CN113186510B - 一种金属强化多孔金刚石膜及其制备方法 - Google Patents

一种金属强化多孔金刚石膜及其制备方法 Download PDF

Info

Publication number
CN113186510B
CN113186510B CN202110468161.3A CN202110468161A CN113186510B CN 113186510 B CN113186510 B CN 113186510B CN 202110468161 A CN202110468161 A CN 202110468161A CN 113186510 B CN113186510 B CN 113186510B
Authority
CN
China
Prior art keywords
diamond film
metal
plasma
diamond
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110468161.3A
Other languages
English (en)
Other versions
CN113186510A (zh
Inventor
杨黎
郭胜惠
冯曙光
高冀芸
李思佳
胡途
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202110468161.3A priority Critical patent/CN113186510B/zh
Publication of CN113186510A publication Critical patent/CN113186510A/zh
Application granted granted Critical
Publication of CN113186510B publication Critical patent/CN113186510B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/085Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种金属强化多孔金刚石膜及其制备方法,属于金刚石膜技术领域。本发明通过采用微波化学气相沉积技术,沉积出纳米或微米级金刚石膜,采用磁控溅射的方法在金刚石膜的表面,溅射一层氧化物,之后放入微波化学气相沉积系统中,用氢氩或氢等离子对其刻蚀,之后放入硝酸钠溶液中加热,对金刚石膜进一步刻蚀,并除去等离子刻蚀时产生的非金刚石相及金属纳米颗粒,再次磁控溅射铂、金等贵金属单质,最后放入微波化学气相沉积系统中将贵金属分散,得到形态较好的金属强化多孔金刚石膜。本发明方法简单、易于操作,制备的金刚石膜表面的多孔结构,并且填充的贵金属是良好的催化剂,在化学催化、传感器等领域具有广泛应用前景。

Description

一种金属强化多孔金刚石膜及其制备方法
技术领域
本发明涉及金刚石膜技术领域,特别是涉及一种金属强化多孔金刚石膜及其制备方法。
背景技术
金刚石独特结构使其具有硬度高、稳定性好、强导热等众多优异物理化学性能,在能源、催化、传感器、航空航天、精密加工等诸多高新技术领域有良好的应用前景。然而天然金刚石在自然界中含量极少,常呈单颗粒状,加工难度大,价格昂贵,多用作首饰等奢侈品消费领域。当前高新技术领域对金刚石材料的维度、微观结构形貌等方面有着特殊需求,例如航空飞行器和大功率激光器窗口材料需要高品质的二维金刚石膜,能源、催化、传感器等领域常需要将金刚石膜进行多孔处理或形成复合材料来进一步增强材料的服役性能,可见二维金刚石膜因其独特的理化特性和良好的可设计性,在高精尖领域的作用日益凸显,而天然金刚石的产能和单颗粒特性难以满足高新技术领域对金刚石材料的实际需求。化学气相沉积法(CVD)是制备金刚石膜的有效方法,特别是微波化学气相沉积法(MPCVD)因具有等离子体密度高、电极无污染等优势已成为制备高品质金刚石膜的主流方法。
如前所述,金刚石膜的多孔化处理方法是当前材料领域的前沿课题。在多孔金刚石膜制备方面,公开号为CN104498894A的中国专利报道了“一种多孔金刚石薄膜的制备方法”,将金刚石薄膜置于500-600℃空气中煅烧,可以得到多孔金刚石薄膜。Shi C等人发表的论文“Fabrication of porous boron-doped diamond electrodes by catalyticetching under hydrogen–argon plasma”采用氢-氩气等离子体束刻蚀金刚石膜可形成多孔金刚石膜。
上述方法报道了多孔金刚石膜的处理方法,在多孔的处理方法上都采用等离子束溅射刻蚀形成多孔金刚石膜,设备成本高,未见采用普通等离子体对金刚石膜刻蚀形成多孔金刚石膜的相关报道。即使微波化学气相沉积法沉积金刚石膜时,其内部也会存在缺陷如微裂纹、微小空洞等,再经过煅烧等方法制备多孔金刚石膜时,缺陷会进一步扩大,甚至出现断裂。
发明内容
本发明的目的是提供一种金属强化多孔金刚石膜及其制备方法,以解决上述现有技术存在的问题,使金刚石结合强度增强,减小金刚石膜的局部碎裂,将金刚石膜腐蚀成多孔,填充一定的贵金属,提高其在化学催化、传感器等领域的应用前景。
为实现上述目的,本发明提供了如下方案:
本发明目的之一是提供一种金属强化多孔金刚石膜的制备方法,包括以下步骤:
步骤一:采用微波化学气相沉积的方法,在硅衬底表面沉积得到微米或纳米级金刚石膜;
步骤二:采用磁控溅射的方法在所述金刚石膜表面沉积一层纳米氧化物;
步骤三:将步骤二制得的表面沉积一层纳米氧化物的金刚石膜放入微波化学气相沉积系统中,采用微波等离子体进行刻蚀,得到多孔金刚石膜A;
步骤四:将所述多孔金刚石膜A正面向上放入硝酸钠溶液中加热,得到多孔金刚石膜B;
步骤五:将所述多孔金刚石膜B清洗、烘干,之后磁控溅射金属,放入微波化学气相沉积系统中,采用微波等离子体对纳米金属层进行分散,得到金属强化多孔金刚石膜。
进一步地,在硅衬底表面沉积金刚石膜之前还包括对硅衬底进行抛光预处理,将抛光后的硅衬底放入金刚石的悬浊液中超声处理的步骤。
进一步地,步骤一中沉积时通入氢气和甲烷。
进一步地,所述纳米氧化物为氧化铁、氧化钴、氧化镍中的一种。
进一步地,所述纳米氧化物的厚度为5-40nm。
进一步地,步骤三中刻蚀的温度为650℃-850℃,压强为11.5-14.5KPa。
进一步地,步骤三中所述等离子体为氢等离子体或氢氩等离子体;氢氩等离子体中氢气和氩气的流量比为7:1。
进一步地,步骤三中等离子体刻蚀的时间为10-80min。
进一步地,步骤四中加热的温度为350-430℃,时间为5-10min。
进一步地,步骤五中所述金属为铂、金、或钯中的一种,所述分散的温度为600-900℃,时间为20-30min,所述等离子体为氩等离子体。
本发明目的之二是提供一种用上述制备方法所制备的金属强化多孔金刚石膜。
本发明公开了以下技术效果:
(1)本发明的技术方案方法简单、易于操作,不需要模板,也无需复杂的预处理工艺;
(2)本发明通过对硅衬底进行抛光预处理,并将硅衬底放入金刚石的悬浊液中超声处理,使硅衬底表面形成金刚石微粉缺陷,利于在硅衬底表面沉积形成微米/纳米级金刚石膜;
(3)本发明采用高温低压的条件,通过等离子体金属催化法及硝酸钠(硝酸钠溶液在对金刚石膜进一步刻蚀的同时,还能够除去上一步骤产生的非金刚石相及金属纳米颗粒)刻蚀金刚石膜,制备多孔刚石膜,后期分散的铂等金属可以均匀的分散在金刚石膜的晶粒表面及孔隙中,并且通过扩散作用,局部镶入金刚石膜中起到一定连接作用,使金刚石膜结合强度增强,减小后期金刚石膜使用中的局部碎裂;
(4)本发明制备过程中磁控溅射的氧化物,在氢等离子体或氢氩等离子体的作用下,被还原成对应的金属,形成纳米金属颗粒均匀的附着在金刚石膜表面,起到优良的催化作用;并且纳米金属颗粒能够在金刚石膜表面刻蚀出凹孔,使金刚石膜表面形成多孔结构,造成材料表面的巨大变化,提高金刚石膜作为电极的表面吸附性能;同样的,由于金刚石膜表面的多孔结构,并且填充的贵金属是良好的催化剂,使得其在化学催化、传感器等领域也具有广泛的应用前景。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明制备金属强化多孔金刚石膜的流程图;
图2为实施例1步骤一制备的金刚石膜的SEM图;
图3为实施例1步骤三制备的多孔金刚石膜的SEM图;
图4为实施例1步骤五制备的金属强化多孔金刚石膜的SEM图;
图5为对比例1制备的金属强化多孔金刚石膜的SEM图。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
实施例1
步骤一:对硅衬底进行抛光预处理,并将抛光后的衬底放入金刚石的悬浊液中超声处理30分钟,之后用酒精及去离子水依次清洗,并用干燥空气吹干,放入微波化学气相沉积系统,将反应腔的压强抽至0.1KPa,之后通入380sccm氢气,待压强到2KPa左右,打开微波系统,出现等离子球后调节压强为13KPa,温度为850℃,并通入11sccm的甲烷,沉积5h,在硅衬底的表面得厚度为8μm的金刚石膜。
步骤二:在沉积好的金刚石膜上磁控溅射厚度为15nm的氧化铁,形成致密膜。
步骤三:将步骤二制得的表面沉积一层纳米氧化物的金刚石膜放入微波化学气相沉积系统,通入氢气(350sccm)与氩气(50sccm),在产生等离子体后,调至压强为13.5KPa、温度为850℃,用氢氩等离子体刻蚀30min,得到金属强化多孔金刚石膜。
步骤四:将步骤三制得的多孔金刚石膜正面向上放入硝酸钠溶液中,加热至360℃,对金刚石膜进一步刻蚀,并除去步骤三产生的非金刚石相及金属纳米颗粒。
步骤五:将步骤四制得的多孔金刚石膜用离子水清洗3次,烘干,磁控溅射铂,厚度为15nm,放入微波化学气相沉积系统中,采用氩等离子体对纳米金属层进行分散,温度为900℃。时间30min。
检测结果:步骤一所制得的金刚石膜的SEM图如图2所示;步骤三所制得的多孔金刚石膜的SEM图如图3所示;由图3可以看出,纳米金属颗粒均匀分布在金刚石膜立方体的表面,金刚石膜表面孔大且多;步骤五所制得的多孔金刚石膜的SEM图如图4所示,由图4可以看出,铂纳米颗粒均匀的分布于多孔金刚石膜表面及孔中;所制备的金属强化多孔金刚石膜的电阻率为80.359kΩ.mm。
实施例2
步骤一:对硅衬底进行抛光预处理,并将抛光后的衬底放入金刚石的悬浊液中超声处理20分钟,之后用酒精及去离子水依次清洗,并用干燥空气吹干,放入微波化学气相沉积系统,将反应腔的压强抽至0.1KPa,之后通入360sccm氢气,待压强到2KPa左右,打开微波系统,出现等离子球后调节压强为12KPa,温度为850℃,并通入10sccm的甲烷,沉积5h,在硅衬底的表面得厚度为5.5μm的金刚石膜。
步骤二:在沉积好的金刚石膜上磁控溅射厚度为5nm的氧化镍,形成致密膜。
步骤三:将步骤二制得的表面沉积一层纳米氧化物的金刚石膜放入微波化学气相沉积系统,通入氢气(350sccm)与氩气(50sccm),在产生等离子体后,调至压强为11.5KPa、温度为650℃,用氢氩等离子体刻蚀40min,得到多孔金刚石膜。
步骤四:将步骤三制得的多孔金刚石膜正面向上放入硝酸钠溶液中,加热至430℃,对金刚石膜进一步刻蚀,并除去步骤三产生的非金刚石相及金属纳米颗粒。
步骤五:将步骤四制得的多孔金刚石膜用离子水清洗3次,烘干,磁控溅射金,厚度为20nm,放入微波化学气相沉积系统中,采用氩等离子体对纳米金属层进行分散,温度600℃,时间25min。
检测结果:铂纳米颗粒均匀的分布于多孔金刚石膜晶粒表面及孔中;所制备的金属强化多孔金刚石膜的电阻率为79.258kΩ.mm。
实施例3
步骤一:对硅衬底进行抛光预处理,并将抛光后的衬底放入金刚石的悬浊液中超声处理40分钟,之后用酒精及去离子水依次清洗,并用干燥空气吹干,放入微波化学气相沉积系统,将反应腔的压强抽至0.1KPa,之后通入400sccm氢气,待压强到2KPa左右,打开微波系统,出现等离子球后调节压强为14KPa,温度为850℃,并通入12sccm的甲烷,沉积5h,在硅衬底的表面得厚度为10μm的金刚石膜。
步骤二:在沉积好的金刚石膜上磁控溅射厚度为40nm的氧化钴,形成致密膜。
步骤三:将步骤二制得的表面沉积一层纳米氧化物的金刚石膜放入微波化学气相沉积系统,通入氢气(350sccm)与氩气(50sccm),在产生等离子体后,调至压强为14.5KPa、温度为750℃,用氢氩等离子体刻蚀50min,得到金属强化多孔金刚石膜。
步骤四:将步骤三制得的多孔金刚石膜正面向上放入硝酸钠溶液中,加热至400℃,对金刚石膜进一步刻蚀,并除去步骤三产生的非金刚石相及金属纳米颗粒。
步骤五:将步骤四制得的多孔金刚石膜用去离子水清洗3次,烘干,磁控溅射钯,厚度为5nm,放入微波化学气相沉积系统中,采用氩等离子体对纳米金属层进行分散,分散温度800℃,时间20min。
检测结果:铂纳米颗粒均匀的分布于多孔金刚石膜表面及孔中;所制备的金属强化多孔金刚石膜的电阻率为75.246kΩ.mm。
对比例1
与实施例1不同之处在于,步骤三中压强为8KPa。
检测结果:最终制得的金属强化多孔金刚石膜SEM图如图5所示,无法在金刚石膜表面刻蚀出凹孔。
对比例2
与实施例1不同之处在于,步骤三中压强15.5KPa。
检测结果:无法在金刚石膜表面刻蚀出凹孔。
对比例3
与实施例1不同之处在于,步骤三中温度为600℃。
检测结果:无法在金刚石膜表面刻蚀出凹孔。
对比例4
与实施例1不同之处在于,步骤三中温度为1000℃。
检测结果:无法在金刚石膜表面刻蚀出凹孔,并且金刚石膜立方体的尖被削平。
对本发明实施例1-3所制备的金属强化多孔金刚石膜进行超声处理,在超声处理30分钟后,金属强化多孔金刚石膜仍然完好无损,说明本发明制备的金属强化多孔金刚石膜强度很好;并且,步骤一中所制备的金刚石膜的厚度随着沉积时间的延长而增加,可以达到100μm以上;金刚石膜的强度随着其厚度的增加而增大,因此可以根据对金刚石膜厚度及强度的实际需求,通过延长沉积时间来增加金刚石膜的厚度及强度。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (7)

1.一种金属强化多孔金刚石膜的制备方法,其特征在于,包括以下步骤:
步骤一:采用微波化学气相沉积的方法,在硅衬底表面沉积得到微米或纳米级金刚石膜;
步骤二:采用磁控溅射的方法在所述金刚石膜表面沉积一层厚度为5-40nm的纳米氧化物;
步骤三:将步骤二制得的表面沉积一层纳米氧化物的金刚石膜放入微波化学气相沉积系统中,采用微波等离子体进行刻蚀,刻蚀的温度为650℃-850℃,压强为11.5-14.5KPa,刻蚀的时间为10-80min,得到多孔金刚石膜A;
步骤四:将所述多孔金刚石膜A正面向上放入硝酸钠溶液中加热,加热的温度为350-430℃,时间为5-10min,得到多孔金刚石膜B;
步骤五:将所述多孔金刚石膜B清洗、烘干,之后磁控溅射金属,放入微波化学气相沉积系统中,采用微波等离子体对纳米金属层进行分散,所述分散的温度为600-900℃,时间为20-30min,得到金属强化多孔金刚石膜。
2.根据权利要求1所述的一种金属强化多孔金刚石膜的制备方法,其特征在于,在硅衬底表面沉积金刚石膜之前还包括对硅衬底进行抛光预处理,将抛光后的硅衬底放入金刚石的悬浊液中超声处理的步骤。
3.根据权利要求1所述的一种金属强化多孔金刚石膜的制备方法,其特征在于,步骤一中沉积时通入氢气和甲烷。
4.根据权利要求1所述的一种金属强化多孔金刚石膜的制备方法,其特征在于,所述纳米氧化物为氧化铁、氧化钴、氧化镍中的一种。
5.根据权利要求1所述的一种金属强化多孔金刚石膜的制备方法,其特征在于,步骤三中所述等离子体为氢等离子体或氢氩等离子体。
6.根据权利要求1所述的一种金属强化多孔金刚石膜的制备方法,其特征在于,步骤五中所述金属为铂、金或钯中的一种,所述等离子体为氩等离子体。
7.如权利要求1-6任一项所述的制备方法所制备的金属强化多孔金刚石膜。
CN202110468161.3A 2021-04-28 2021-04-28 一种金属强化多孔金刚石膜及其制备方法 Active CN113186510B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110468161.3A CN113186510B (zh) 2021-04-28 2021-04-28 一种金属强化多孔金刚石膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110468161.3A CN113186510B (zh) 2021-04-28 2021-04-28 一种金属强化多孔金刚石膜及其制备方法

Publications (2)

Publication Number Publication Date
CN113186510A CN113186510A (zh) 2021-07-30
CN113186510B true CN113186510B (zh) 2023-02-21

Family

ID=76980144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110468161.3A Active CN113186510B (zh) 2021-04-28 2021-04-28 一种金属强化多孔金刚石膜及其制备方法

Country Status (1)

Country Link
CN (1) CN113186510B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755814A (zh) * 2021-09-10 2021-12-07 安徽光智科技有限公司 衬底的预处理方法、及该方法在金刚石膜制备过程中的应用
CN115928051B (zh) * 2022-11-29 2024-08-27 香港中文大学(深圳) 金刚石纳米针阵列光吸收层及其制备方法
CN117431524B (zh) * 2023-12-18 2024-02-23 北京科技大学 一种自支撑金刚石薄膜的制备方法、金刚石薄膜及其应用
CN117733662B (zh) * 2024-02-19 2024-04-16 南方科技大学 一种基于等离子体刻蚀和改性作用的金刚石抛光方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105220049B (zh) * 2015-10-12 2017-03-08 中南大学 一种片状金刚石增强金属基复合材料及制备方法
CN105568252A (zh) * 2016-01-06 2016-05-11 昆明理工大学 一种金刚石膜表面处理方法
WO2018072367A1 (zh) * 2016-10-21 2018-04-26 中南大学 一种硼掺杂金刚石电极及其制备方法与应用
CN110629203B (zh) * 2019-09-27 2021-04-09 哈尔滨工业大学 一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法及其检测葡萄糖的应用
CN111005010B (zh) * 2019-12-18 2021-05-25 昆明理工大学 一种纳米金刚石金属化薄膜的制备方法、产品及应用
CN111521656B (zh) * 2020-05-11 2021-08-27 中南大学 一种高灵敏度高稳定性掺硼金刚石微电极及其制备方法和应用
CN111579612B (zh) * 2020-05-11 2021-07-23 中南大学 一种基于金属修饰多孔掺硼金刚石电极的非酶生物传感器及其制备方法和应用
CN111441030B (zh) * 2020-05-22 2021-03-26 南京航空航天大学 一种多层cvd金刚石锥阵列抛光工具的制备方法

Also Published As

Publication number Publication date
CN113186510A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
CN113186510B (zh) 一种金属强化多孔金刚石膜及其制备方法
CN106191807B (zh) 一种具有金刚石涂层的硬质合金件及其制备方法
CN108570655B (zh) 一种自支撑纳米金刚石厚膜的制备方法
US11359276B2 (en) Self-supporting ultra-fine nanocrystalline diamond thick film
JP2017505751A (ja) ガラスおよび他の誘電体基体上のグラフェンの無金属cvdコーティング
CN107326339B (zh) 一种合金刀具表面金刚石梯度膜及其制备方法
CN106086886B (zh) 一种自润滑二硼化钛/类金刚石涂层及其制备方法和应用
CN101487121A (zh) 一种金刚石/w-c梯度结构复合涂层及其制备方法
CN101880866B (zh) 一种在硬质合金上为金刚石涂层制备金刚石-碳化硅-硅化钴复合中间层的方法
CN105543803B (zh) 一种硬质合金衬底的金刚石/碳化硼复合涂层及制备方法
CN102367570B (zh) 一种制备金刚石-石墨烯复合膜的方法
JP2012512801A (ja) ダイヤモンド複合材料を製造する方法
CN113529050B (zh) 一种用于金刚石膜抛光的等离子体刻蚀法及其产品
CN102560687B (zh) 一种金刚石纳米坑阵列及其制备方法
CN103628036B (zh) 立方氮化硼涂层刀具的制备方法
CN105239032A (zh) 一种用于金刚石涂层梯度硬质合金基体的制备方法
CN108385085A (zh) 一种低应力cvd金刚石复合涂层及其制备方法
CN107267954A (zh) 一种外延生长制备高定向金刚石纳米片阵列材料的方法
CN108611638A (zh) 高磨耗比、高断裂强度微米金刚石厚膜及其制备方法
CN110670035A (zh) 一种Cu基CVD金刚石热沉片及其制备方法
CN109295434A (zh) 微孔表面纳米级金刚石涂层
CN1233870C (zh) 表面层贫钴的梯度硬质合金上进行金刚石涂层的方法
CN105779966B (zh) 一种低表面粗糙度纳米金刚石膜的制备方法
CN101023202A (zh) 改善由聚合物-基体复合物制造的产品表面电连接性能的方法
CN113088921B (zh) 一种多孔金刚石膜/三维碳纳米线网络复合材料的制备方法及其产品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant