CN110629203B - 一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法及其检测葡萄糖的应用 - Google Patents

一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法及其检测葡萄糖的应用 Download PDF

Info

Publication number
CN110629203B
CN110629203B CN201910925317.9A CN201910925317A CN110629203B CN 110629203 B CN110629203 B CN 110629203B CN 201910925317 A CN201910925317 A CN 201910925317A CN 110629203 B CN110629203 B CN 110629203B
Authority
CN
China
Prior art keywords
doped diamond
boron
composite electrode
synergistic effect
bimetal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910925317.9A
Other languages
English (en)
Other versions
CN110629203A (zh
Inventor
朱嘉琦
姚凯丽
代兵
谭小俊
杨磊
孙明琪
高鸽
韩杰才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910925317.9A priority Critical patent/CN110629203B/zh
Publication of CN110629203A publication Critical patent/CN110629203A/zh
Application granted granted Critical
Publication of CN110629203B publication Critical patent/CN110629203B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Abstract

一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法及其检测葡萄糖的应用,它涉及一种多孔掺硼金刚石复合电极的制备方法及应用。本发明要解决现有不存在制备多孔掺硼金刚石复合电极的方法,现有利用掺硼金刚石电极非酶葡萄糖传感器检测葡萄糖灵敏度较低的问题。制备方法:一、掺硼金刚石薄膜的制备;二、溅射镀膜及退火处理。应用:用于检测葡萄糖。本发明用于具有双金属协同效应的多孔掺硼金刚石复合电极的制备及其检测葡萄糖的应用。

Description

一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备 方法及其检测葡萄糖的应用
技术领域
本发明涉及一种多孔掺硼金刚石复合电极的制备方法及应用。
背景技术
葡萄糖在生物学领域具有重要地位,是活细胞的能量来源和新陈代谢中间产物,即生物的主要供能物质。人体的多种疾病与体内的葡萄糖含量有关,比如糖尿病。除此之外,葡萄糖在糖果制造等领域也有着广泛的应用。因此对葡萄糖含量的测定在生物医药、食品加工等领域都具有重要的意义。目前葡萄糖探测器主要是基于葡萄糖氧化酶的葡萄糖生物传感器来检测葡萄糖。然而,这种传感器价格昂贵,对环境温度、湿度敏感,缺乏长期稳定性。
相比而言,掺硼金刚石材料作为非酶葡萄糖传感器具有价格低廉、稳定性好等优点。除此之外,掺硼金刚石材料具有良好的耐磨性、化学稳定性、生物相容性和一些优异的电化学性能,如较低的背景电流、较宽的电势窗口、表面耐酸碱特性等。因此利用掺硼金刚石电极非酶葡萄糖传感器检测葡萄糖具有巨大的应用潜力。然而掺硼金刚石电极材料的电化学检测灵敏度较低,一般要求葡萄糖浓度不低于0.25mmol/L,为了提供更精确的葡萄糖浓度检测,需要提高掺硼金刚石表面灵敏度。
发明内容
本发明要解决现有不存在制备多孔掺硼金刚石复合电极的方法,现有利用掺硼金刚石电极非酶葡萄糖传感器检测葡萄糖灵敏度较低的问题,而提供一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法及其检测葡萄糖的应用。
一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法,它是按以下步骤进行的:
一、掺硼金刚石薄膜的制备:
将硅片置于旋涂仪中,在转速为500转/秒~2000转/秒的条件下,滴入质量百分数为2%~15%的纳米金刚石悬浊液,旋涂3次~6次,晾干,得到旋涂有纳米金刚石的硅片,将旋涂有纳米金刚石的硅片和石墨片并列放置于微波等离子化学气相沉积装置的样品台上,通入氢气及乙硼烷气体,在氢气流速为100sccm~500sccm、乙硼烷气体流速为1sccm~20sccm、旋涂有纳米金刚石的硅片温度为550℃~1000℃、石墨片温度为650℃~1100℃、压强为100mbar~300mbar及微波功率为1800W~4500W的条件下,沉积60min~30h,得到表面沉积有掺硼金刚石薄膜的衬底;
二、溅射镀膜及退火处理:
将表面沉积有掺硼金刚石薄膜的衬底置于多靶磁控溅射设备中,在镍靶的溅射功率为100W~200W及金靶的溅射功率为40W~80W的条件下,溅射2min~20min,在掺硼金刚石薄膜上共沉积厚度为0.02μm~0.1μm的金/镍双金属混合薄膜,然后置于到管式炉中,加热至温度为800℃~1000℃,在氩气气氛及温度为800℃~1000℃的条件下,保温1h~3h,然后冷却至室温,即完成具有双金属协同效应的多孔掺硼金刚石复合电极的制备。
具有双金属协同效应的多孔掺硼金刚石复合电极用于检测葡萄糖,检测葡萄糖浓度检测限为0.0026mmol/L。
本发明的有益效果是:
本发明通过表面修饰双金属金和镍,并通过退火得到具有双金属协同效应的多孔掺硼金刚石复合电极。经过退火后,两种金属由薄膜形态变为了纳米团聚体的形态,这主要是因为高温导致金属融化,之后随着温度的降低融化的金属逐渐凝固形成颗粒状团聚。同时由于镍对掺硼金刚石具有刻蚀作用,在高温环境下复合电极表面由金属团聚和刻蚀的作用呈现出多孔结构。
利用双金属协同作用,其原理在于金对葡萄糖良好的氧化性能和生物相容性以及镍对葡萄糖的良好的催化性能,来提高掺硼金刚石对葡萄糖检测的灵敏度。其次得到的多孔掺硼金刚石与平整的掺硼金刚石比较,具有更大的表面积,也就是说多孔掺硼金刚石可以与葡萄糖溶液更充分的接触,同样有助于对葡萄糖的检测。
本发明由金、镍双金属修饰的掺硼金刚石薄膜组成的多孔复合电极传感器,用于检测葡萄糖浓度。该探测器在葡萄糖浓度为0.02mmol/L~9mmol/L范围内与响应电流展现出良好的线性关系,检测限可达到0.0026mmol/L。具有双金属协同效应的多孔掺硼金刚石复合电极对葡萄糖有更强的氧化还原性,并且电极利用循环伏安法循环30圈后,电流下降小于10μA,具有较高的稳定性。
本发明用于一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法及其检测葡萄糖的应用。
附图说明
图1为实施例一步骤一得到的衬底表面沉积的掺硼金刚石薄膜的表面形貌图;
图2为实施例一制备的具有双金属协同效应的多孔掺硼金刚石复合电极放大20000倍的表面形貌图;
图3为实施例一制备的具有双金属协同效应的多孔掺硼金刚石复合电极放大160000倍的表面形貌图,1为裸露的掺硼金刚石,2为金/镍双金属层;
图4为拉曼光谱对比图,a为实施例一步骤一得到的衬底表面沉积的掺硼金刚石薄膜,b为实施例一制备的具有双金属协同效应的多孔掺硼金刚石复合电极;
图5为XRD对比图;a为实施例一步骤一得到的衬底表面沉积的掺硼金刚石薄膜,b为实施例一制备的具有双金属协同效应的多孔掺硼金刚石复合电极;
图6为循环伏安曲线对比图;a为实施例一步骤一得到的纯掺硼金刚石薄膜电极,b为实施例一制备的具有双金属协同效应的多孔掺硼金刚石复合电极;
图7为实施例一制备的具有双金属协同效应的多孔掺硼金刚石复合电极30圈循环伏安曲线图;
图8为图7中A区的放大图;
图9为实施例一制备的具有双金属协同效应的多孔掺硼金刚石复合电极安培响应曲线;
图10为图9中B区的放大图;
图11为实施例一制备的具有双金属协同效应的多孔掺硼金刚石复合电极对葡萄糖浓度检测曲线。
具体实施方式
具体实施方式一:本实施方式一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法,它是按以下步骤进行的:
一、掺硼金刚石薄膜的制备:
将硅片置于旋涂仪中,在转速为500转/秒~2000转/秒的条件下,滴入质量百分数为2%~15%的纳米金刚石悬浊液,旋涂3次~6次,晾干,得到旋涂有纳米金刚石的硅片,将旋涂有纳米金刚石的硅片和石墨片并列放置于微波等离子化学气相沉积装置的样品台上,通入氢气及乙硼烷气体,在氢气流速为100sccm~500sccm、乙硼烷气体流速为1sccm~20sccm、旋涂有纳米金刚石的硅片温度为550℃~1000℃、石墨片温度为650℃~1100℃、压强为100mbar~300mbar及微波功率为1800W~4500W的条件下,沉积60min~30h,得到表面沉积有掺硼金刚石薄膜的衬底;
二、溅射镀膜及退火处理:
将表面沉积有掺硼金刚石薄膜的衬底置于多靶磁控溅射设备中,在镍靶的溅射功率为100W~200W及金靶的溅射功率为40W~80W的条件下,溅射2min~20min,在掺硼金刚石薄膜上共沉积厚度为0.02μm~0.1μm的金/镍双金属混合薄膜,然后置于到管式炉中,加热至温度为800℃~1000℃,在氩气气氛及温度为800℃~1000℃的条件下,保温1h~3h,然后冷却至室温,即完成具有双金属协同效应的多孔掺硼金刚石复合电极的制备。
本具体实施方式鉴于金和镍的沉积速度不同,在设备中金的沉积速度比镍的沉积速度快一些,所以可以通过控制镍靶和金靶的溅射功率来调节镍与金的沉积量。
本实施方式所述的表面沉积有掺硼金刚石薄膜的衬底也可以是以甲烷为碳源,以乙硼烷或硼酸三甲酯为硼源,利用化学气相沉积法制备而成。
本实施方式的有益效果是:
本实施方式通过表面修饰双金属金和镍,并通过退火得到具有双金属协同效应的多孔掺硼金刚石复合电极。经过退火后,两种金属由薄膜形态变为了纳米团聚体的形态,这主要是因为高温导致金属融化,之后随着温度的降低融化的金属逐渐凝固形成颗粒状团聚。同时由于镍对掺硼金刚石具有刻蚀作用,在高温环境下复合电极表面由金属团聚和刻蚀的作用呈现出多孔结构。
利用双金属协同作用,其原理在于金对葡萄糖良好的氧化性能和生物相容性以及镍对葡萄糖的良好的催化性能,来提高掺硼金刚石对葡萄糖检测的灵敏度。其次得到的多孔掺硼金刚石与平整的掺硼金刚石比较,具有更大的表面积,也就是说多孔掺硼金刚石可以与葡萄糖溶液更充分的接触,同样有助于对葡萄糖的检测。
本实施方式由金、镍双金属修饰的掺硼金刚石薄膜组成的多孔复合电极传感器,用于检测葡萄糖浓度。该探测器在葡萄糖浓度为0.02mmol/L~9mmol/L范围内与响应电流展现出良好的线性关系,检测限可达到0.0026mmol/L。具有双金属协同效应的多孔掺硼金刚石复合电极对葡萄糖有更强的氧化还原性,并且电极利用循环伏安法循环30圈后,电流下降小于10μA,具有较高的稳定性。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中所述的石墨片纯度为99.9%。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤一中所述的石墨片为边长为20mm~60mm及厚度为2mm~5mm的方片。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤一中将硅片置于旋涂仪中,在转速为1000转/秒~2000转/秒的条件下,滴入质量百分数为2%~10%的纳米金刚石悬浊液,旋涂3次~6次,晾干,得到旋涂有纳米金刚石的硅片。其它与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤一中通入氢气及乙硼烷气体,在氢气流速为200sccm~500sccm、乙硼烷气体流速为2sccm~20sccm、旋涂有纳米金刚石的硅片温度为600℃~1000℃、石墨片温度为700℃~1100℃、压强为200mbar~300mbar及微波功率为2000W~4500W的条件下,沉积60min~30h。其它与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤二中将表面沉积有掺硼金刚石薄膜的衬底置于多靶磁控溅射设备中,在镍靶的溅射功率为150W~200W及金靶的溅射功率为50W~80W的条件下,溅射10min~20min,在掺硼金刚石薄膜上共沉积厚度为0.02μm~0.1μm的金/镍双金属混合薄膜。其它与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤二中将表面沉积有掺硼金刚石薄膜的衬底置于多靶磁控溅射设备中,在镍靶的溅射功率为100W~150W及金靶的溅射功率为40W~50W的条件下,溅射2min~10min,在掺硼金刚石薄膜上共沉积厚度为0.02μm~0.1μm的金/镍双金属混合薄膜。其它与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤二中然后置于到管式炉中,加热至温度为800℃~900℃,在氩气气氛及温度为800℃~900℃的条件下,保温1h~2h。其它与具体实施方式一至七相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤二中然后置于到管式炉中,加热至温度为900℃~1000℃,在氩气气氛及温度为900℃~1000℃的条件下,保温2h~3h。其它与具体实施方式一至八相同。
具体实施方式八:本实施方式制备的具有双金属协同效应的多孔掺硼金刚石复合电极用于检测葡萄糖,检测葡萄糖浓度检测限为0.0026mmol/L。
采用以下实施例验证本发明的有益效果:
实施例一:
一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法,它是按以下步骤进行的:
一、掺硼金刚石薄膜的制备:
将硅片置于旋涂仪中,在转速为1500转/秒的条件下,滴入质量百分数为2%的纳米金刚石悬浊液,旋涂3次,晾干,得到旋涂有纳米金刚石的硅片,将旋涂有纳米金刚石的硅片和石墨片并列放置于微波等离子化学气相沉积装置的样品台上,通入氢气及乙硼烷气体,在氢气流速为200sccm、乙硼烷气体流速为2sccm、旋涂有纳米金刚石的硅片温度为950℃、石墨片温度为1100℃、压强为165mbar及微波功率为3000W的条件下,沉积8h,得到表面沉积有掺硼金刚石薄膜的衬底;
二、溅射镀膜及退火处理:
将表面沉积有掺硼金刚石薄膜的衬底置于多靶磁控溅射设备中,在镍靶的溅射功率为100W及金靶的溅射功率为40W的条件下,溅射2min,在掺硼金刚石薄膜上共沉积厚度为0.04μm的金/镍双金属混合薄膜,然后置于到管式炉中,加热至温度为900℃,在氩气气氛及温度为900℃的条件下,保温2h,然后冷却至室温,得到具有双金属协同效应的多孔掺硼金刚石复合电极,即完成具有双金属协同效应的多孔掺硼金刚石复合电极的制备;
步骤一中所述的石墨片纯度为99.9%。
步骤一中所述的石墨片为边长为40mm及厚度为2mm的方片。
步骤二制备的具有双金属协同效应的多孔掺硼金刚石复合电极即为具有多孔结构的金/镍/掺硼金刚石复合电极。
步骤一制备的表面沉积有掺硼金刚石薄膜的衬底即为纯掺硼金刚石薄膜电极。
图1为实施例一步骤一得到的衬底表面沉积的掺硼金刚石薄膜的表面形貌图;图2为实施例一制备的具有双金属协同效应的多孔掺硼金刚石复合电极放大20000倍的表面形貌图;图3为实施例一制备的具有双金属协同效应的多孔掺硼金刚石复合电极放大160000倍的表面形貌图,1为裸露的掺硼金刚石,2为金/镍双金属层;由图2可知,镀镍和金并退火之后,在掺硼金刚石表面形成了多孔的金/镍双金属纳米团聚层。由图3可知,双金属层是由多个纳米颗粒团聚组合而成,下方裸露出掺硼金刚石薄膜。
图4为拉曼光谱对比图,a为实施例一步骤一得到的衬底表面沉积的掺硼金刚石薄膜,b为实施例一制备的具有双金属协同效应的多孔掺硼金刚石复合电极;由图可知,对比纯掺硼金刚石薄膜和金/镍/掺硼金刚石复合电极的拉曼图,二者都具有金刚石的拉曼峰(1331.6cm-1)以及由硼掺入引起的振动峰(473.5,690.1,1201.6cm-1)。金/镍/掺硼金刚石还有明显的石墨峰(1582.2cm-1),这也是导致金/镍/掺硼金刚石电化学性能提升的原因之一。
图5为XRD对比图;a为实施例一步骤一得到的衬底表面沉积的掺硼金刚石薄膜,b为实施例一制备的具有双金属协同效应的多孔掺硼金刚石复合电极;图中Graphite为石墨,BDD为掺硼金刚石;由图可知,金、镍金属成功的镀在掺硼金刚石的表面,且没有阻碍掺硼金刚石的XRD信号。
图6为循环伏安曲线对比图;a为实施例一步骤一得到的纯掺硼金刚石薄膜电极,b为实施例一制备的具有双金属协同效应的多孔掺硼金刚石复合电极;由图可知,在1mol/L磷酸缓冲盐溶液及0.1V/s扫描速度下,与纯掺硼金刚石相比,金/镍/掺硼金刚石电极具有更明显的氧化还原电流强度,氧化电流和还原电流均为100μA左右。
图7为实施例一制备的具有双金属协同效应的多孔掺硼金刚石复合电极30圈循环伏安曲线图;图8为图7中A区的放大图;由图可知,金/镍/掺硼金刚石电极较稳定,利用循环伏安法循环30圈后,电流下降小于10μA,具有较高的稳定性。
采用安培电流响应测试,利用实施例一制备的具有双金属协同效应的多孔掺硼金刚石复合电极对浓度分别为20μmol/L、40μmol/L、60μmol/L、80μmol/L、100μmol/L、400μmol/L、1mmol/L、2mmol/L、5mmol/L及9mmol/L的葡萄糖溶液进行检测,得出不同的电流响应强度,如图9所示,随着葡萄糖浓度的增加,电流强度也逐渐增加,且响应速度较快,响应时间约为2s~5s,葡萄糖浓度与响应电流之间呈正相关线性关系,如图11。图9为实施例一制备的具有双金属协同效应的多孔掺硼金刚石复合电极安培响应曲线;图10为图9中B区的放大图;图11为实施例一制备的具有双金属协同效应的多孔掺硼金刚石复合电极对葡萄糖浓度检测曲线;由图可知,采用安培响应测试发现,金/镍/掺硼金刚石探测器在葡萄糖浓度0.02mmol/L~9mmol/L范围内与响应电流展现出良好的线性关系,检测限可达到0.0026mmol/L。

Claims (10)

1.一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法,其特征在于它是按以下步骤进行的:
一、掺硼金刚石薄膜的制备:
将硅片置于旋涂仪中,在转速为500转/秒~2000转/秒的条件下,滴入质量百分数为2%~15%的纳米金刚石悬浊液,旋涂3次~6次,晾干,得到旋涂有纳米金刚石的硅片,将旋涂有纳米金刚石的硅片和石墨片并列放置于微波等离子化学气相沉积装置的样品台上,通入氢气及乙硼烷气体,在氢气流速为100sccm~500sccm、乙硼烷气体流速为1sccm~20sccm、旋涂有纳米金刚石的硅片温度为550℃~1000℃、石墨片温度为650℃~1100℃、压强为100mbar~300mbar及微波功率为1800W~4500W的条件下,沉积60min~30h,得到表面沉积有掺硼金刚石薄膜的衬底;
二、溅射镀膜及退火处理:
将表面沉积有掺硼金刚石薄膜的衬底置于多靶磁控溅射设备中,在镍靶的溅射功率为100W~200W及金靶的溅射功率为40W~80W的条件下,溅射2min~20min,在掺硼金刚石薄膜上共沉积厚度为0.02μm~0.1μm的金/镍双金属混合薄膜,然后置于到管式炉中,加热至温度为800℃~1000℃,在氩气气氛及温度为800℃~1000℃的条件下,保温1h~3h,然后冷却至室温,即完成具有双金属协同效应的多孔掺硼金刚石复合电极的制备。
2.根据权利要求1所述的一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法,其特征在于步骤一中所述的石墨片纯度为99.9%。
3.根据权利要求1所述的一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法,其特征在于步骤一中所述的石墨片为边长为20mm~60mm及厚度为2mm~5mm的方片。
4.根据权利要求1所述的一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法,其特征在于步骤一中将硅片置于旋涂仪中,在转速为1000转/秒~2000转/秒的条件下,滴入质量百分数为2%~10%的纳米金刚石悬浊液,旋涂3次~6次,晾干,得到旋涂有纳米金刚石的硅片。
5.根据权利要求1所述的一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法,其特征在于步骤一中通入氢气及乙硼烷气体,在氢气流速为200sccm~500sccm、乙硼烷气体流速为2sccm~20sccm、旋涂有纳米金刚石的硅片温度为600℃~1000℃、石墨片温度为700℃~1100℃、压强为200mbar~300mbar及微波功率为2000W~4500W的条件下,沉积60min~30h。
6.根据权利要求1所述的一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法,其特征在于步骤二中将表面沉积有掺硼金刚石薄膜的衬底置于多靶磁控溅射设备中,在镍靶的溅射功率为150W~200W及金靶的溅射功率为50W~80W的条件下,溅射10min~20min,在掺硼金刚石薄膜上共沉积厚度为0.02μm~0.1μm的金/镍双金属混合薄膜。
7.根据权利要求1所述的一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法,其特征在于步骤二中将表面沉积有掺硼金刚石薄膜的衬底置于多靶磁控溅射设备中,在镍靶的溅射功率为100W~150W及金靶的溅射功率为40W~50W的条件下,溅射2min~10min,在掺硼金刚石薄膜上共沉积厚度为0.02μm~0.1μm的金/镍双金属混合薄膜。
8.根据权利要求1所述的一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法,其特征在于步骤二中然后置于到管式炉中,加热至温度为800℃~900℃,在氩气气氛及温度为800℃~900℃的条件下,保温1h~2h。
9.根据权利要求1所述的一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法,其特征在于步骤二中然后置于到管式炉中,加热至温度为900℃~1000℃,在氩气气氛及温度为900℃~1000℃的条件下,保温2h~3h。
10.如权利要求1制备的具有双金属协同效应的多孔掺硼金刚石复合电极检测葡萄糖的应用,其特征在于具有双金属协同效应的多孔掺硼金刚石复合电极检测葡萄糖浓度检测限为0.0026mmol/L。
CN201910925317.9A 2019-09-27 2019-09-27 一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法及其检测葡萄糖的应用 Active CN110629203B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910925317.9A CN110629203B (zh) 2019-09-27 2019-09-27 一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法及其检测葡萄糖的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910925317.9A CN110629203B (zh) 2019-09-27 2019-09-27 一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法及其检测葡萄糖的应用

Publications (2)

Publication Number Publication Date
CN110629203A CN110629203A (zh) 2019-12-31
CN110629203B true CN110629203B (zh) 2021-04-09

Family

ID=68974628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910925317.9A Active CN110629203B (zh) 2019-09-27 2019-09-27 一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法及其检测葡萄糖的应用

Country Status (1)

Country Link
CN (1) CN110629203B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111521657B (zh) * 2020-05-11 2021-07-27 中南大学 一种基于多孔硼掺杂金刚石电极的多巴胺生物传感器及其制备方法和应用
CN111579612B (zh) * 2020-05-11 2021-07-23 中南大学 一种基于金属修饰多孔掺硼金刚石电极的非酶生物传感器及其制备方法和应用
CN113186510B (zh) * 2021-04-28 2023-02-21 昆明理工大学 一种金属强化多孔金刚石膜及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266236A (en) * 1991-10-09 1993-11-30 General Electric Company Thermally stable dense electrically conductive diamond compacts
JP4324672B2 (ja) * 2004-09-24 2009-09-02 国立大学法人宇都宮大学 ダイアモンド電極及びこれを用いた無電解ニッケルめっき浴の管理方法並びに測定装置
CN104034777B (zh) * 2014-05-29 2016-10-19 河南工业大学 基于三维纳米多孔金修饰硼掺杂金刚石电极的电化学生物传感器的制备及应用
EP3426398B1 (en) * 2016-03-11 2024-01-24 Roche Diagnostics GmbH Branched-chain amines in electrochemiluminescence detection
CN106435518B (zh) * 2016-10-21 2018-07-17 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用
CN106971864A (zh) * 2017-04-24 2017-07-21 天津理工大学 一种基于纳米多孔掺硼金刚石电极的超级电容器的制备方法
EP3527538B1 (en) * 2018-02-20 2021-05-19 FCC Aqualia, S.A. Method for simultaneous production of chlorine and carbon neutral compounds using a bioelectrochemical system
CN108408848A (zh) * 2018-05-10 2018-08-17 深圳先进技术研究院 掺硼金刚石/石墨复合电极及制备方法、双电池反应器
CN109030596A (zh) * 2018-05-31 2018-12-18 武汉工程大学 一种柱状硼掺杂金刚石电极传感器的制备方法及其应用
CN110230044B (zh) * 2019-07-12 2021-07-27 中国工程物理研究院激光聚变研究中心 以纳米金刚石粉为赝模板制备多孔掺硼金刚石电极的方法

Also Published As

Publication number Publication date
CN110629203A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
CN110629203B (zh) 一种具有双金属协同效应的多孔掺硼金刚石复合电极的制备方法及其检测葡萄糖的应用
Jindal et al. Nitrogen-doped zinc oxide thin films biosensor for determination of uric acid
Mahadeva et al. Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite
Sun et al. Nonenzymatic electrochemical glucose sensor based on novel copper film
Singh et al. Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film
Tiwari et al. An amperometric urea biosensor based on covalently immobilized urease on an electrode made of hyperbranched polyester functionalized gold nanoparticles
Liu et al. Nanosized flower-like ZnO synthesized by a simple hydrothermal method and applied as matrix for horseradish peroxidase immobilization for electro-biosensing
Lin et al. One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor
Lei et al. Improved glucose electrochemical biosensor by appropriate immobilization of nano-ZnO
CN111579612B (zh) 一种基于金属修饰多孔掺硼金刚石电极的非酶生物传感器及其制备方法和应用
Ding et al. A promising biosensing-platform based on bismuth oxide polycrystalline-modified electrode: characterization and its application in development of amperometric glucose sensor
Thirumalraj et al. Non-enzymatic amperometric detection of hydrogen peroxide in human blood serum samples using a modified silver nanowire electrode
Miao et al. Glucose oxidase immobilization platform based on ZnO nanowires supported by silicon nanowires for glucose biosensing
Zhao et al. Zinc oxide nanowires-based electrochemical biosensor for L-lactic acid amperometric detection
Liu et al. Fabrication and electrochemistry characteristics of nickel-doped diamond-like carbon film toward applications in non-enzymatic glucose detection
CN103572237B (zh) 一种硼掺杂类金刚石薄膜电极的制备方法
Jindal et al. Inducing electrocatalytic functionality in ZnO thin film by N doping to realize a third generation uric acid biosensor
CN108896621A (zh) 一种负载铂颗粒的氨气传感器及其制备方法
CN101740237B (zh) 用于染料敏化太阳能电池的碳纳米管对电极的制备方法
CN102520042A (zh) 一种用于检测多巴胺的掺硼金刚石薄膜电极的制备方法
Shi et al. Enhanced solid-state electrogenerated chemiluminescence of Au/CdS nanocomposite and its sensing to H2O2
Laidoudi et al. Non-enzymatic glucose detection based on cuprous oxide thin film synthesized via electrochemical deposition
Tyagi et al. Enhanced electron transfer properties of NiO thin film for the efficient detection of urea
Young et al. Non-enzymatic glucose sensors of ZnO nanorods modified by au nanoparticles
CN113777144A (zh) 用于胃液中多巴胺检测的电化学传感器及制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant