05-20 一种微细硫化铟粉体及靶材的制备方法

Country Status (1)

Country Link
CN (1) CN113213938B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062365A (zh) * 1990-12-15 1992-07-01 三星电管株式会社 红色颜料涂层的燐光体及其制造方法
DE102008017077A1 (de) * 2008-04-01 2009-10-08 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Verfahren und Anordnung zur Herstellung einer n-halbleitenden Indiumsulfid-Dünnschicht
CN101946026A (zh) * 2008-02-12 2011-01-12 日矿金属株式会社 从izo废料中回收有价值金属的方法
CN102463349A (zh) * 2010-11-05 2012-05-23 慧濠光电科技股份有限公司 铜铟镓硒硫五元靶材的制作方法
CN104269461A (zh) * 2014-09-26 2015-01-07 合肥工业大学 n型In2S3缓冲层的成膜方法及其应用
CN105924168A (zh) * 2016-05-09 2016-09-07 中科院微电子研究所昆山分所 一种TiO2掺杂ZnNb2O6陶瓷靶材的制备方法
CN108251811A (zh) * 2018-01-23 2018-07-06 中南大学 In2(SxSe1-x)3薄膜材料的制备方法
CN112110481A (zh) * 2020-08-27 2020-12-22 韶关市欧莱高新材料有限公司 一种超细氧化铟粉体的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062365A (zh) * 1990-12-15 1992-07-01 三星电管株式会社 红色颜料涂层的燐光体及其制造方法
CN101946026A (zh) * 2008-02-12 2011-01-12 日矿金属株式会社 从izo废料中回收有价值金属的方法
DE102008017077A1 (de) * 2008-04-01 2009-10-08 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Verfahren und Anordnung zur Herstellung einer n-halbleitenden Indiumsulfid-Dünnschicht
CN102463349A (zh) * 2010-11-05 2012-05-23 慧濠光电科技股份有限公司 铜铟镓硒硫五元靶材的制作方法
CN104269461A (zh) * 2014-09-26 2015-01-07 合肥工业大学 n型In2S3缓冲层的成膜方法及其应用
CN105924168A (zh) * 2016-05-09 2016-09-07 中科院微电子研究所昆山分所 一种TiO2掺杂ZnNb2O6陶瓷靶材的制备方法
CN108251811A (zh) * 2018-01-23 2018-07-06 中南大学 In2(SxSe1-x)3薄膜材料的制备方法
CN112110481A (zh) * 2020-08-27 2020-12-22 韶关市欧莱高新材料有限公司 一种超细氧化铟粉体的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈鸿彬: "《高纯试剂提纯与制备》", 31 May 1983, 上海:上海科学技术出版社 *

Also Published As

Publication number Publication date
CN113213938B (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
EP3915963A1 (en) Silicon nitride, ceramic slurry and preparation method
CN109128141B (zh) 一种纳米WC-Co复合粉末的制备方法
CN107585768B (zh) 一种氧化-还原法制备超细碳化钨粉末的方法
JP6352917B2 (ja) SiOX粉末製造法及びSiOX粉末製造装置
CN108500280B (zh) 铜铟镓合金粉末制备装置及方法
CN110722171A (zh) 一种制备3d打印用稀土氧化物掺杂钨、钼球形粉末的方法
CN107902690B (zh) 微米级二氧化锡的制备方法
CN114988886B (zh) 可低温烧结的高纯α-氧化铝粉的制备方法
JP2013536316A (ja) カリウム/モリブデン複合金属粉末、粉末ブレンド、その生成物、及び光電池セルを製造する方法
CN1260123C (zh) 一种纳米级钨粉及碳化钨粉的制备方法
CN107792891B (zh) 镍钴锰酸锂粉体的制备方法
CN114759159B (zh) 一种高活性铁酸锂的制备方法及高活性铁酸锂,其正极和电池
CN112456971A (zh) 一种氧化镍基陶瓷靶材材料的冷等静压成型制备方法
CN101850963B (zh) 中位径3-10μm的球形石墨及其制备方法
CN113564708B (zh) 单晶锂镍钴铝氧化物的制备方法
CN1480282A (zh) 一种纳米级超细钨粉的制备方法
CN108465817B (zh) 一种组织均匀的高致密度纯钨制品制备方法
CN113213938B (zh) 一种微细硫化铟粉体及靶材的制备方法
CN112897477A (zh) 一种多面体状硒化钛纳米晶的制备方法
CN109694078B (zh) 一种氟晶云母的制备方法及其在二维晶体制备中的应用
CN110350162B (zh) 一种倍率型镍钴铝正极材料及其制备方法和应用
CN111995378A (zh) 锂电池陶瓷隔膜用低含水率氧化铝及其制备方法
CN115020659B (zh) 一种LiFePO4/C复合正极材料的制备方法
CN113683418A (zh) 一种用于热喷涂的钽酸盐球形粉体CaMoTa2O9及其制备方法
CN115196970A (zh) 一种高流动性AlON球形粉体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230621

Address after: In the workshop of Leading Film Materials Co., Ltd. at the intersection of Longzihu Road and Tongnenenebb Huainan Road, Xinzhan District, Hefei City, Anhui Province, 230000

Patentee after: Leading Film Materials (Anhui) Co.,Ltd.

Address before: 230000 northwest corner of the intersection of Longzihu road and tonghuai South Road, Xinzhan District, Hefei City, Anhui Province

Patentee before: Pilot film materials Co.,Ltd.

TR01 Transfer of patent right