CN113206245A - 镍铜双金属硫化物碱性水系锌电池正极材料、制备方法及电池 - Google Patents

镍铜双金属硫化物碱性水系锌电池正极材料、制备方法及电池 Download PDF

Info

Publication number
CN113206245A
CN113206245A CN202110498110.5A CN202110498110A CN113206245A CN 113206245 A CN113206245 A CN 113206245A CN 202110498110 A CN202110498110 A CN 202110498110A CN 113206245 A CN113206245 A CN 113206245A
Authority
CN
China
Prior art keywords
nickel
copper
positive electrode
electrode material
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110498110.5A
Other languages
English (en)
Other versions
CN113206245B (zh
Inventor
李洪飞
王自强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jinyuan New Energy Technology Co ltd
Original Assignee
Jiangsu Jinyuan New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Jinyuan New Energy Technology Co ltd filed Critical Jiangsu Jinyuan New Energy Technology Co ltd
Priority to CN202110498110.5A priority Critical patent/CN113206245B/zh
Publication of CN113206245A publication Critical patent/CN113206245A/zh
Application granted granted Critical
Publication of CN113206245B publication Critical patent/CN113206245B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了镍铜双金属硫化物碱性水系锌电池正极材料及其制备方法,采用水热法制备Cu‑Ni双金属氢氧化物负载于集流体上,进一步硫化改性制备负载Cu‑Ni双金属硫化物的集流体,后经洗涤、干燥获得;同时制备获得采用该正极材料制备的高性能碱性水系锌电池。本发明解决现有技术中碱性水系锌电池循环性能差,容量低的问题。

Description

镍铜双金属硫化物碱性水系锌电池正极材料、制备方法及 电池
技术领域
本发明涉及新能源电池领域,更具体地说,它涉及一种镍铜双金属硫化物碱性水系锌电池正极材料及其制备方法,以及采用该正极材料制备的高性能碱性水系锌电池。
背景技术
随着社会的发展,风能、太阳能等清洁、可持续的能源变得越来越重要。然而,这些资源是间歇性的,而不是持续可用的。因此,电池系统在储存间歇能源方面起着重要的作用。如今,锂离子电池得到了广泛的应用。然而,由于锂资源有限,锂离子电池的高成本以及需要使用有机电解质阻碍了其发展。安全问题和无水厌氧运行条件也是制约其进一步发展的原因,因此寻找替代材料建设新的储能系统迫在眉睫。金属锌具有较低的氧化还原电位(碱性条件下−1.260 V), 高容量(820 mAh g-1),价格低廉和资源丰富等特点,因此水系锌基可充电电池是一种极有发展前景的新型化学储能电源。但是碱性水系锌电池依旧存在着很多问题,其中受关注最多的依旧缺乏优良的正极材料。因此,寻找一种循环性能好、比容量高的正极材料仍然是水系可充电锌电池发展的关键。目前,二氧化锰及其他的金属氧化物(如钒类氧化物)是研究最多的一类水系锌基电池正极材料,然而金属氧化物较低的比容量和循环寿命限制了它们在水系锌基电池中的实际应用。随着电池技术的发展,寻找一种高容量、长循环的的新型锌基电池正极材料势在必行。
相对于金属氧化物,金属硫化物具有更好的导电性能,充放电过程中更有利于电子在材料中的传输,因此能够获得更好的倍率性能和更高的功率密度。本发明使用镍、铜双金属硫化物作为水系锌基电池的正极材料,通过镍和铜的协同作用并使用硫化的方式对其改性,这种新型的双金属硫化物正极材料解决了金属氧化物在水系电池中存在的能量密度低、功率密度低、循环寿命短等一系列问题,使其具有优良电化学性能。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种解决上述问题的镍铜双金属硫化物碱性水系锌电池正极材料及其制备方法,同时制备获得采用该正极材料制备的高性能碱性水系锌电池,解决现有技术中碱性水系锌电池循环性能差,容量低的问题。
为实现上述目的,本发明提供了如下技术方案:
镍铜双金属硫化物碱性水系锌电池正极材料,由Ni、Cu、S以及集流体组成,其中Ni、Cu 的摩尔比例为3:1~6:1,Ni、S的摩尔比例为1:1~ 6:1,Cu、S的摩尔比例为1:3~ 1:6。
所述镍前驱体是氯化镍、硝酸镍、硫化镍中的一种。
所述铜前驱体是氯化铜、硝酸铜、硫酸铜、碳酸铜、氢氧化铜中的一种。
所述硫前驱体是尿素、硫脲、硫代乙酰胺、谷胱甘肽、硫化钠中的一种。
所述集流体是碳纸、碳布、铜箔、镍箔中的一种。
进一步优选,Ni、S的摩尔比例为1:1~ 2:1,Cu、S的摩尔比例为1:3~ 1:5。
本发明还提供了一种简单的制备镍铜双金属硫化物碱性水系锌电池正极材料的方法,
(1)取镍前驱体、铜前驱体充分溶解,混合搅拌,Ni、Cu 的摩尔比例为3:1~6:1;然后将集流体置于溶液中,采用水热法制备Cu-Ni双金属氢氧化物负载于集流体上,水热温度140-180℃,反应时间10-12h;
(2)将负载Cu-Ni双金属氢氧化物的集流体浸入硫前驱体溶解液中进行硫化反应,硫化温度120℃-160℃,反应时间3-4h;其中Ni、S的摩尔比例为1:1~ 6:1,Cu、S的摩尔比例为1:3~ 1:6;
(3)硫化反应结束后,将负载Cu-Ni双金属硫化物的集流体取出洗涤、干燥,获得碱性水系锌电池正极材料。
进一步地,水热法制备过程中加入控制形貌的添加剂,使Cu-Ni双金属硫化物成片状或花状,添加剂的加入量是镍盐质量的1/3-1/2;产品性能得到明显提升。
进一步优选,所述添加剂为十六烷基三甲基溴化铵;
本发明还提供碱性水系锌电池,包含负载镍铜双金属硫化的物集流作电池正极。
本发明有益效果:
1. 本发明通过镍铜的协同作用,并使用硫化的方式对其进行改进,所得负载镍铜双金属硫化物的集流体用作碱性水系锌基电池的正极材料,能够显著地提高材料的电子电导率,改善水系电池能量密度和功率密度等问题;
2. 本发明延长了电池使用寿命,8000次循环后容量保持率可达80%以上,明显优于金属氧化物的导电性能。
附图说明
图1为实施例1所得铜镍双金属硫化物电极材料的倍率性能;
图2为实施例1所得铜镍双金属硫化物电极材料的长循环性能(8Ag-1)。
具体实施方式
实施例1
将1.2mmol六水合硝酸镍(II)和0.3 mmol六水合硝酸铜(II)溶于15mL去离子水中,随后,加入0.225克尿素,再加入0.11-0.17克的十六烷基三甲基溴化铵(CTAB),混合搅拌直至获得透明溶液,然后转移溶液放入水热反就能釜中。将尺寸为1×1 cm2泡沫镍浸入溶液中,并将反应釜保持在140 ℃持续12 小时。将50 mg硫代乙酰胺溶解于50 mL去离子水中,将前面所得的反应物浸没在硫代乙酰胺水溶液中,140 ℃水热持续3小时。自然冷却至室温后,将所得产物取出并用水和乙醇洗涤几次。 最后,在真空下60℃干燥,裁剪成一定大小的电极片,作为碱性水系锌电池的正极。
实施例2
1mM 氯化铜和5 mM 六水合硝酸镍溶解在50 ml 乙二醇中, 缓慢搅拌30分钟,将上述混合溶液转移至水热反应釜中,将碳布剪成尺寸为1×1 cm2小块浸入溶液中,180 ℃反应10小时。将80 mg硫脲溶解于50 mL去离子水中,将前面所得的反应物浸没在硫脲水溶液中,再一起放入水热反应釜中120 ℃水热持续4小时,反应结束后,将反应产物取出,用超纯水和乙醇洗涤多次,在60℃下真空干燥。裁剪成一定大小的电极片,作为碱性水系锌电池的正极。
实施例3
将1 mmol六水合硝酸镍和0.2 mmol三水合硝酸铜溶解于50 mL甲醇中,搅拌30分钟至透明,将上述混合溶液转移至水热反应釜中,把尺寸为1×1 cm2铜箔浸入溶液中, 180℃反应12小时。将50 mg硫代乙酰胺溶解于50 mL去离子水中,将前面所得的反应物浸没在硫代乙酰胺水溶液中,再一起放入水热反应釜中水热120 ℃持续4小时,反应结束,用超纯水和乙醇洗涤多次,在60℃下真空干燥。裁剪成一定大小的电极片,作为碱性水系锌电池的正极。
对比例1:
对比样采用锌电池中常用的硫化镍,将2.35 g硫脲溶解在80 ml去离子水中,然后加入2.35克镍泡沫。然后将溶液转移到水热反应釜中,160℃反应5小时,将获得的产物用去离子水和乙醇洗涤几次,60℃真空干燥。裁剪成一定大小的电极片,作为碱性水系锌电池的正极。
电池的制备:
以实施例1-3、对比例1所得正极材料样口作为碱性水系锌电池的正极,金属锌片作为负极,2M KOH加0.02 M Zn(CH3COO)2作为电解液,在室温下空气中就可以装配电池。
实验对比数据表
Figure 33108DEST_PATH_IMAGE001
对比上述实施例和对比例可以看出,在同等电流密度下Cu-Ni双金属硫化物具有更高的比容量,倍率性能和循环性能具有更加优异的性能。实施例1在反应过程加入适量的控制形貌的添加剂产品性能更加优越。

Claims (10)

1.镍铜双金属硫化物碱性水系锌电池正极材料,其特征在于:由Ni、Cu、S以及集流体组成,其中Ni、Cu 的摩尔比例为3:1~6:1,Ni、S的摩尔比例为1:1~ 6:1,Cu、S的摩尔比例为1:3~ 1:6。
2.根据权利要求1所述的镍铜双金属硫化物碱性水系锌电池正极材料,其特征在于:所述镍前驱体是氯化镍、硝酸镍、硫化镍中的一种。
3.根据权利要求1所述的镍铜双金属硫化物碱性水系锌电池正极材料,其特征在于:所述铜前驱体是氯化铜、硝酸铜、硫酸铜、碳酸铜、氢氧化铜中的一种。
4.根据权利要求1所述的镍铜双金属硫化物碱性水系锌电池正极材料,其特征在于:所述硫前驱体是尿素、硫脲、硫代乙酰胺、谷胱甘肽、硫化钠中的一种。
5.根据权利要求1所述的镍铜双金属硫化物碱性水系锌电池正极材料,其特征在于:所述集流体是碳纸、碳布、铜箔、镍箔中的一种。
6.根据权利要求1所述的镍铜双金属硫化物碱性水系锌电池正极材料,其特征在于:Ni、S的摩尔比例为1:1~2:1,Cu、S的摩尔比例为1:3~ 1:5。
7.制备镍铜双金属硫化物碱性水系锌电池正极材料的方法,其特征在于:
(1)取镍前驱体、铜前驱体充分溶解,混合搅拌,Ni、Cu 的摩尔比例为3:1~6:1;然后将集流体置于溶液中,采用水热法制备Cu-Ni双金属氢氧化物负载于集流体上,水热温度140-180℃,反应时间10-12h;
(2)将负载Cu-Ni双金属氢氧化物的集流体浸入硫前驱体溶解液中进行硫化反应,硫化温度120℃-160℃,反应时间3-4h;其中Ni、S的摩尔比例为1:1~ 6:1,Cu、S的摩尔比例为1:3~ 1:6;
(3)硫化反应结束后,将负载Cu-Ni双金属硫化物的集流体取出洗涤、干燥,获得碱性水系锌电池正极材料。
8.根据权利要求7所述的制备镍铜双金属硫化物碱性水系锌电池正极材料的方法,其特征在于:水热法制备过程中加入控制形貌的添加剂,使Cu-Ni双金属硫化物成片状或花状,添加剂的加入量是镍盐质量的1/3-1/2。
9.根据权利要求8所述的制备镍铜双金属硫化物碱性水系锌电池正极材料的方法,其特征在于:所述添加剂为十六烷基三甲基溴化铵。
10.碱性水系锌电池,其特征在于:包含负载镍铜双金属硫化的物集流作电池正极。
CN202110498110.5A 2021-05-08 2021-05-08 镍铜双金属硫化物碱性水系锌电池正极材料、制备方法及电池 Active CN113206245B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110498110.5A CN113206245B (zh) 2021-05-08 2021-05-08 镍铜双金属硫化物碱性水系锌电池正极材料、制备方法及电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110498110.5A CN113206245B (zh) 2021-05-08 2021-05-08 镍铜双金属硫化物碱性水系锌电池正极材料、制备方法及电池

Publications (2)

Publication Number Publication Date
CN113206245A true CN113206245A (zh) 2021-08-03
CN113206245B CN113206245B (zh) 2022-10-21

Family

ID=77030419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110498110.5A Active CN113206245B (zh) 2021-05-08 2021-05-08 镍铜双金属硫化物碱性水系锌电池正极材料、制备方法及电池

Country Status (1)

Country Link
CN (1) CN113206245B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113603160A (zh) * 2021-08-09 2021-11-05 济南大学 球状Cu-Ni-S复合纳米材料及其制备方法和应用
CN114606530A (zh) * 2022-04-06 2022-06-10 中国船舶重工集团公司第七一八研究所 一种高活性碱水电解析氢电极的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206879A (zh) * 2015-10-29 2015-12-30 中国科学院青岛生物能源与过程研究所 一种碱性锌二次电池及其制备方法
CN109786628A (zh) * 2019-03-20 2019-05-21 广西师范大学 一种钴镍双金属硫化物/碳纸复合材料的制备方法及其应用
CN110299510A (zh) * 2019-07-11 2019-10-01 青岛科技大学 一种以导电碳布为基底的双金属硫化物的制备及其在锂离子电池负极方面的应用
CN111424429A (zh) * 2020-04-30 2020-07-17 山东交通学院 一种金属硫化物多孔框架材料、其制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206879A (zh) * 2015-10-29 2015-12-30 中国科学院青岛生物能源与过程研究所 一种碱性锌二次电池及其制备方法
CN109786628A (zh) * 2019-03-20 2019-05-21 广西师范大学 一种钴镍双金属硫化物/碳纸复合材料的制备方法及其应用
CN110299510A (zh) * 2019-07-11 2019-10-01 青岛科技大学 一种以导电碳布为基底的双金属硫化物的制备及其在锂离子电池负极方面的应用
CN111424429A (zh) * 2020-04-30 2020-07-17 山东交通学院 一种金属硫化物多孔框架材料、其制备方法及应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113603160A (zh) * 2021-08-09 2021-11-05 济南大学 球状Cu-Ni-S复合纳米材料及其制备方法和应用
CN113603160B (zh) * 2021-08-09 2022-09-09 济南大学 球状Cu-Ni-S复合纳米材料及其制备方法和应用
CN114606530A (zh) * 2022-04-06 2022-06-10 中国船舶重工集团公司第七一八研究所 一种高活性碱水电解析氢电极的制备方法

Also Published As

Publication number Publication date
CN113206245B (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
CN115023829A (zh) 一种低水分含量的普鲁士蓝钠离子电池正极材料及其制备方法和钠离子电池
CN109935815B (zh) 一种炭包覆的多元硫化物异质结材料及制备方法和应用
CN110474044A (zh) 一种高性能水系锌离子电池正极材料及其制备方法与应用
CN113206245B (zh) 镍铜双金属硫化物碱性水系锌电池正极材料、制备方法及电池
CN111668503B (zh) 一种双金属硫化物锂空气电池正极材料及其制备方法与应用
CN110518235B (zh) 一种自支撑二硫化三镍电极及其制备方法和应用
CN109817912B (zh) 一种钠/钾离子电池负极材料及其制备方法与应用
CN107381656B (zh) 一种锂离子电池负极材料的制备方法
CN110931755B (zh) 高比容量锂离子电池材料、制备方法及锂离子电池
CN109824095B (zh) 一种锌掺杂镍锰水滑石材料及其制备方法和应用
CN101276910A (zh) Fe5(PO4)4(OH)3的制备及其应用
CN115028189B (zh) 一种铜离子电池正极材料及其制备方法
CN111509305A (zh) 基于明胶-锰离子共添加剂的电解液及其应用
CN110707309A (zh) 一种3dom结构的zif8锂硫电池正极材料的制备方法
CN111675249B (zh) 一种铜负载三元纳米带正极材料的制备方法及其产品和应用
CN114824204A (zh) 一种碳包覆的钴镍二元过渡金属硫化物负极材料的制备方法
CN113860379A (zh) 正极材料前驱体、正极材料及其制备方法和应用
CN112599764A (zh) 三元纳米线阵列@碳纤维的制备方法及产品和应用
CN113921774A (zh) 一种湿法包覆改性的镍钴锰三元材料及其制备方法
CN114665088B (zh) 锌钴镍电池正极复合材料的制备方法
CN116169288B (zh) 一种金属量子点/硬碳负极材料及其制备方法
CN115286046B (zh) 掺杂铜的钴酸锂前驱体、正极材料及其制备方法和应用
CN116425189B (zh) 一种锌镍二次电池用ZnO@ZnS@C复合负极材料及其制备方法和应用
CN113451572A (zh) 基于双金属硫化物的碱性水系锌电池及其正极材料和制备方法
CN114639820A (zh) 一种球形葡萄糖镍钴锰络合物的制备方法及其二次电池应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant