CN113185314B - 一种氮化硼基陶瓷焊接密封元器件及其制备方法 - Google Patents

一种氮化硼基陶瓷焊接密封元器件及其制备方法 Download PDF

Info

Publication number
CN113185314B
CN113185314B CN202110607169.3A CN202110607169A CN113185314B CN 113185314 B CN113185314 B CN 113185314B CN 202110607169 A CN202110607169 A CN 202110607169A CN 113185314 B CN113185314 B CN 113185314B
Authority
CN
China
Prior art keywords
boron nitride
ceramic
parts
oxide
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110607169.3A
Other languages
English (en)
Other versions
CN113185314A (zh
Inventor
曹建平
曹建辉
刘平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Jusheng Technology Co ltd
Original Assignee
Xinxing Electronic Ceramics Co ltd
Hunan Xinhuayuan Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinxing Electronic Ceramics Co ltd, Hunan Xinhuayuan Technology Co ltd filed Critical Xinxing Electronic Ceramics Co ltd
Priority to CN202110607169.3A priority Critical patent/CN113185314B/zh
Publication of CN113185314A publication Critical patent/CN113185314A/zh
Application granted granted Critical
Publication of CN113185314B publication Critical patent/CN113185314B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5133Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0091Housing specially adapted for small components
    • H05K5/0095Housing specially adapted for small components hermetically-sealed
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/06Hermetically-sealed casings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开一种氮化硼基陶瓷焊接密封元器件及其制备方法,涉及金属化陶瓷加工技术领域。本发明公开的氮化硼基陶瓷焊接密封元器件,包括陶瓷基体和金属化层,其中陶瓷基体用无机纤维‑氮化硼三维网状基体、氧化钇、氧化硅、氧化钛、添加剂、粘结剂和分散剂等原料,经无机纤维‑氮化硼三维网状基体制备、混料、造粒、一次烧结和二次烧结等步骤而制成;金属化层原料包括钛粉、钨粉、氧化钼、氧化硼、氧化铝和有机结合剂,并公开了用金属化层和陶瓷基体组成的氮化硼基陶瓷焊接密封元器件的制备方法。本发明提供的氮化硼基陶瓷焊接密封元器件,其具有高的致密度和抗拉强度,具有优异的抗拉强度、韧性和耐高温性能。

Description

一种氮化硼基陶瓷焊接密封元器件及其制备方法
技术领域
本发明属于金属化陶瓷加工技术领域,尤其涉及一种氮化硼基陶瓷焊接密封元器件及其制备方法。
背景技术
随着材料技术的发展,陶瓷材料得到广泛的运用,尤其在密封机构中,陶瓷材料由于其具有良好的耐高温、抗化学腐蚀与导热性,其适用于各类密封元器件。目前,陶瓷焊接密封元器件是由金属化陶瓷构成,而在金属化处理过程中应用的陶瓷材料主要有三氧化二铝、氧化锆、氮化硅、碳化硅、碳化钨及其复合材料,其中碳化硅陶瓷以其优良的强度、硬度、耐化学腐蚀等为特点,应用的最为广泛,性价比远高于一般的金属密封件,且使用寿命大大延长。但氮化硅陶瓷的断裂韧性较低,即脆性较大,易断裂,并且与金属层的封接强度不理想。
六方氮化硼陶瓷是一种六元环网络状晶体,层内原子通过共价键相结合,结合力强,要到3000℃以上才会断裂费解,具有良好的电绝缘性、导热性、抗腐蚀性、机械加工性和润滑性。六方氮化硼陶瓷的热膨胀系数较低,大约为(2.0-6.5)×10-6/℃,并由于其具有较高的热导率与优异的耐热性能,其抗热震性能良好,其热压制品在1200℃高温下空冷至室温的条件,循环上百次样品也不会开裂。六方氮化硼陶瓷室温下其击穿电压为30-40KV/mm,是氧化铝陶瓷的2倍,催直方向上介电常数为5.12,平行方向介电常数为3.49而且介电损耗极低,一般仅为(2-8)×10-4,可透红外线与微波。同其它陶瓷材料相比,立方氮化硼陶瓷是一种性能优异的高温结构陶瓷材料,己实现在热电偶保护管、玻璃成型高温模具、热电偶保护套、气体传感器用密封环、雷达天线保护罩件等方面的广泛应用。
然而六方氮化硼是共价化合物,具有熔点高,固相自扩散系数低的特性,且坯体内独特的片层状结构,这都抑制了立方氮化硼的烧结致密化,导致立方氮化硼难以获得致密的烧结体,极大地限制了立方氮化硼陶瓷性能的进一步提升;并且立方氮化硼陶瓷化学性质十分稳定,与大多数的熔融金属(如钢、Al、Fe、Ge、Bi、Cu、Ni、Zn等)、玻璃和盐既不润湿也不反应,因此,立方氮化硼陶瓷很少用于陶瓷焊接密封元器件上。
现有技术中,氮化硼陶瓷的金属化处理技术主要是先将钛粉和金粉用硝棉调至糊状,涂覆在氮化硼陶瓷封接处,然后与Ag-Cu焊料配合使用,该技术中使用了两层涂覆材料,其涂覆层比较厚,并且与氮化硼陶瓷的润湿效果也不是很好。中国发明专利CN203466158U公开了一种行波管氮化硼输能窗瓷与金属的封接结构,该结构是通过在氮化硼陶瓷外圆周上设置周向凹槽,外圆周面涂覆钛粉或氢化钛粉膏剂,焊料填充凹槽与金属杯环形件的缝隙,从而增大氮化硼陶瓷与金属的封接强度,并不是从材料上进行改进。
发明内容
本发明提供了一种金属化的氮化硼陶瓷及其制备方法,用于陶瓷焊接密封元器件上,主要目的是提高了密封件的致密度,并大大提高了密封件的弯曲强度和断裂韧性,增大了密封件的抗拉强度,具有优异的耐高温性能。
为了实现本发明的目的,本发明提供了一种氮化硼基陶瓷焊接密封元器件,包括陶瓷基体和金属化层,所述陶瓷基体是由以下重量份数的原料制备:无机纤维-氮化硼三维网状基体70-85份、氧化钇4-9份、氧化硅2-5份、氧化钛2-4份、添加剂0.7-1.2份、粘结剂4-8份和分散剂1-3份,所述添加剂、粘结剂和分散剂分别为LiYO2、聚乙烯醇缩丁醛和三聚磷酸钠;
所述陶瓷基体的制备方法,依次包括以下步骤:
A1、无机纤维-六方氮化硼三维网状基体的制备:
将无机纤维浸渍于2mol/L的NaOH溶液和有机硅绝缘浸渍剂中,在70-90℃下浸渍3-4h,经过滤,干燥,得到表面改性的无机纤维,所述NaOH溶液和有机硅绝缘浸渍剂的质量比为1:1~2;
将六方氮化硼粉末与聚合醇胺混合,调节pH值为8.0,50-60℃下搅拌5-6h,用去离子水清洗干燥后,制得醇化的六方氮化硼;
将制得的醇化六方氮化硼和表面改性的无机纤维混合,在惰性气氛下,压力为5-10MPa,温度为80-120℃下反应3-9h,制得无机纤维-六方氮化硼三维网状基体,所述表面改性的无机纤维与醇化的六方氮化硼的质量比为1:4~9;
A2、混料:将氧化硅、氧化钇和添加剂混合均匀后,加入到步骤A1中制得的无机纤维-六方氮化硼三维网状基体中,然后加入氧化钛、分散剂和水,高速球磨6-8h;
A3、造粒:将研磨后的浆料抽滤,然后用离心式喷雾干燥机加工成平均粒径为20-40μm的颗粒状陶瓷粉末,备用;
A4、一次烧结:将步骤A3所得的陶瓷粉末装入热压模具中,以氮气为保护气,在1000-1200℃进行常温烧结,保温时间为1-2h,制得陶瓷毛坯;
A5、二次烧结:将步骤A4所得的陶瓷毛坯装入热压模具中,以氮气为保护气,在1700-1900℃进行常压烧结,保温时间为2-3h,随炉冷却至室温后取出,然后在平面磨床上抛光,制得待金属化的陶瓷基体。
进一步的,所述步骤A1中无机纤维为碳化硅纤维、氮化铝纤维或氧化硅纤维中的一种。
进一步的,所述步骤A2的球磨过程中,球磨速率为360r/min,球料比为10:1。
一种氮化硼基陶瓷焊接密封元器件的制备方法,所述氮化硼基陶瓷焊接密封元器件的制备方法包括以下步骤:
B1金属化膏的制备:称取钛粉10-20份、钨粉40-60份、氧化钼10-20份、氧化硼10-20份、氧化铝2-4份和有机结合剂2-5份,将钛粉、钨粉、氧化钼、氧化硼、氧化铝和有机结合剂一起均匀混合,制得金属化膏;该金属化膏为金属化层的原料。
B2丝印:将所述待金属化的陶瓷基体表面用无水乙醇进行超声清洗,然后将金属化膏采用丝网印刷的方法均匀地涂覆在氮化硼陶瓷基体两端的表面,其中金属化膏的印刷厚度为40-50μm。
B3金属化处理:上述制备的涂覆有金属化膏陶瓷基体在真空或惰性气体保护下烧结,烧结温度为1300-1500℃,烧结保温时间为60-90min,即得本发明的氮化硼基陶瓷焊接密封元器件。
进一步的,所述步骤B1中有机结合剂是按照乙基纤维素:松油醇:乙二醇=2:1:1的重量比例混合而成。
本发明取得了以下有益效果:
1、本发明三聚磷酸钠属于阴离子型亲水基表面活性剂,三聚磷酸钠在水中,会电离形成阴离子,被氧化物(氧化钇、氧化硅和氧化钛)表面所吸附,使得氧化物分子与水接触的界面上形成双电层,氧化物由于表面吸附阴离子,故带负电荷。带有同种电荷的氧化物间受到静电斥力的作用,阻止了粒子间的相互聚集,从而提升氧化物的分散效果。
2、本发明SiO2-Y2O3作为烧结助剂在添加剂的作用下进行高压高温烧结时形成液相,无机纤维-六方氮化硼三维网状基体晶粒在液相中的传质凝聚快,有助于晶界扩散和迁移,故此以SiO2-Y2O3作为烧结助剂对陶瓷基体的致密度及力学性能有显著的提升。
3、本发明金属化膏中钛粉具有很强的化学活泼性,对氧化钼、氧化硼、氧化铝具有很大的亲和力。钛粉很容易在烧结温度下,与氧化钼、氧化硼、氧化铝形成液相活性合金渗透至陶瓷基体表面,形成很致密均匀的金属层,从而使陶瓷基体与金属层进行高强度高气密性的封接,大大提高了陶瓷基体的润湿性。
4、本发明陶瓷基体中的氧化钛能与金属化膏中的氧化物相互作用,使陶瓷基体中的玻璃相粘度降低,并能很好地润湿金属化层中钛颗粒的表面,同时通过毛细作用向金属化层中钛颗粒的间隙中渗透,促使陶瓷基体中的玻璃相向金属化层迁移,提高陶瓷基体的润湿性。
5、本发明利用无机纤维作为增强剂,将醇化六方氮化硼和表面改性的无机纤维在高温高压下交联制得具有三维网状结构的,该三维网状结构有利于陶瓷基体的致密化,大大提高了陶瓷基体的耐温性能和力学性能;将氧化物在分散剂作用下填充在无机纤维-六方氮化硼三维网状基体中,进行研磨,无机纤维成分作为球磨介质,可使无机纤维-六方氮化硼三维网状基体的粒径减小,提高陶瓷基体的致密度和力学性能;并在粘结剂的作用下形成致密的陶瓷基体,由于无机纤维-六方氮化硼三维网状结构能够分散及消除陶瓷内部及六方氮化硼引入所产生的各种应力,使得陶瓷基体具有良好的柔韧性,弯曲强度进一步提高。
6、金属化层在烧结过程中,钛粉和氧化钼、氧化硼、氧化铝形成玻璃相,玻璃相向钨粉颗粒中迁移,使钨粉调整位置,重新达到紧密排布,致使金属化层的致密度高;同时钨粉表面的原子会溶解于玻璃相,由于金属化层中的玻璃相会与陶瓷基体中的液相互溶,则促进陶瓷基体中的液相向钨粉孔隙中迁移,同时金属化层中的玻璃相和溶解于玻璃相中的钨粉渗透到陶瓷基体中,且陶瓷基体的三维网络结构能使金属化层的玻璃相更易往陶瓷基体三维网状结构中迁移,加强了陶瓷基体与金属化层的连接,增强了陶瓷基体的润湿性;陶瓷基体组分中的氧化钇高温下易与金属化层中的氧化铝反应生产液相YAP,进一步提高了陶瓷基体对该金属化层的润湿性。
7、本发明采用无机纤维和六方氮化硼三维网状基体,并使用氧化钇-氧化硅-氧化钛作为烧结助剂,得到了致密度高的陶瓷基体,具有优异的弯曲性、断裂韧性、绝缘性和耐高温性能;采用钛粉、钨粉等作为金属化膏对本发明的陶瓷基体进行金属化处理制得的密封件,具有很好的致密性,并因金属化膏与本发明的陶瓷基体有很好的封接效果,致使其抗拉强度高,耐高温性能优异。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
下面结合具体实施例对本发明的氮化硼基陶瓷焊接密封元器件及其制备方法予以说明。
实施例1:氮化硼基陶瓷焊接密封元器件包括陶瓷基体和金属化层,其中陶瓷基体及其制备方法
密封件中陶瓷基体按重量份数的原料配方组分:无机纤维-氮化硼三维网状基体70份、氧化钇9份、氧化硅5份、氧化钛4份、LiYO21份、聚乙烯醇缩丁醛8份和三聚磷酸钠3份;
按照上述配方组分的陶瓷基体的制备方法,包括以下步骤:
A1、碳化硅纤维-六方氮化硼三维网状基体的制备:
将碳化硅纤维浸渍于2mol/L的NaOH溶液和有机硅绝缘浸渍剂中,在70-90℃下浸渍3-4h,经过滤,干燥,得到表面改性的碳化硅纤维,其中NaOH溶液和有机硅绝缘浸渍剂的质量比为1:1;
将六方氮化硼粉末与聚合醇胺混合,调节pH值为8.0,50-60℃下搅拌5-6h,用去离子水清洗干燥后,制得醇化的六方氮化硼;
将制得的醇化六方氮化硼和表面改性的碳化硅纤维混合,在惰性气氛下,压力为5-10MPa,温度为80-120℃下反应3-9h,制得碳化硅纤维-六方氮化硼三维网状基体,其中表面改性的碳化硅纤维与醇化的六方氮化硼的质量比为1:4;
A2、混料:将氧化硅、氧化钇和添加剂混合均匀后,加入到步骤A1中制得的碳化硅纤维-六方氮化硼三维网状基体中,然后加入氧化钛、分散剂和水,以360r/min的速率球磨6-8h,其中球料比为10:1;
A3、造粒:将研磨后的浆料抽滤,然后用离心式喷雾干燥机加工成平均粒径为20-40μm的颗粒状陶瓷粉末,备用;
A4、一次烧结:将步骤A3所得的陶瓷装入热压模具中,以氮气为保护气,在1000-1200℃进行常温烧结,保温时间为1-2h,制得陶瓷毛坯;
A5、二次烧结:将步骤A4所得的陶瓷毛坯装入热压模具中,以氮气为保护气,在1700-1900℃进行常压烧结,保温时间为2-3h,随炉冷却至室温后取出,然后在平面磨床上抛光,制得待金属化的陶瓷基体。
实施例2:氮化硼基陶瓷焊接密封元器件包括陶瓷基体和金属化层,其中陶瓷基体及其制备方法
密封件中陶瓷基体按重量份数的原料配方组分:无机纤维-氮化硼三维网状基体77份、氧化钇6份、氧化硅4份、氧化钛3份、LiYO21.2份、聚乙烯醇缩丁醛6.8份和三聚磷酸钠2份。
实施例2中陶瓷基体的制备方法与实施例1中相同,具体步骤参照实施例1,值得注意的是,A1步骤中,无机纤维为氮化铝纤维,NaOH溶液和有机硅绝缘浸渍剂的质量比为1:2,表面改性的碳化硅纤维与醇化的六方氮化硼的质量比为1:7。
实施例3:氮化硼基陶瓷焊接密封元器件包括陶瓷基体和金属化层,其中陶瓷基体及其制备方法
密封件中陶瓷基体按重量份数的原料配方组分:无机纤维-氮化硼三维网状基体80份、氧化钇5份、氧化硅2份、氧化钛2份、LiYO21份、聚乙烯醇缩丁醛7份和三聚磷酸钠3份。
实施例3中陶瓷基体的制备方法与实施例1中相同,具体步骤参照实施例1,值得注意的是,A1步骤中,无机纤维为氧化硅纤维,NaOH溶液和有机硅绝缘浸渍剂的质量比为1:1.5,表面改性的碳化硅纤维与醇化的六方氮化硼的质量比为1:9。
实施例4:氮化硼基陶瓷焊接密封元器件包括陶瓷基体和金属化层,其中陶瓷基体及其制备方法
密封件中陶瓷基体按重量份数的原料配方组分:无机纤维-氮化硼三维网状基体85份、氧化钇4份、氧化硅3.3份、氧化钛2份、LiYO20.7份、聚乙烯醇缩丁醛4份和三聚磷酸钠1份。
实施例4中陶瓷基体的制备方法与实施例1中相同,具体步骤参照实施例1,值得注意的是,A1步骤中,无机纤维为碳化硅纤维,NaOH溶液和有机硅绝缘浸渍剂的质量比为1:2,表面改性的碳化硅纤维与醇化的六方氮化硼的质量比为1:6。
实施例5:氮化硼基陶瓷焊接密封元器件中金属化层的组成以及密封件的制备方法
金属化膏按重量份数的原料配方组分:钛粉10份、钨粉60份、氧化钼10份、氧化硼13份、氧化铝2份和有机结合剂5份,其中有机结合剂是按照乙基纤维素:松油醇:乙二醇=2:1:1的重量比例混合而成。
氮化硼基陶瓷焊接密封元器件的制备方法包括以下步骤:
B1金属化膏的制备:将上述重量份数的钛粉、钨粉、氧化钼、氧化硼、氧化铝和有机结合剂一起均匀混合,制得金属化膏;
B2丝印:将实施例1中制得的待金属化的陶瓷基体表面用无水乙醇进行超声清洗,然后将金属化膏采用丝网印刷的方法均匀地涂覆在陶瓷基体两端的表面,其中金属化膏的印刷厚度为40-50μm;
B3金属化处理:上述制备的涂覆有金属化膏的陶瓷基体在真空或惰性气体保护下烧结,烧结温度为1300-1500℃,烧结保温时间为60-90min,即得本发明的氮化硼基陶瓷焊接密封元器件C1。
实施例6:氮化硼基陶瓷焊接密封元器件中金属化层的组成以及密封件的制备方法
金属化膏按重量份数的原料配方组分:钛粉15份、钨粉55份、氧化钼13份、氧化硼10份、氧化铝3份和有机结合剂4份,其中有机结合剂是按照乙基纤维素:松油醇:乙二醇=2:1:1的重量比例混合而成。
氮化硼基陶瓷焊接密封元器件的制备方法包括以下步骤:
B1金属化膏的制备:将上述重量份数的钛粉、钨粉、氧化钼、氧化硼、氧化铝和有机结合剂一起均匀混合,制得金属化膏;
B2丝印:将实施例2中制得的待金属化的陶瓷基体表面用无水乙醇进行超声清洗,然后将金属化膏采用丝网印刷的方法均匀地涂覆在陶瓷基体两端的表面,其中金属化膏的印刷厚度为40-50μm;
B3金属化处理:上述制备的涂覆有金属化膏的陶瓷基体在真空或惰性气体保护下烧结,烧结温度为1300-1500℃,烧结保温时间为60-90min,即得本发明的氮化硼基陶瓷焊接密封元器件C2。
实施例7:氮化硼基陶瓷焊接密封元器件中金属化层的组成以及密封件的制备方法
金属化膏按重量份数的原料配方组分:钛粉18份、钨粉50份、氧化钼10份、氧化硼15份、氧化铝4份和有机结合剂3份,其中有机结合剂是按照乙基纤维素:松油醇:乙二醇=2:1:1的重量比例混合而成。
氮化硼基陶瓷焊接密封元器件的制备方法包括以下步骤:
B1金属化膏的制备:将上述重量份数的钛粉、钨粉、氧化钼、氧化硼、氧化铝和有机结合剂一起均匀混合,制得金属化膏;
B2丝印:将实施例3中制得的待金属化的陶瓷基体表面用无水乙醇进行超声清洗,然后将金属化膏采用丝网印刷的方法均匀地涂覆在陶瓷基体两端的表面,其中金属化膏的印刷厚度为40-50μm;
B3金属化处理:上述制备的涂覆有金属化膏的陶瓷基体在真空或惰性气体保护下烧结,烧结温度为1300-1500℃,烧结保温时间为60-90min,即得本发明的氮化硼基陶瓷焊接密封元器件C3。
实施例8:氮化硼基陶瓷焊接密封元器件中金属化层的组成以及密封件的制备方法
金属化膏按重量份数的原料配方组分:钛粉20份、钨粉40份、氧化钼20份、氧化硼15份、氧化铝3份和有机结合剂2份,其中有机结合剂是按照乙基纤维素:松油醇:乙二醇=2:1:1的重量比例混合而成。
氮化硼基陶瓷焊接密封元器件的制备方法包括以下步骤:
B1金属化膏的制备:将上述重量份数的钛粉、钨粉、氧化钼、氧化硼、氧化铝和有机结合剂一起均匀混合,制得金属化膏;
B2丝印:将实施例4中制得的待金属化的陶瓷基体表面用无水乙醇进行超声清洗,然后将金属化膏采用丝网印刷的方法均匀地涂覆在陶瓷基体两端的表面,其中金属化膏的印刷厚度为40-50μm;
B3金属化处理:上述制备的涂覆有金属化膏的陶瓷基体在真空或惰性气体保护下烧结,烧结温度为1300-1500℃,烧结保温时间为60-90min,即得本发明的氮化硼基陶瓷焊接密封元器件C4。
对实施例5-8制得的氮化硼基陶瓷焊接密封元器件进行抗拉强度检测,其检测方法如下:
抗拉强度检测采用三点法,即在密封件一个端面均匀取三点,分别在其上放置一Ф3mm厚0.1mm的银铜焊料片,再用夹具分别将三根Ф3mm×30mm的铁镍钴瓷封合金杆垂直、平稳的压在焊料片上,放入真空钎焊炉中进行钎焊,最后将封接好的测试件在材料试验机上进行拉力测试,通过公式E=10P/F计算出抗拉强度数值,其中:E--抗拉强度(MPa),P--拉断时的力(KN),F--试样的封接面积cm2。测试设备为CSS-44100万能材料试验机。
上述实施例5-8所得氮化硼基陶瓷焊接密封元器件与发明专利CN109336564B公开的一种高铝陶瓷的制备方法及利用该方法制备的高铝陶瓷相比,其抗拉强度对比检测结果见表1。
表1密封件的抗拉强度检测结果
C1 C2 C3 C4 对比项
抗拉强度(MPa) 182 195 192 190 162
对实施例1-4中的陶瓷基体进行致密度、弯曲强度和断裂韧性的测试。
(1)陶瓷基体致密度的测试方法:
体积密度的测试:
1)将待测试样置于100±5℃烘箱中干燥直至衡重,用分析天平称量待测试样室温下的干重m1,精确到0.001g;
2)将步骤1)称量后的待测试样放入沸水中煮沸不少于3h,且煮沸过程中使试样始终处于液面以下,冷却到室温后,用分析天平称量待测试样在水中的浮重m2,精确到0.001g;
3)将步骤2)称量后的待测试样从水中取出,用纱布将试样表面的水擦干,然后迅速称量待测试样的湿重m3,精确到0.001g。
4)重复上述步骤各3次取均值。
陶瓷基体的体积密度ρs按公式κ=m1ρw/(m3-m2)计算,式中:m1为试样干燥后的重量(g);m2为试样充分吸水后在水中的浮重(g);m3为试样充分吸水后在空气中的重量(g);ρw为水的密度,取1.0g/cm3
陶瓷基体的理论密度ρth按公式ρth=1/Σ(wii)计算,式中:wi为第i组分的重量百分比;ρi第i组分的理论密度(g/cm3)。
陶瓷基体的致密度,即相对密度ρr按公式ρr=ρsth计算。
(2)陶瓷基体的弯曲强度,采用三点弯曲法测定:
1)将制得的陶瓷试样,在平面磨床磨双面打磨至4mm左右;
2)利用内圆切割机将试样加工成尺寸为3×4×36mm的长方体样条,再利用金刚石研磨膏磨倒角;
3)采用型号为YRWT-D型微机控制电子万能实验机进行测试。测试条件为跨距20mm,加载速度为0.5mm/min,垂直加压。陶瓷的弯曲强度σf按公式σf=3FL/2bd2计算,式中:σf为计算的陶瓷弯曲强度(MPa);b为测试样条的宽度(mm);L为设定的试验机跨距(mm);d为测试样条的高度(mm);F为陶瓷试样断裂时的试验机显示的加载力(N)。
同一陶瓷试样,准备3根样条,测试后取平均值作为其弯曲强度
(3)陶瓷基体的断裂韧性,采用三点弯曲法测试:
1)将烧结后的陶瓷试样,在平面磨床上双面平磨至4mm左右,以金刚石研磨膏精密抛光;
2)利用内圆切割机将试样加工成尺寸为3×4×40mm的长方体样条,金刚石研磨膏磨倒角;
3)利用金刚石内圆切割机在样条平行于外力加载方向上加工宽度约0.22mm,深度1.4-1.6mm的切口;
4)采用型号为YRWT-D型微机控制电子万能实验机进行测试,跨距为20mm,加载速度为0.05mm/min,试样的断裂韧性下列公式计算。
Figure GDA0003325230400000131
式中:KIC为陶瓷试样的断裂韧性(MPa.m1/2);a为样条切口深度(mm);b为样条的宽度(mm);w为样条的高度(mm);P为样条断裂时施加的负载(N);L为设定的试验机跨距(mm)。
同一试样,准备3根样条,测试后取平均值作为其断裂韧性值。
上述实施例1-4所得陶瓷基体的致密度、弯曲强度、断裂韧性与发明专利CN109336564B中的高铝陶瓷相比,其对比试验结果见表2。
表2陶瓷基体性能的对比试验结果表
实施例1 实施例2 实施例3 实施例4 对比项
致密度(%) 92.3 95.1 96.4 93.7 88.2
弯曲强度(MPa) 208 220 235 219 172
断裂韧性(MPa.m<sup>1/2</sup>) 1.8 1.9 2.1 1.9 1.5
根据以上实施例1-8的对比试验结果,可以看出,密封件的抗拉强度高,即陶瓷基体与金属化层之间具有很好的封接效果,陶瓷基体的润湿性能好;陶瓷基体的致密度高,弯曲强度和断裂韧性值较高,即陶瓷基体得致密度和力学性能很好,适合作为氮化硼基陶瓷焊接密封元器件基体材料。
以上所述实施例的各技术特征可以进行任意组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (5)

1.一种氮化硼基陶瓷焊接密封元器件,包括陶瓷基体和金属化层,其特征在于,陶瓷基体是由以下重量份数的原料制备:无机纤维-氮化硼三维网状基体70-85份、氧化钇4-9份、氧化硅2-5份、氧化钛2-4份、添加剂0.7-1.2份、粘结剂4-8份和分散剂1-3份,所述添加剂、粘结剂和分散剂分别为LiYO2、聚乙烯醇缩丁醛和三聚磷酸钠;
所述陶瓷基体的制备方法,依次包括以下步骤:
A1、无机纤维-六方氮化硼三维网状基体的制备:
将无机纤维浸渍于2mol/L的NaOH溶液和有机硅绝缘浸渍剂中,在70-90℃下浸渍3-4h,经过滤,干燥,得到表面改性的无机纤维,所述NaOH溶液和有机硅绝缘浸渍剂的质量比为1:1~2;
将六方氮化硼粉末与聚合醇胺混合,调节pH值为8.0,50-60℃下搅拌5-6h,用去离子水清洗干燥后,制得醇化的六方氮化硼;
将制得的醇化六方氮化硼和表面改性的无机纤维混合,在惰性气氛下,压力为5-10MPa,温度为80-120℃下反应3-9h,制得无机纤维-六方氮化硼三维网状基体,所述表面改性的无机纤维与醇化的六方氮化硼的质量比为1:4~9;
A2、混料:将氧化硅、氧化钇和添加剂混合均匀后,加入到步骤A1中制得的无机纤维-六方氮化硼三维网状基体中,然后加入氧化钛、分散剂和水,高速球磨6-8h;
A3、造粒:将研磨后的浆料抽滤,然后用离心式喷雾干燥机加工成平均粒径为20-40μm的颗粒状陶瓷粉末,备用;
A4、一次烧结:将步骤A3所得的陶瓷粉末装入热压模具中,以氮气为保护气,在1000-1200℃进行常温烧结,保温时间为1-2h,制得陶瓷毛坯;
A5、二次烧结:将步骤A4所得的陶瓷毛坯装入热压模具中,以氮气为保护气,在1700-1900℃进行常压烧结,保温时间为2-3h,随炉冷却至室温后取出,然后在平面磨床上抛光,制得待金属化的陶瓷基体。
2.根据权利要求1所述氮化硼基陶瓷焊接密封元器件,其特征在于,所述步骤A1中无机纤维为碳化硅纤维、氮化铝纤维或氧化硅纤维中的一种。
3.根据权利要求1所述氮化硼基陶瓷焊接密封元器件,其特征在于,所述步骤A2的球磨过程中,球磨速率为360r/min,球料比为10:1。
4.根据权利要求1-3任一所述的氮化硼基陶瓷焊接密封元器件的制备方法,其特征在于,包括以下步骤:
B1、金属化膏的制备:称取钛粉10-20份、钨粉40-60份、氧化钼10-20份、氧化硼10-20份、氧化铝2-4份和有机结合剂2-5份,将钛粉、钨粉、氧化钼、氧化硼、氧化铝和有机结合剂一起均匀混合,制得金属化膏;
B2、丝印:将所述待金属化的陶瓷基体表面用无水乙醇进行超声清洗,然后将金属化膏采用丝网印刷的方法均匀地涂覆在陶瓷基体两端的表面,其中金属化膏的印刷厚度为40-50μm;
B3、金属化处理:上述制备的涂覆有金属化膏的陶瓷基体在真空或惰性气体保护下烧结,烧结温度为1300-1500℃,烧结保温时间为60-90min,即得氮化硼基陶瓷焊接密封元器件。
5.根据权利要求4所述的一种氮化硼基陶瓷焊接密封元器件的制备方法,其特征在于,所述步骤B1中有机结合剂是按照乙基纤维素:松油醇:乙二醇=2:1:1的重量比例混合而成。
CN202110607169.3A 2021-06-01 2021-06-01 一种氮化硼基陶瓷焊接密封元器件及其制备方法 Active CN113185314B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110607169.3A CN113185314B (zh) 2021-06-01 2021-06-01 一种氮化硼基陶瓷焊接密封元器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110607169.3A CN113185314B (zh) 2021-06-01 2021-06-01 一种氮化硼基陶瓷焊接密封元器件及其制备方法

Publications (2)

Publication Number Publication Date
CN113185314A CN113185314A (zh) 2021-07-30
CN113185314B true CN113185314B (zh) 2021-12-07

Family

ID=76986108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110607169.3A Active CN113185314B (zh) 2021-06-01 2021-06-01 一种氮化硼基陶瓷焊接密封元器件及其制备方法

Country Status (1)

Country Link
CN (1) CN113185314B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113891574B (zh) * 2021-11-17 2023-04-07 深圳市星之光精密电路有限公司 一种新能源智能汽车印制电路板的制造方法
CN113948236B (zh) * 2021-12-21 2022-03-29 西安宏星电子浆料科技股份有限公司 一种耐磨损高精度油位传感器用厚膜银钯导体浆料
CN114736023B (zh) * 2022-03-30 2022-12-06 厦门理工学院 一种氮化铝复合板及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740286B2 (en) * 2000-12-04 2004-05-25 Advanced Ceramics Research, Inc. Consolidation and densification methods for fibrous monolith processing
FR2907117B1 (fr) * 2006-10-17 2010-09-24 Snecma Propulsion Solide Procede de fabrication de piece en materiau composite a matrice ceramique contenant des phases de matrice cicatrisante et deviatrice de fissures
CN203466158U (zh) * 2013-08-13 2014-03-05 安徽华东光电技术研究所 一种行波管氮化硼输能窗瓷与金属的封接结构
CN105272268B (zh) * 2015-11-23 2018-05-01 富耐克超硬材料股份有限公司 超硬陶瓷防弹片及其制备方法
CN109384474B (zh) * 2018-11-28 2021-09-17 北京有色金属与稀土应用研究所 陶瓷低温活性金属化用膏体、陶瓷金属化方法及依据该方法制备的真空电子器件
CN111499417B (zh) * 2020-04-24 2020-12-08 湖南省美程陶瓷科技有限公司 一种微波磁控管用绝缘环及其制备方法
CN111517803B (zh) * 2020-04-25 2020-12-08 湖南省美程陶瓷科技有限公司 一种微波磁控管用陶瓷支持体及其制备方法

Also Published As

Publication number Publication date
CN113185314A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
CN113185314B (zh) 一种氮化硼基陶瓷焊接密封元器件及其制备方法
CN111517803B (zh) 一种微波磁控管用陶瓷支持体及其制备方法
CN106588021B (zh) 一种碳化硅陶瓷及其制备方法
CN113173797B (zh) 一种Al2O3基陶瓷焊接密封元器件及其制备方法
CN102145978B (zh) 用于连接SiC陶瓷的玻璃焊料、制备方法及应用
CN101104567A (zh) 氧化铝陶瓷表面金属复合层及复合工艺
CN112225458B (zh) 一种陶瓷基复合材料用耐高温低膨胀系数粘接浆料及其制备方法
CN110128117A (zh) 高纯氧化铝陶瓷材料及其制备方法
CN113943162B (zh) 一种α-SiAlON高熵透明陶瓷材料及其制备方法
CN111470871A (zh) 基于3d打印的低温共烧陶瓷超硬磨料聚合体的制备方法
CN111499417B (zh) 一种微波磁控管用绝缘环及其制备方法
CN110483080B (zh) 一种碳化硅粉体及其制备方法
CN115043648A (zh) 一种预应力氧化铝陶瓷复合材料及其制备方法
US8790782B2 (en) Method for making glass frit powders using aerosol decomposition
CN103204682A (zh) 一种高导热氮化铝陶瓷散热基片及其制备方法
CN113563085A (zh) 一种高介电性能的AlN电子陶瓷材料
JPWO2008142804A1 (ja) マグネトロン用セラミックス部品およびそれを用いたマグネトロン並びにマグネトロン用セラミックス部品の製造方法
CN114031297A (zh) 一种堇青石基多孔玻璃陶瓷及其制备方法
CN101774826B (zh) 一种99BeO陶瓷金属化浆料及其制备法
CN108516807B (zh) 一种汽车压力传感器用氧化铝陶瓷的制备方法
CN104987076A (zh) 一种高韧性碳化硅陶瓷及其低温烧结工艺
CN115849885A (zh) 高纯高强度氧化铝陶瓷基板及其制备方法
KR101852040B1 (ko) 가공성 세라믹 복합체 및 그 제조방법
CN113354420B (zh) 一种氮化硅基陶瓷焊接密封元器件及其制备方法
CN109320263B (zh) 烧结助剂与石英陶瓷及其制备与应用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230117

Address after: 410205 Room 101, Building 10A, Liandong U Valley Hi-tech International Enterprise Port, Linyu Road, Dongfanghong Street, High-tech Development Zone, Changsha City, Hunan Province

Patentee after: Hunan Jusheng Technology Co.,Ltd.

Address before: 417600 Xianghong Industrial Park, Xinhua County Economic Development Zone, Loudi City, Hunan Province

Patentee before: HUNAN XINHUAYUAN TECHNOLOGY Co.,Ltd.

Patentee before: Xinxing Electronic Ceramics Co.,Ltd.