CN1131983A - 屏蔽式电容传感器 - Google Patents

屏蔽式电容传感器 Download PDF

Info

Publication number
CN1131983A
CN1131983A CN94193515.9A CN94193515A CN1131983A CN 1131983 A CN1131983 A CN 1131983A CN 94193515 A CN94193515 A CN 94193515A CN 1131983 A CN1131983 A CN 1131983A
Authority
CN
China
Prior art keywords
capacitor
pressure
stray capacitance
circuit
pole plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN94193515.9A
Other languages
English (en)
Inventor
罗格·L·弗里克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rosemount Inc
Original Assignee
Rosemount Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rosemount Inc filed Critical Rosemount Inc
Publication of CN1131983A publication Critical patent/CN1131983A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2417Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

压力传感器(10)通过测试两块电容器极板(114,116)之间的电容量来测量压力的大小,压力变化表现为电容量的变化,寄生电容要影响到这种测量。寄生电容产生在电容极板(114,116)和周围材料之间,电路(140)通过保持电容极板(114,116)和引起寄生电容的周围材料之间大体上无电位差来降低寄生电容。

Description

屏蔽式电容传感器
本发明涉及到一种压力传感器,尤其涉及一种电容压力传感器,它带有降低寄生电容影响的电路。
现有技术展示了不同的固态压力传感器,这些传感器带有一个用于检测压力的可偏移的膜片,一些是可以成批生产的。所希望的是采用相对刚性强的材料,如半导体材料做的固态压力传感器。
电容式压力传感器通过测量两块电容极板之间的电容量来测量压力。压力变化表现为电容量的变化。在一个用半导体做成的压力传感器上寄生电容会被引入电容测量中,并引起测量误差。这种寄生电容发生在电容极板和附近起着一块电容极板作用的半导体材料之间。
发表于1986年9月16日的名称为“电容式压力传感器”的美国专利4,612,599,展示了一种用硅做成的压力传感器。发表于1989年1月3日的名称为“刚性安装的应力隔离式压力转换器”的美国专利4,800,758,描述了一种可成批制造的应力隔离式的压力传感器。
本发明提供了用于电容式压力传感器的电路,它降低了寄生电容对决定工作液体压力大小的电容量测量的影响。电路包括一个可变化的检测电容,这个电容具有第一和第二电容极板,极板之间的电容作为被测参数的函数变化。每块电容极板都有相应于布设在第一和第二电容极板周围的保护板的寄生电容。提供一个参考电压源,驱动电路给第一块电容极板提供一个相对参考电位交替变化的驱动电压。与参考电位相联的检测电路产生一个虚拟的参考电位,它大体上等于参考电位,与第二块电容极板相联的电荷检测电路检测在第二块电容极板的电荷量,这样在电荷转移完成后,使第二块电容极板和保护板之间没有电位差。
图1是一个根据本发明的悬浮式膜片压力传感器的局部透视图。
图2是图1沿标记线2-2的剖视图。
图3是图1沿标记线3-3的剖视图。
图4是一个根据本发明的差分压力传感器的剖面透视图。
图5是一个根据本发明的膜片对的剖视图,示出了一组电容器。
图6是一个保护电容电路的原理图。
图7是一个差分压力传感器的剖视图,示出用于测量压力的电容极板。
图8是一个根据本发明降低寄生电容影响的电路原理图。
本发明的压力传感器薄片是用成批制造技术完成的。硅膜片或硅薄片是用通常的方式蚀刻以形成所要求的特性,然后加上适当的材料附加层形成层状结构成为传感器。在此作为参考,这样的传感器在1993年9月20日申请,并转让给了本申请的同一受让人的名称为“悬浮式膜片压力传感器”的美国专利申请中已叙述过。
用半导体材料作成的压力传感器经常产生寄生电容,这种寄生电容会引起压力测量的误差。电容的产生是因为半导体是不完全导体,而且可以充当电容器的极板,于是在用于测量压力的电容极板和周围半导体(一个保护板)之间便出现寄生电容。
图1是一个悬浮式膜片压力传感器10的局部透视图。悬浮式膜片压力传感器10包括下基片12和上基片14,下膜片衬底16粘接着下基片12,下膜片衬底16与上膜片衬底18连接在一起。下膜片衬底16带有管道20和电气接触片22和24,接管嘴26穿过上基片14伸出,上膜片衬底18包括由支撑板30支承的上膜片28。
图2是图1沿标记线2-2的悬浮式膜片压力传感器10的剖视图。图3是图1沿标记线3-3的悬浮式膜片压力传感器10的剖视图。图2和图3示出下膜片32连接上膜片28,上膜片28和下膜片32形成了一个具有膜腔34的膜片组件,腔34一般具有一个经由通道20加上的参考压力,上、下膜片28和32沿着它们的边沿连连接在一起,上膜片28和下膜片32被悬在压力输入腔36里。这个输入腔与接管嘴26连在一起。
在使用中,悬浮式膜片压力传感器被用于测试腔34和腔36之间压力差,膜腔34在压力输入腔36内膨胀或压缩以响应通过接管嘴26施加的压力的变化,这就引起上膜片28和下膜片32向膜腔34内弯曲或由膜腔34向外弯曲。液体通过管道20流进腔34或流出腔34,管道20穿过支撑板30伸出。膜片28和32的弯曲(因此被施加了压力)被电气接触片22和24检测到,这些接触片被耦合到装在膜片28和膜片32上的传感器,在一个实施例中,这些传感器就是电容极板或金属导体,膜片28带有一个电容极板,膜片32带有一个电容极板,这两个极板之间的电容由于两极板因通过接管嘴26所施加的压力产生位移而变化。在另一个实施例中,电气接触片22和24耦合到装在膜片上的应变片上,应变片的电阻随着膜片28和32的变形而变化。
在一个优选的实施例中,悬浮式膜片压力传感器10是由易脆的材料,如单晶硅或蓝宝石材料组成,是成批制造的。这些材料由于降低了滞变性,并提高了形状的稳定性而改善了精度。更进一步说,象硅、陶瓷和玻璃这样的材料,使用已知的制造技术是很容易成批生产的。
图4是根据本发明的一个悬浮式膜片差分压力传感器40的剖面透视图。传感器40是由一对压力传感器组成,这种传感器类似于图1所示的压力传感器10,共有一个象图1的管道20那样的管道(图4未示出)在膜片组件之间伸展。
差分压力传感器40包括下基片42,上基片44,下膜片衬底46和上膜片衬底48,通过接管嘴50A和50B来施加差分压力。接管嘴50A和50B分别耦合到膜片组件54A和54B,膜片组件54A包括上膜片58A和下膜片60A,两者之间形成膜腔62A,膜腔62A位于压力输入腔64A中,后者连接到接管嘴50A。膜片组件54B的结构与膜片组件54A的相同。
在差分压力传感器40中,膜腔62A通过一个图4虽未示出,但类似于图1中的管道20的管道连接膜腔62B,连接腔62A和腔62B的通道穿过支撑板,这些支撑板分别支承着腔64A和腔64B内的膜片组件54A和54B。腔62A和腔62B内充满着一定量相对不可压缩的密封液体,使得当一个腔由于外加压力膨胀起来时,另一腔会收缩。
本发明中悬浮式膜片的弯曲与所施加的压力(或者是差分压力,或者是绝对压力)相关。通过检测这种变形,就能够确定压力的大小。使用任何合适的手段都可以进行这种检测测量。在一个优选的实施例中,通过测量一个电容器两块极板之间的电容变化来检测膜片的变形,每一个膜片上带一个极板。图5是一个悬浮式膜片108的剖面图,它包括了上膜片110和下膜片112,各自分别带有上电容极板114和下电容极板116,极板114和116各自分别通过绝缘层118和120被安装在膜片110和112上,膜片110和112之间的空间形成最好注上油的腔122。
图5示出电容CA,这是极板114和116之间的电容量,电容CA的数值和施加于悬浮式膜片108的压力相关。因此,通过测量电容量就可以确定压力大小。然而,寄生电容CS1和CS2会影响这一测量。这个寄生电容是由极板114和膜片110之间,以及极板116和膜片112之间分别产生的电容量所造成的,这个电容是因为绝缘层118和120分别将极板114和116与膜片110和112隔开的结果,因此,需要从CA的测量中消除这个寄生电容。
图6示出了简化电路124,它被用来消除由CS1和CS2造成的对CA测量的影响,电路124包括连接电容CA被驱动端的方波驱动器130,电容CS1的一端(即基片110)以及CS2的一端(即基片112)电气接地,电容CA的测试端连到运算放大器132的正输入端,运算放大器132通过积分电容134形成负反馈回路,运算放大器132的同相输入端提供了虚拟地电位,运算放大器132的输出供给用于计算压力的电容测量电路。
电路124使基片110和基片112与测试极116保持同样的电位,这是因为带有负反馈的运算放大器132使得测试极116保持在虚拟地电位。这样就降低了由于CS2没有被连接测试极116的电路所测试而带来的寄生电容对于压力测试的误差。
图7是膜片组件54A和54B的剖面图,示出了用于测量压力的电容极板。电容器极板被连到接线端的A、B、C和D上,膜片组件54A和54B被接到电接线端E上。
图8是一个利用本发明降低寄生电容影响的电路140的原理图。电路140示出电容量随着膜片组件54A和54B之间的差分压力而变化的电容C1和C2。伴随电容C1的是寄生电容器CS11和CS12,伴随电容C2的是寄生电容器CS21和CS22,这些电容是由于周围半导体材料而造成的。图8示出了在图7中也示出过的电接线端A、B、C、D和E。接线端A和D被接在一起,这一连接可以在外部或直接在压力传感器40上做,以减少压力传感器40的电接线端的数量。
电路140包括连接到施密特触发器144的运算放大器142,运算放大器142通过积分电容CI形成负反馈回路,施密特触发器144的输出端连到数字逻辑电路146上,电源+VR和-VR被接到E极,并且经过开关SW6和SW5分别接到A极和D极,B极则通过开关SW1接到运算放大器142,C极通过开关SW4接到运算放大器142,E极接到运算放大器142的同相输入端。B极和C极通过开关SW2和SW3分别连到E端。开关SW1到SW6被接到用于控制这些开关的数字逻辑电路146。
在运行中,运算放大器142提供一个与电容C1和C2之间电容的差分相关也就是与传感器40测试到的差分压力相关的输出。这是一种测量电容的技术,在福瑞克等人申请的名称为“充电平衡反馈测试电路”的美国专利No.5,083,091中有叙述。
运算放大器142将电容C1和C2上的测试极保持在虚拟电位上(在一个实施例中保持为虚拟地电位)。电荷被分配后,从CS11、CS12、CS21或CS22上没有电荷流出,这样这些电容量就不会进入测量中。电路要使用+VR和-VR的电源来驱动CS11和CS22。
充电电流为:
I充电=F激励×(VR-(-VR))×(CS11+CS22)
用典型数值,这个电流大约0.07毫安(CS11和CS22是大约为200×10-12法拉),因为充电电流比最小有效电流4毫安要小得多,这个电流可与4-20毫安电流回路共存。
当充电完成进行电容量测试时,电路保持B极和C极处于同E极一样的电位,这是因为当充电完成时,由运算放大器142组成的积分器的输出在该点受到采样的缘故。
虽然本发明是参照优选的实施例叙述的,可是熟练的技术人员将认识到不背离本发明的精神和范围,可以在形式和细节上做些改变,例如在寄生电容成为一个问题时,借助其他类型的传感器或传感器设计也能使用本发明。

Claims (7)

1.一种检测电路,包括:
一个可变的测试电容器,具有第一和第二块电容极板,两极板间的电容量作为被检测参数的函数变化,每个电容极板都有相应于保护板的寄生电容,这些保护板布设在第一和第二块电容极板周围;
一个参考电压源;
一个驱动电路给第一块电容极板提供一个相对于参考电位交替变化的驱动电压;
一个连接到参考电位的检测电路,并产生一个大致上等于参考电位的虚拟参考电位;
连接到第二块电容极板的开关电路,它交替地将第二块电容板连接到参考电位和虚拟参考电位上,使得在第二块电容板与保护板之间基本上没有电位差。
2.权利要求1的检测电路,其中保护板是由半导体材料做成的。
3.权利要求1的检测电路,其中虚拟参考电位是一个具有通过积分电容器负反馈的运算放大器。
4.权利要求1的检测电路,其中被检测参数是压力。
5.一种用于以压力函数的形式提供压力测试输出的压力测试电路,它包括:
一个具有一块驱动极板和一块检测极板的检测电容,板间电容量的作为压力的函数变化;
一个在检测极板和寄生电容极板之间的寄生电容;
一个连接到寄生电容极板的参考电位;
虚拟参考电路耦合到参考电位,它具有一个大致上等于参考电位的虚拟参考电位输出,输出与检测电容器的电容量相关;
连接到检测极板的电荷检测电路,检测在检测极板上的电荷,并保持检测极板大体上与寄生电容极板同样的电位上,因此,寄生电容实质上从测试电容的测试量中消除了寄生电容;以及
根据检测到的电荷提供压力测量输出的输出电路。
6.权利要求5的压力测试电路,其中寄生电容极板是由半导体材料做成的。
7.权利要求5的压力测试电路,其中虚拟参考电位是一个具有通过积分电容器负反馈的运算放大器。
CN94193515.9A 1993-09-24 1994-08-15 屏蔽式电容传感器 Pending CN1131983A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/126,364 US5424650A (en) 1993-09-24 1993-09-24 Capacitive pressure sensor having circuitry for eliminating stray capacitance
US08/126,364 1993-09-24

Publications (1)

Publication Number Publication Date
CN1131983A true CN1131983A (zh) 1996-09-25

Family

ID=22424428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94193515.9A Pending CN1131983A (zh) 1993-09-24 1994-08-15 屏蔽式电容传感器

Country Status (9)

Country Link
US (1) US5424650A (zh)
EP (1) EP0740777B1 (zh)
JP (1) JP3448060B2 (zh)
CN (1) CN1131983A (zh)
CA (1) CA2169823A1 (zh)
DE (1) DE69423004T2 (zh)
RU (1) RU2144680C1 (zh)
SG (1) SG67884A1 (zh)
WO (1) WO1995008752A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100373302C (zh) * 2003-02-06 2008-03-05 西南研究会 虚拟现实系统及向该系统提供移动信号的移动接口和方法
CN100422707C (zh) * 2004-02-13 2008-10-01 东京毅力科创株式会社 电容型传感器
CN103748447A (zh) * 2011-07-01 2014-04-23 恩德莱斯和豪瑟尔两合公司 一种操作具有电容变送器的绝对压力或相对压力传感器的方法

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4205989C2 (de) * 1992-02-27 1994-12-22 Mannesmann Kienzle Gmbh Schaltungsanordnung für einen Geber
CA2169824A1 (en) * 1993-09-24 1995-03-30 Roger L. Frick Pressure transmitter isolation diaphragm
US5661235A (en) * 1993-10-01 1997-08-26 Hysitron Incorporated Multi-dimensional capacitive transducer
US6026677A (en) * 1993-10-01 2000-02-22 Hysitron, Incorporated Apparatus for microindentation hardness testing and surface imaging incorporating a multi-plate capacitor system
DE4425164C2 (de) * 1994-07-18 2002-05-16 Ifm Electronic Gmbh Kapazitiver Sensor
US5731522A (en) * 1997-03-14 1998-03-24 Rosemount Inc. Transmitter with isolation assembly for pressure sensor
US6484585B1 (en) 1995-02-28 2002-11-26 Rosemount Inc. Pressure sensor for a pressure transmitter
US5637802A (en) * 1995-02-28 1997-06-10 Rosemount Inc. Capacitive pressure sensor for a pressure transmitted where electric field emanates substantially from back sides of plates
US5661240A (en) * 1995-09-25 1997-08-26 Ford Motor Company Sampled-data interface circuit for capacitive sensors
US5764891A (en) * 1996-02-15 1998-06-09 Rosemount Inc. Process I/O to fieldbus interface circuit
US5665899A (en) * 1996-02-23 1997-09-09 Rosemount Inc. Pressure sensor diagnostics in a process transmitter
DE19650681C2 (de) * 1996-12-06 2001-08-16 Zentr Mikroelekt Dresden Gmbh Kapazitive Sensoranordnung
JP3262013B2 (ja) * 1997-02-24 2002-03-04 三菱電機株式会社 容量型センサインターフェース回路
DE19803643A1 (de) * 1998-02-02 1999-08-05 Reinhard Wiesemann Kapazitiver Sensor
US6156585A (en) 1998-02-02 2000-12-05 Motorola, Inc. Semiconductor component and method of manufacture
JP3339563B2 (ja) * 1998-06-09 2002-10-28 株式会社山武 静電容量式センサ
US6825765B2 (en) * 1998-12-30 2004-11-30 Automotive Systems Laboratory, Inc. Occupant detection system
EP1059832A1 (en) * 1999-06-09 2000-12-13 Sony International (Europe) GmbH Pressure transducing assembly
JP3588276B2 (ja) * 1999-07-26 2004-11-10 株式会社山武 センサ信号処理回路
DE19943618C1 (de) * 1999-09-11 2001-05-31 Bayerische Motoren Werke Ag Kapazitiver Intrusionssensor und Sensorsystem mit einem solchen Sensor
US6803755B2 (en) 1999-09-21 2004-10-12 Rockwell Automation Technologies, Inc. Microelectromechanical system (MEMS) with improved beam suspension
US6798312B1 (en) 1999-09-21 2004-09-28 Rockwell Automation Technologies, Inc. Microelectromechanical system (MEMS) analog electrical isolator
US6249075B1 (en) 1999-11-18 2001-06-19 Lucent Technologies Inc. Surface micro-machined acoustic transducers
US6366099B1 (en) * 1999-12-21 2002-04-02 Conrad Technologies, Inc. Differential capacitance sampler
US6508129B1 (en) 2000-01-06 2003-01-21 Rosemount Inc. Pressure sensor capsule with improved isolation
US6561038B2 (en) 2000-01-06 2003-05-13 Rosemount Inc. Sensor with fluid isolation barrier
US6520020B1 (en) 2000-01-06 2003-02-18 Rosemount Inc. Method and apparatus for a direct bonded isolated pressure sensor
US6505516B1 (en) 2000-01-06 2003-01-14 Rosemount Inc. Capacitive pressure sensing with moving dielectric
WO2001050106A1 (en) 2000-01-06 2001-07-12 Rosemount Inc. Grain growth of electrical interconnection for microelectromechanical systems (mems)
US6486680B1 (en) * 2000-06-13 2002-11-26 The North American Manufacturing Company Edge detector
US6501282B1 (en) * 2000-09-29 2002-12-31 Rockwell Automation Technologies, Inc. Highly sensitive capacitance comparison circuit
US6758000B2 (en) 2001-01-10 2004-07-06 Avery Dennison Corporation Livestock security tag assembly
US6756095B2 (en) 2001-01-10 2004-06-29 Avery Dennison Corporation Heat-sealable laminate
WO2002075331A1 (en) * 2001-03-16 2002-09-26 Nils Aage Juul Eilersen Capacitance measuring circuit
US6815243B2 (en) 2001-04-26 2004-11-09 Rockwell Automation Technologies, Inc. Method of fabricating a microelectromechanical system (MEMS) device using a pre-patterned substrate
US6761829B2 (en) 2001-04-26 2004-07-13 Rockwell Automation Technologies, Inc. Method for fabricating an isolated microelectromechanical system (MEMS) device using an internal void
US6756310B2 (en) 2001-09-26 2004-06-29 Rockwell Automation Technologies, Inc. Method for constructing an isolate microelectromechanical system (MEMS) device using surface fabrication techniques
US6768628B2 (en) 2001-04-26 2004-07-27 Rockwell Automation Technologies, Inc. Method for fabricating an isolated microelectromechanical system (MEMS) device incorporating a wafer level cap
US6794271B2 (en) * 2001-09-28 2004-09-21 Rockwell Automation Technologies, Inc. Method for fabricating a microelectromechanical system (MEMS) device using a pre-patterned bridge
US6516672B2 (en) 2001-05-21 2003-02-11 Rosemount Inc. Sigma-delta analog to digital converter for capacitive pressure sensor and process transmitter
JP4789357B2 (ja) * 2001-06-27 2011-10-12 京セラ株式会社 圧力検出装置用パッケージ
US6664786B2 (en) 2001-07-30 2003-12-16 Rockwell Automation Technologies, Inc. Magnetic field sensor using microelectromechanical system
DE10143034B4 (de) * 2001-09-01 2004-11-11 Infineon Technologies Ag Vorrichtung zum Messen von Störkapazitäten auf einer integrierten Schaltung
US6773653B2 (en) * 2001-10-05 2004-08-10 Avery Dennison Corporation In-mold labeling method
US6690178B2 (en) 2001-10-26 2004-02-10 Rockwell Automation Technologies, Inc. On-board microelectromechanical system (MEMS) sensing device for power semiconductors
US6848316B2 (en) * 2002-05-08 2005-02-01 Rosemount Inc. Pressure sensor assembly
US6716501B2 (en) 2002-07-18 2004-04-06 Avery Dennison Corporation Multilayered film
US6975193B2 (en) * 2003-03-25 2005-12-13 Rockwell Automation Technologies, Inc. Microelectromechanical isolating circuit
US6904476B2 (en) 2003-04-04 2005-06-07 Rosemount Inc. Transmitter with dual protocol interface
AU2004236207A1 (en) * 2003-05-01 2004-11-18 Avery Dennison Corporation Multilayered film
JP4356003B2 (ja) * 2003-09-30 2009-11-04 アイシン精機株式会社 静電容量検出装置
JP2005140657A (ja) * 2003-11-07 2005-06-02 Denso Corp 静電容量型センサの容量変化検出回路
US8487231B2 (en) * 2007-03-05 2013-07-16 Arokia Nathan Sensor pixels, arrays and array systems and methods therefor
JP5496446B2 (ja) * 2007-07-12 2014-05-21 東海ゴム工業株式会社 静電容量型センサ
EP2619536B1 (en) * 2010-09-20 2016-11-02 Fairchild Semiconductor Corporation Microelectromechanical pressure sensor including reference capacitor
US9103738B2 (en) 2012-09-07 2015-08-11 Dynisco Instruments Llc Capacitive pressure sensor with intrinsic temperature compensation
US8984952B2 (en) 2012-09-07 2015-03-24 Dynisco Instruments Llc Capacitive pressure sensor
US8943895B2 (en) 2012-09-07 2015-02-03 Dynisco Instruments Llc Capacitive pressure sensor
US10107773B2 (en) * 2012-10-29 2018-10-23 MEMS-Vision International Inc. Methods and systems for humidity and pressure sensor overlay integration with electronics
CN104614583A (zh) * 2015-02-11 2015-05-13 中国科学院空间科学与应用研究中心 一种悬浮电位监测系统
US9628104B2 (en) * 2015-03-13 2017-04-18 Rosemount Inc. High resolution sigma delta modulator for capacitance sensor terminal displacement measurement
CN104828263B (zh) * 2015-04-07 2018-02-13 中国科学院空间科学与应用研究中心 一种用于航天器表面带电效应的监测装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975719A (en) * 1975-01-20 1976-08-17 Rosemount Inc. Transducer for converting a varying reactance signal to a DC current signal
JPS5817421B2 (ja) * 1979-02-02 1983-04-07 日産自動車株式会社 半導体圧力センサ
CH652823A5 (de) * 1980-03-26 1985-11-29 Bosch Gmbh Robert Weg-frequenz-messgroessenwandler.
US4339750A (en) * 1980-08-20 1982-07-13 Rosemount Inc. Low power transmitter
DE3310643C2 (de) * 1983-03-24 1986-04-10 Karlheinz Dr. 7801 Schallstadt Ziegler Drucksensor
US4517622A (en) * 1983-08-29 1985-05-14 United Technologies Corporation Capacitive pressure transducer signal conditioning circuit
JPS6165114A (ja) * 1984-09-06 1986-04-03 Yokogawa Hokushin Electric Corp 容量式変換装置
US4586108A (en) * 1984-10-12 1986-04-29 Rosemount Inc. Circuit for capacitive sensor made of brittle material
US4603371A (en) * 1984-10-12 1986-07-29 Rosemount Inc. Capacitive sensing cell made of brittle material
US5083091A (en) * 1986-04-23 1992-01-21 Rosemount, Inc. Charged balanced feedback measurement circuit
US4800758A (en) * 1986-06-23 1989-01-31 Rosemount Inc. Pressure transducer with stress isolation for hard mounting
US4833922A (en) * 1987-06-01 1989-05-30 Rosemount Inc. Modular transmitter
US4806783A (en) * 1988-02-25 1989-02-21 Transducer Technologies Inc. Transducer circuit
US5081867A (en) * 1988-09-30 1992-01-21 Nec Corporation Semiconductor sensor
US5022270A (en) * 1989-06-15 1991-06-11 Rosemount Inc. Extended measurement capability transmitter having shared overpressure protection means
DE4039006C1 (zh) * 1990-12-06 1992-03-12 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De
US5094109A (en) * 1990-12-06 1992-03-10 Rosemount Inc. Pressure transmitter with stress isolation depression
US5178015A (en) * 1991-07-22 1993-01-12 Monolithic Sensors Inc. Silicon-on-silicon differential input sensors
US5329818A (en) * 1992-05-28 1994-07-19 Rosemount Inc. Correction of a pressure indication in a pressure transducer due to variations of an environmental condition
US5347867A (en) * 1993-02-03 1994-09-20 Minnetonka Warehouse Supply, Inc Accelerometer incorporating a driven shield

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100373302C (zh) * 2003-02-06 2008-03-05 西南研究会 虚拟现实系统及向该系统提供移动信号的移动接口和方法
CN100422707C (zh) * 2004-02-13 2008-10-01 东京毅力科创株式会社 电容型传感器
CN103748447A (zh) * 2011-07-01 2014-04-23 恩德莱斯和豪瑟尔两合公司 一种操作具有电容变送器的绝对压力或相对压力传感器的方法

Also Published As

Publication number Publication date
EP0740777A1 (en) 1996-11-06
EP0740777B1 (en) 2000-02-09
SG67884A1 (en) 1999-10-19
CA2169823A1 (en) 1995-03-30
DE69423004D1 (de) 2000-03-16
US5424650A (en) 1995-06-13
RU2144680C1 (ru) 2000-01-20
WO1995008752A3 (en) 1995-06-01
DE69423004T2 (de) 2000-09-14
JPH09503294A (ja) 1997-03-31
JP3448060B2 (ja) 2003-09-16
WO1995008752A2 (en) 1995-03-30

Similar Documents

Publication Publication Date Title
CN1131983A (zh) 屏蔽式电容传感器
CN1279340C (zh) 压力传感器
CN1131460A (zh) 悬浮隔膜式压力传感器
US7150195B2 (en) Sealed capacitive sensor for physical measurements
JPH07507391A (ja) 圧力トランスジューサの補正装置
CN100385218C (zh) 用于流速计的压力感测装置
JP3588276B2 (ja) センサ信号処理回路
CN101180526A (zh) 使用可压缩的传感器体的压力传感器
EP0198018A1 (en) Capacitive sensing cell made of brittle material
JP2001255225A (ja) 静電容量型真空センサ
KR20010032103A (ko) 마이크로-기계적 차압 감응 장치
Chang et al. Capacitive pressure sensors with stainless steel diaphragm and substrate
EP0321097A2 (en) Pressure sensors
JPH06507487A (ja) 圧力変換器のライン圧補償装置
CN115628840B (zh) 一种压力传感器和电子设备
EP0944817B1 (en) Method and apparatus for electronic compensation of erroneous readings caused by resonance in a capacitive pressure transducer
Oosterbroek et al. Designing, realization and characterization of a novel capacitive pressure/flow sensor
US6598482B2 (en) Overload resistant differential pressure sensor
Hermann et al. Capacitive silicon differential pressure sensor
Dargie et al. A thick-film capacitive differential pressure transducer
JP3080212B2 (ja) 半導体差圧測定装置
JP2003222559A (ja) 力検知素子及び圧力検知センサ
EP1552260A2 (en) Pressure sensor and production thereof
JP2004294253A (ja) 静電容量型圧力センサ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
C20 Patent right or utility model deemed to be abandoned or is abandoned