CN111441030B - 一种多层cvd金刚石锥阵列抛光工具的制备方法 - Google Patents

一种多层cvd金刚石锥阵列抛光工具的制备方法 Download PDF

Info

Publication number
CN111441030B
CN111441030B CN202010446195.8A CN202010446195A CN111441030B CN 111441030 B CN111441030 B CN 111441030B CN 202010446195 A CN202010446195 A CN 202010446195A CN 111441030 B CN111441030 B CN 111441030B
Authority
CN
China
Prior art keywords
substrate
diamond
vapor deposition
etching
placing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010446195.8A
Other languages
English (en)
Other versions
CN111441030A (zh
Inventor
徐锋
施莉莉
孙烁
贾昆鹏
王俊峰
左敦稳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Publication of CN111441030A publication Critical patent/CN111441030A/zh
Application granted granted Critical
Publication of CN111441030B publication Critical patent/CN111441030B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • C23C16/0263Irradiation with laser or particle beam
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种多层CVD金刚石锥阵列抛光工具的制备方法,其特征是它包括以下步骤:首先使用砂纸打磨衬底表面以去除表面氧化层和油污,并采用特定激光参数对衬底表面进行织构,得到沟槽结构,接着对衬底进行“喷砂—超声清洗—植晶—清洗吹干”的预处理步骤,然后将处理得到的衬底置于CVD设备中进行金刚石涂层制备,待沉积上一层金刚石薄膜后,改变参数刻蚀出金刚石纳米锥结构阵列,再将其放置物理气相沉积设备中溅射一层过渡层,重复以上操作,制备出具有多层结构的CVD金刚石锥阵列抛光工具。本发明具有磨粒分布均匀、等高性好的优点,且多层结构保证了磨粒自锐性,有利于增强抛光性能和提高抛光效率。

Description

一种多层CVD金刚石锥阵列抛光工具的制备方法
技术领域
本发明涉及一种涂层抛光工具的制备技术,特别涉及反复交替进行“制备微米金刚石(MCD)—刻蚀金刚石锥阵列—溅射过渡层”的方法,具体地说是一种多层CVD金刚石锥阵列抛光工具的制备方法。
背景技术
近年来,随着光学技术和信息技术的快速发展,单晶硅、SiC等脆性材料因同时具有优异的机械性能和光学性能,被广泛地应用于制作电路半导体、光学元件等领域。脆性材料的加工一般分为切割、磨削和研磨抛光三个环节。其中,研磨抛光是终加工的最主要手段,其加工水平直接影响了产品的质量和性能。
传统的抛光工艺采用游离磨料的形式,抛光过程中磨粒分布不均,运动路径不可控,表面质量难以得到保证;同时磨粒利用率低,对环境会产生一定污染。因此固结磨料抛光技术应运而生,具有工艺可控性强、清洁环保和加工效率高等特点。金刚石的高硬度、低摩擦系数,使之成为优越的工具材料。现有的金刚石固结磨料工具大多采用化学镀、电镀和真空蒸镀的方法,其表面磨粒非均匀分布是普遍存在的一个问题,可能会造成材料去除的不均匀,并且随着加工的进行,效率和面形精度会有明显的降低,难以实现持续稳定的加工过程。由此可见,固结磨料工具加工效率、加工表面质量以及其加工性能等与其金刚石磨粒的形状、大小、排布形式密切相关。大量的研究表明,经过形状优化和有序排布的磨粒具有更高的加工效率和更好的加工表面质量,因此必须从工具的制备工艺本身进行研究,如果在固结磨料的基础上能够实现金刚石磨粒的排布可控,则可进一步提高抛光工具的加工效率。
化学气相沉积(CVD)金刚石具有一系列优良的物理化学性质,在有些方面都已经的达到或接近天然金刚石,再加上CVD金刚石膜具有形状随意和自润滑性能好等优点,比颗粒金刚石具有更广泛的应用前景。CVD金刚石沉积时间短、制备成本低,与其他金刚石工具相比,在生产工艺、资源、表面形貌多样化、成本及工具复杂度等各方面都有很大的优势。其中微波化学气相沉积(MPCVD)法沉积的金刚石质量高、沉积速率快,但是不适用于大面积金刚石薄膜的制备,热丝化学气相沉积(HFCVD)法沉积技术因其生长方式简单、制作成本低、制备工艺简单,是目前最常用的制备方法。
对于HFCVD系统而言,衬底负偏压的引入对金刚石的生长有明显的增强作用。当偏压达到一定程度时,对金刚石涂层也起到了溅射去除的作用,因此可以采用偏压辅助HFCVD系统对金刚石涂层进行刻蚀。此外,在热丝的上方加装栅极并施加相对热丝为正的偏压,正偏压对离子的数量和能量均有着极大的影响。双偏压辅助HFCVD对金刚石的刻蚀作用由两部分组成,其一为金刚石涂层中碳元素与气相中的高能氢原子和氢离子发生化学反应被刻蚀,二为气氛中的含碳正离子与氢离子在电场作用下加速轰击涂层表面,使涂层表面的碳原子发生溅射被去除。与其他刻蚀技术相比,双偏压辅助HFCVD技术在原有的HFCVD设备上进行改造,成本低、操作简单,且能刻蚀得到大面积的微结构金刚石薄膜。
为了提高工具性能,本发明利用化学气相沉积技术结合反应离子刻蚀方法在激光织构后的基底材料(铌、钛、硬质合金等)上制备出具有纳米锥结构阵列的多层CVD金刚石薄膜,并将其作为抛光工具应用于光学元件的加工。基于已有研究将金刚石膜工具的表面形貌、晶粒排布进行分析实现可控。由于金刚石膜晶粒排列紧密、有规律、呈层叠状排列,将CVD 金刚石膜工具应用在抛光领域,此工具表面参与抛光的磨粒是金刚石膜生长面上的晶粒,在RIE的作用下,磨粒的晶粒形态、生长取向、晶粒大小具有可控性。把CVD金刚石锥结构阵列作为固结抛光工具上的磨粒,这种磨粒的抛光加工性能比普通随机排布的固结磨料抛光工具上磨粒的研磨加工性能更加优良,因此可控CVD金刚石固结工具比传统优势的金刚石颗粒固结磨料抛光会具有更高的抛光效率。
本发明面向高性能抛光工具,开展基于多层CVD金刚石薄膜的纳米锥结构阵列研究,为提高工具性能、实现高效高品质加工提供了新思路,对于光学元器件的制造具有重要的科学意义和应用价值。
发明内容
本发明的目的是针对现有的固结磨料金刚石抛光工具磨粒分布不均、抛光效率和精度难以保证的问题,发明一种磨粒形貌可控、分布均匀且具有良好自锐性的多层CVD金刚石锥阵列抛光工具制备方法。
本发明的技术方案是:
一种基于反应离子刻蚀的多层CVD金刚石锥阵列抛光工具的制备方法,其特征是它包括以下步骤:
步骤一,使用500~1200目的砂纸打磨衬底表面,初步去除衬底表面的氧化层等污染物,并采用纳秒激光对衬底表面进行加工,得到具有沟槽结构的表面,以保证后续制备得到的抛光工具具有良好的容屑排屑能力;
步骤二,采用喷砂机对衬底表面进行喷砂处理,净化衬底表面并得到具有较大比表面积和大量表面缺陷的衬底表面,然后使用无水乙醇超声清洗至少10min,进一步去除衬底表面的碎屑、油污等;
步骤三,将衬底放置于金刚石微粉丙酮悬浊液中进行超声振荡处理,衬底与金刚石微粉间的刮擦作用会使衬底表面出现大量的微观缺陷,同时植晶,然后在无水乙醇中超声清洗5~10min,最后采用压缩氮气吹干;
步骤四,将处理完成的衬底放置于化学气相沉积设备内进行微米晶金刚石薄膜的生长;利用反应离子刻蚀技术对制备得到的MCD膜进行刻蚀,待刻蚀完成后,将其置于无水乙醇中超声清洗5~10min;
步骤五,将上述步骤得到的样品放置于磁控溅射镀膜机内溅射一层过渡层,再置于无水乙醇中超声清洗5~10min;
步骤六,重复步骤三、四、五,制备多层CVD金刚石锥阵列抛光工具。
所述的采用纳秒激光对衬底进行表面织构加工,加工时的单个激光脉冲能量为0.45~0.6mJ,脉冲宽度10~30ns,光斑直径为15~30μm,扫描间距为激光光斑直径的0.8~1.0倍,脉冲频率为120~160kHz,扫描速度与脉冲频率相关,并满足以下公式:扫描速度/脉冲频率=0.2~0.6倍激光光斑直径。
衬底超声植晶所使用的的金刚石微粉粒度为0.2~1μm,配比浓度为3~6g金刚石微粉/100ml丙酮,植晶时间30~60min;无水乙醇超声清洗时间为10~15min;采用氮气吹干衬底表面,以备后续使用。
所述的化学气相沉积微米晶金刚石生长参数为:真空反应室内本底真空度达到1Pa以下,以保证反应气体纯度,反应气体CH4/H2,衬底温度750~850℃,若使用热丝化学气相沉积系统,C/H为1~6%,热丝温度2200~2400℃,丝底间距6~12mm,热丝根数根据衬底的尺寸选择,反应气压0.5~3kPa,沉积时间6~10h;若使用微波化学气相沉积系统,CH4气体流量10~30sccm,H2气体流量150~200sccm,微波输入功率2000~2400W,反应气压6~8kPa,沉积时间2~6h。
所述的反应离子刻蚀技术刻蚀金刚石膜的参数为:真空反应室内本底真空度达到1Pa以下,以保证反应气体纯度,若使用双偏压辅助热丝化学气相沉积系统,反应气体CH4/H2,C/H为1~3%,热丝温度为2200~2400℃,丝底间距6~12mm,热丝根数根据衬底的尺寸选择,衬底温度750~850℃,反应气压0.5~2kPa,正偏压20~100V,负偏压-400~-250V,刻蚀时间0.5~2h;若使用微波化学气相沉积系统,反应气体H2/Ar,H2气体流量20~40sccm,Ar气体流量10~30sccm,微波输入功率800~1200W,反应气压0.8~2kPa,衬底偏压-400~-200V,刻蚀时间2~4h。
所述的利用磁控溅射镀膜机溅射过渡层的参数为:使用多靶磁控溅射PVD系统,靶材选用钛或铌,真空反应室内本底真空度达到5×10-4Pa以下,以保证反应气体纯度;气体为Ar,气体流量为20~30sccm,工作气压0.5~1Pa,溅射功率50~80W,溅射时间为10~30min。
使用500~1200目的砂纸打磨衬底表面共10min。
所述的衬底为铌片或钛片。
本发明的有益效果是:
本发明通过采用CVD涂层抛光工具代替传统的金刚石磨料固结抛光工具,在保证抛光工具自锐性的基础上,克服了传统抛光工具表面磨料分布不均、效率和面形精度难以保证等问题,提高了工具的抛光性能。
本发明面向高性能抛光工具,有效提升抛光工具的加工效率和质量,能够实现高效高品质的加工。
附图说明
图1是本发明的主要工艺流程图。
图2是本发明的微米晶金刚石涂层晶粒形貌图。
图3是本发明的金刚石锥形貌图。
具体实施方式
下面结合实施例和附图对本发明作进一步说明。
实施例 1。
1、采用1mm厚度的铌片,用500、800、1200目砂纸对表面及边缘进行打磨共计十分钟,以去除表面氧化物、污染物和边缘毛刺,同时获得平整的表面,并采用纳秒激光对铌衬底表面进行加工,加工时的激光脉冲能量为每次脉冲0.6mJ,激光脉冲宽度10ns,激光束光斑直径22μm,扫描间距20μm,脉冲频率为140kHz,扫描速度1848mm/s。
2、采用喷砂机对铌衬底表面进行喷砂处理,净化衬底表面并得到具有较大比表面积和大量表面缺陷的衬底表面,然后使用无水乙醇超声清洗10min,进一步去除铌衬底表面的碎屑、油污等。
3、将衬底放置于金刚石微粉丙酮悬浊液中进行超声震荡处理,使用的金刚石微粉尺寸0.2μm,浓度6g/100ml丙酮,超声预处理时间45min,接着在无水乙醇中超声清洗12min,最后采用压缩氮气吹干。
4、将处理完成的铌衬底放置于热丝化学气相沉积设备内进行MCD薄膜的生长。使用的参数为:真空腔内本底真空1Pa以下,反应气体为CH4/H2,气体总流量600sccm,C/H为3%,热丝选用钨丝,热丝根数6根,丝底距9mm,热丝温度为2300℃,反应气压1.5kPa,金刚石形核时间60min后,甲烷浓度降至2%,反应气压升至3kPa,薄膜生长6h,所得的金刚石涂层晶粒形貌图如图2所示。
5、利用双偏压辅助热丝CVD系统对制备得到的MCD膜进行刻蚀,参数为:真空反应室内本底真空度达到1Pa以下,反应气体为CH4、H2,气体总流量600sccm,C/H为2%,热丝温度为2300℃,丝底间距9mm,热丝根数6根,反应气压1kPa,正偏压60V,负偏压-300V,刻蚀时间1h,所得的金刚石锥形貌图如图3所示。刻蚀完成后,将其置于无水乙醇中超声清洗8min。
6、将上述步骤得到的样品放置于磁控溅射镀膜机内溅射一层金属铌,溅射参数为:真空反应室内本底真空度达到5×10-4Pa以下,靶材选用铌,靶基距离6cm,气体为Ar,气体流量30sccm,工作气压1Pa,溅射功率60W,溅射时间20min。溅射完成后再置于无水乙醇中超声清洗8min。
7、重复步骤3、4、5、6,制备得到多层CVD金刚石锥阵列抛光工具。
实施例 2。
1、采用1mm厚度的铌片,用500、800、1200目砂纸对表面及边缘进行打磨共计十分钟,以去除表面氧化物、污染物和边缘毛刺,同时获得平整的表面,并采用纳秒激光对铌衬底表面进行加工,加工时的激光脉冲能量为每次脉冲0.4mJ,激光脉冲宽度20ns,激光束光斑直径30μm,扫描间距30μm,脉冲频率为120kHz,扫描速度1440mm/s。
2、采用喷砂机对铌衬底表面进行喷砂处理,净化衬底表面并得到具有较大比表面积和大量表面缺陷的衬底表面,然后使用无水乙醇超声清洗10min,进一步去除铌衬底表面的碎屑、油污等。
3、将衬底放置于金刚石微粉丙酮悬浊液中进行超声震荡处理,使用的金刚石微粉尺寸0.6μm,浓度4.5g/100ml丙酮,超声预处理时间60min,接着在无水乙醇中超声清洗15min,最后采用压缩氮气吹干。
4、将处理完成的铌衬底放置于MPCVD设备内进行MCD薄膜的生长。使用的参数为:真空腔内本底真空1Pa以下,反应气体为CH4/H2,H2气体流量180sccm,CH4气体流量20sccm,微波输入功率2200W,反应气压8kPa,薄膜生长4h。
5、利用MPCVD系统对制备得到的MCD膜进行刻蚀,参数为:真空反应室内本底真空度达到1Pa以下,反应气体为H2/Ar,H2气体流量30sccm,Ar气体流量20sccm,微波输入功率1000W,反应气压1.5kPa,衬底偏压-300V,刻蚀时间3h。刻蚀完成后,将其置于无水乙醇中超声清洗8min。
6、将上述步骤得到的样品放置于磁控溅射镀膜机内溅射一层金属铌,溅射参数为:真空反应室内本底真空度达到5×10-4Pa以下,靶材选用铌,靶基距离6cm,气体为Ar,气体流量20sccm,工作气压0.8Pa,溅射功率80W,溅射时间10min。溅射完成后再置于无水乙醇中超声清洗5min。
7、重复步骤3、4、5、6,制备得到多层CVD金刚石锥阵列抛光工具。
实施例 3。
1、采用1mm厚度的铌片,用500、800、1200目砂纸对表面及边缘进行打磨共计十分钟,以去除表面氧化物、污染物和边缘毛刺,同时获得平整的表面,并采用纳秒激光对铌衬底表面进行加工,加工时的激光脉冲能量为每次脉冲0.45mJ,激光脉冲宽度30ns,激光束光斑直径15μm,扫描间距12μm,脉冲频率为160kHz,扫描速度480mm/s。
2、采用喷砂机对钛衬底表面进行喷砂处理,净化衬底表面并得到具有较大比表面积和大量表面缺陷的衬底表面,然后使用无水乙醇超声清洗10min,进一步去除钛衬底表面的碎屑、油污等。
3、将衬底放置于金刚石微粉丙酮悬浊液中进行超声震荡处理,使用的金刚石微粉尺寸1μm,浓度3g/100ml丙酮,超声预处理时间30min,接着在无水乙醇中超声清洗10min,最后采用压缩氮气吹干。
4、将处理完成的铌衬底放置于热丝化学气相沉积设备内进行MCD薄膜的生长。使用的参数为:真空腔内本底真空1Pa以下,反应气体为CH4/H2,气体总流量600sccm,C/H为6%,热丝选用钨丝,热丝根数6根,丝底距6mm,热丝温度为2200℃,反应气压1kPa,金刚石形核时间60min后,甲烷浓度降至3%,反应气压升至2.5kPa,薄膜生长10h。
5、利用双偏压辅助热丝CVD系统对制备得到的MCD膜进行刻蚀,参数为:真空反应室内本底真空度达到1Pa以下,反应气体为CH4、H2,气体总流量600sccm,C/H为3%,热丝温度为2400℃,丝底间距12mm,热丝根数6根,反应气压0.5kPa,正偏压20V,负偏压-400V,刻蚀时间2h。刻蚀完成后,将其置于无水乙醇中超声清洗5min。
6、将上述步骤得到的样品放置于磁控溅射镀膜机内溅射一层金属铌,溅射参数为:真空反应室内本底真空度达到5×10-4Pa以下,靶材选用铌,靶基距离6cm,气体为Ar,气体流量25sccm,工作气压0.5Pa,溅射功率50W,溅射时间30min。溅射完成后再置于无水乙醇中超声清洗10min。
7、重复步骤3、4、5、6两次,制备得到多层CVD金刚石锥阵列抛光工具。
实施例 4。
1、采用2mm厚度的钛片,用500、800、1200目砂纸对表面及边缘进行打磨共计十分钟,以去除表面氧化物、污染物和边缘毛刺,同时获得平整的表面,并采用纳秒激光对钛衬底表面进行加工,加工时的激光脉冲能量为每次脉冲0.6mJ,激光脉冲宽度10ns,激光束光斑直径22μm,扫描间距20μm,脉冲频率为140kHz,扫描速度1232mm/s。
2、采用喷砂机对钛衬底表面进行喷砂处理,净化衬底表面并得到具有较大比表面积和大量表面缺陷的衬底表面,然后使用无水乙醇超声清洗10min,进一步去除钛衬底表面的碎屑、油污等。
3、将衬底放置于金刚石微粉丙酮悬浊液中进行超声震荡处理,使用的金刚石微粉尺寸0.2μm,浓度6g/100ml丙酮,超声预处理时间30min,接着在无水乙醇中超声清洗10min,最后采用压缩氮气吹干。
4、将处理完成的钛衬底放置于MPCVD设备内进行MCD薄膜的生长。使用的参数为:真空腔内本底真空1Pa以下,反应气体为CH4/H2,H2气体流量200sccm,CH4气体流量10sccm,微波输入功率2000W,反应气压6kPa,薄膜生长6h。
5、利用MPCVD系统对制备得到的MCD膜进行刻蚀,参数为:真空反应室内本底真空度达到1Pa以下,反应气体为H2/Ar,H2气体流量20sccm,Ar气体流量30sccm,微波输入功率1200W,反应气压2kPa,衬底偏压-200V,刻蚀时间4h。刻蚀完成后,将其置于无水乙醇中超声清洗5min。
6、将上述步骤得到的样品放置于磁控溅射镀膜机内溅射一层金属钛,溅射参数为:真空反应室内本底真空度达到5×10-4Pa以下,靶材选用钛,靶基距离6cm,气体为Ar,气体流量30sccm,工作气压1Pa,溅射功率60W,溅射时间20min。溅射完成后再置于无水乙醇中超声清洗8min。
7、重复步骤3、4、5、6,制备得到多层CVD金刚石锥阵列抛光工具。
实施例 5。
1、采用2mm厚度的钛片,用500、800、1200目砂纸对表面及边缘进行打磨共计十分钟,以去除表面氧化物、污染物和边缘毛刺,同时获得平整的表面,并采用纳秒激光对钛衬底表面进行加工,加工时的激光脉冲能量为每次脉冲0.5mJ,激光脉冲宽度20ns,激光束光斑直径30μm,扫描间距30μm,脉冲频率为140kHz,扫描速度840mm/s。
2、采用喷砂机对钛衬底表面进行喷砂处理,净化衬底表面并得到具有较大比表面积和大量表面缺陷的衬底表面,然后使用无水乙醇超声清洗10min,进一步去除钛衬底表面的碎屑、油污等。
3、将衬底放置于金刚石微粉丙酮悬浊液中进行超声震荡处理,使用的金刚石微粉尺寸0.6μm,浓度4.5g/100ml丙酮,超声预处理时间45min,接着在无水乙醇中超声清洗12min,最后采用压缩氮气吹干。
4、将处理完成的钛衬底放置于热丝化学气相沉积设备内进行MCD薄膜的生长。使用的参数为:真空腔内本底真空1Pa以下,反应气体为CH4/H2,气体总流量600sccm,C/H为4%,热丝选用钨丝,热丝根数6根,丝底距12mm,热丝温度为2400℃,反应气压0.5kPa,金刚石形核时间60min后,甲烷浓度降至1%,反应气压升至2kPa,薄膜生长8h。
5、利用双偏压辅助热丝CVD系统对制备得到的MCD膜进行刻蚀,参数为:真空反应室内本底真空度达到1Pa以下,反应气体为CH4、H2,气体总流量600sccm,C/H为1%,热丝温度为2200℃,丝底间距6mm,热丝根数6根,反应气压2kPa,正偏压100V,负偏压-250V,刻蚀时间0.5h。刻蚀完成后,将其置于无水乙醇中超声清洗10min。
6、将上述步骤得到的样品放置于磁控溅射镀膜机内溅射一层金属钛,溅射参数为:真空反应室内本底真空度达到5×10-4Pa以下,靶材选用钛,靶基距离6cm,气体为Ar,气体流量20sccm,工作气压0.8Pa,溅射功率80W,溅射时间10min。溅射完成后再置于无水乙醇中超声清洗5min。
7、重复步骤3、4、5、6两次,制备得到多层CVD金刚石锥阵列抛光工具。
实施例 6。
1、采用2mm厚度的钛片,用500、800、1200目砂纸对表面及边缘进行打磨共计十分钟,以去除表面氧化物、污染物和边缘毛刺,同时获得平整的表面,并采用纳秒激光对钛衬底表面进行加工,加工时的激光脉冲能量为每次脉冲0.45mJ,激光脉冲宽度30ns,激光束光斑直径15μm,扫描间距12μm,脉冲频率为160kHz,扫描速度1440mm/s。
2、采用喷砂机对钛衬底表面进行喷砂处理,净化衬底表面并得到具有较大比表面积和大量表面缺陷的衬底表面,然后使用无水乙醇超声清洗10min,进一步去除钛衬底表面的碎屑、油污等。
3、将衬底放置于金刚石微粉丙酮悬浊液中进行超声震荡处理,使用的金刚石微粉尺寸1μm,浓度3g/100ml丙酮,超声预处理时间60min,接着在无水乙醇中超声清洗15min,最后采用压缩氮气吹干。
4、将处理完成的钛衬底放置于MPCVD设备内进行MCD薄膜的生长。使用的参数为:真空腔内本底真空1Pa以下,反应气体为CH4/H2,H2气体流量150sccm,CH4气体流量30sccm,微波输入功率2400W,反应气压7kPa,薄膜生长2h。
5、利用MPCVD系统对制备得到的MCD膜进行刻蚀,参数为:真空反应室内本底真空度达到1Pa以下,反应气体为H2/Ar,H2气体流量40sccm,Ar气体流量10sccm,微波输入功率800W,反应气压0.8kPa,衬底偏压-400V,刻蚀时间2h。刻蚀完成后,将其置于无水乙醇中超声清洗10min。
6、将上述步骤得到的样品放置于磁控溅射镀膜机内溅射一层金属钛,溅射参数为:真空反应室内本底真空度达到5×10-4Pa以下,靶材选用钛,靶基距离6cm,气体为Ar,气体流量25sccm,工作气压0.5Pa,溅射功率50W,溅射时间30min。溅射完成后再置于无水乙醇中超声清洗10min。
7、重复步骤3、4、5、6两次,制备得到多层CVD金刚石锥阵列抛光工具。
本发明未涉及部分与现有技术相同或可采用现有技术加以实现。

Claims (4)

1.一种基于反应离子刻蚀的多层CVD金刚石锥阵列抛光工具的制备方法,其特征是它包括以下步骤:
步骤一,使用500~1200目的砂纸打磨衬底表面,去除衬底表面的氧化层污染物,并采用纳秒激光对衬底表面进行加工,得到具有沟槽结构的表面,以保证后续制备得到的抛光工具具有良好的容屑排屑能力;
步骤二,采用喷砂机对衬底表面进行喷砂处理,净化衬底表面并得到具有较大比表面积和大量表面缺陷的衬底表面,然后使用无水乙醇超声清洗至少10min,进一步去除衬底表面的碎屑、油污;
步骤三,将衬底放置于金刚石微粉丙酮悬浊液中进行超声振荡处理,衬底与金刚石微粉间的刮擦作用会使衬底表面出现大量的微观缺陷,同时植晶,然后在无水乙醇中超声清洗5~10min,最后采用压缩氮气吹干;
步骤四,将处理完成的衬底放置于化学气相沉积设备内进行微米晶金刚石(MCD)薄膜的生长;利用反应离子刻蚀技术(RIE)对制备得到的MCD膜进行刻蚀,待刻蚀完成后,将其置于无水乙醇中超声清洗5~10min;
步骤五,将上述步骤得到的样品放置于磁控溅射镀膜机内溅射一层过渡层,再置于无水乙醇中超声清洗5~10min;
步骤六,重复步骤三、四、五,制备多层CVD金刚石锥阵列抛光工具;
所述的化学气相沉积微米晶金刚石生长参数为:真空反应室内本底真空度达到1Pa以下,以保证反应气体纯度,反应气体CH4/H2,衬底温度750~850℃,若使用热丝化学气相沉积系统,C/H为1~6%,热丝温度2200~2400℃,丝底间距6~12mm,热丝根数根据衬底的尺寸选择,反应气压0.5~3kPa,沉积时间6~10h;若使用微波化学气相沉积系统,CH4气体流量10~30sccm,H2气体流量150~200sccm,微波输入功率2000~2400W,反应气压6~8kPa,沉积时间2~6h;
所述的利用磁控溅射镀膜机溅射过渡层的参数为:使用多靶磁控溅射物理气相沉积系统(PVD),衬底为铌片时,靶材选用铌,衬底为钛片时,靶材选用钛,真空反应室内本底真空度达到5×10-4Pa以下,以保证反应气体纯度;气体为Ar,气体流量为20~30sccm,工作气压0.5~1Pa,溅射功率50~80W,溅射时间为10~30min。
2.根据权利要求1所述的方法,其特征是衬底超声植晶所使用的的金刚石微粉粒度为0.2~1μm,配比浓度为3~6g金刚石微粉/100mL 丙酮,植晶时间30~60min;无水乙醇超声清洗时间为10~15min;采用氮气吹干衬底表面,以备后续使用。
3.根据权利要求1所述的方法,其特征是所述的反应离子刻蚀技术刻蚀金刚石膜的参数为:真空反应室内本底真空度达到1Pa以下,以保证反应气体纯度,若使用双偏压辅助热丝化学气相沉积系统,反应气体CH4/H2,C/H为1~3%,热丝温度为2200~2400℃,丝底间距6~12mm,热丝根数根据衬底的尺寸选择,衬底温度750~850℃,反应气压0.5~2kPa,正偏压20~100V,负偏压-400~-250V,刻蚀时间0.5~2h;若使用微波化学气相沉积系统,反应气体H2/Ar,H2气体流量20~40sccm,Ar气体流量10~30sccm,微波输入功率800~1200W,反应气压0.8~2kPa,衬底偏压-400~-200V,刻蚀时间2~4h。
4.根据权利要求1所述的方法,其特征是使用500~1200目的砂纸打磨衬底表面共10min。
CN202010446195.8A 2020-05-22 2020-05-25 一种多层cvd金刚石锥阵列抛光工具的制备方法 Active CN111441030B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010439116 2020-05-22
CN2020104391160 2020-05-22

Publications (2)

Publication Number Publication Date
CN111441030A CN111441030A (zh) 2020-07-24
CN111441030B true CN111441030B (zh) 2021-03-26

Family

ID=71652245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010446195.8A Active CN111441030B (zh) 2020-05-22 2020-05-25 一种多层cvd金刚石锥阵列抛光工具的制备方法

Country Status (1)

Country Link
CN (1) CN111441030B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112458429B (zh) * 2020-11-12 2021-09-10 山东省科学院海洋仪器仪表研究所 一种耐砂蚀雨蚀金刚石红外窗口及其制备方法
CN112430796B (zh) * 2020-11-23 2023-01-31 贵州大学 一种金刚石砂轮微纳织构化涂层的制备方法
CN112620947B (zh) * 2020-12-01 2023-04-07 贵州大学 一种叶脉仿生表面金刚石切削刀具的激光制备方法
CN113186510B (zh) * 2021-04-28 2023-02-21 昆明理工大学 一种金属强化多孔金刚石膜及其制备方法
CN113430498B (zh) * 2021-06-23 2022-11-29 太原理工大学 一种高精密金刚石抛光片的制备方法
CN113529050B (zh) * 2021-07-05 2022-09-20 云南民族大学 一种用于金刚石膜抛光的等离子体刻蚀法及其产品
CN113755814A (zh) * 2021-09-10 2021-12-07 安徽光智科技有限公司 衬底的预处理方法、及该方法在金刚石膜制备过程中的应用
CN115159567A (zh) * 2022-08-16 2022-10-11 济南大学 一种缺陷诱导杂原子掺杂二氧化钛电极材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101563188A (zh) * 2006-09-22 2009-10-21 圣戈本磨料股份有限公司 用于化学机械平坦化的修整工具和技术
WO2014089454A2 (en) * 2012-12-07 2014-06-12 The Trustees Of Columbia University In The City Of New York Systems and methods for graphene photodetectors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100593015C (zh) * 2005-12-09 2010-03-03 中国科学院物理研究所 一种表面纳米锥阵列及其制作方法
CN101804603B (zh) * 2010-04-29 2012-05-30 沈阳理工大学 锡固结金刚石磨料仿生抛光盘及制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101563188A (zh) * 2006-09-22 2009-10-21 圣戈本磨料股份有限公司 用于化学机械平坦化的修整工具和技术
WO2014089454A2 (en) * 2012-12-07 2014-06-12 The Trustees Of Columbia University In The City Of New York Systems and methods for graphene photodetectors

Also Published As

Publication number Publication date
CN111441030A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
CN111441030B (zh) 一种多层cvd金刚石锥阵列抛光工具的制备方法
US11359276B2 (en) Self-supporting ultra-fine nanocrystalline diamond thick film
CN102586777B (zh) 基于微/纳米金刚石过渡层的立方氮化硼涂层刀具的制备方法
CN101319324B (zh) 类金刚石薄膜制备方法
CN110453190B (zh) 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法
CN108103468B (zh) 一种金刚石涂层刀片及其制备方法
UA59401C2 (uk) Спосіб покриття кромок алмазоподібним вуглецем
CN108977775B (zh) 一种TiAlSiN涂层刀具制备工艺
CN109161844B (zh) 一种包络高取向氮化硼纳米晶的硼碳氮薄膜及其制备方法
CN101323971A (zh) 一种利用缓冲层制备高质量ZnO薄膜的方法
CN108977781A (zh) 一种硬质合金表面磁控溅射复合技术沉积w-n硬质膜的方法
CN112501553B (zh) 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法
CN103628036A (zh) 立方氮化硼涂层刀具的制备方法
CN113089093B (zh) 金刚石半导体结构的形成方法
Higuchi et al. Selected area diamond deposition by control of the nucleation sites
CN113403602B (zh) 一种表面具有纳米金刚石薄膜涂层的pcbn刀具及其制备方法
JP7360202B2 (ja) ダイヤモンドコーティング窒化ケイ素セラミック全体ツールの製造方法
CN114959633B (zh) 一种加工工件疏水表面的金刚石微纳复合结构工具及制备方法
CN1267577C (zh) H+离子刻蚀金刚石核制备(001)高取向金刚石薄膜的方法
CN110453176A (zh) 一种长寿命超纳米金刚石周期性多层涂层刀具的制备方法
CN113529166B (zh) 一种生长大面积金刚石单晶的方法
CN113151797B (zh) 一种基于硬质合金表面镀ta-C膜的离子清洗工艺
CN102634755B (zh) 一种致密氮化物陶瓷涂层及其制备方法
Getachew et al. Effect of modulation period on the structure and properties of AlTiN/AlTiSiN multilayers
CN109750266B (zh) 一种调控硼碳氮薄膜中氮化硼晶体生长的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant