CN113166316B - 聚乙烯及其氯化聚乙烯 - Google Patents

聚乙烯及其氯化聚乙烯 Download PDF

Info

Publication number
CN113166316B
CN113166316B CN202080006688.8A CN202080006688A CN113166316B CN 113166316 B CN113166316 B CN 113166316B CN 202080006688 A CN202080006688 A CN 202080006688A CN 113166316 B CN113166316 B CN 113166316B
Authority
CN
China
Prior art keywords
polyethylene
molecular weight
alkyl
group
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080006688.8A
Other languages
English (en)
Other versions
CN113166316A (zh
Inventor
丁澈焕
李始贞
金善美
徐宜伶
崔二永
洪福基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200123878A external-priority patent/KR102589954B1/ko
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Priority claimed from PCT/KR2020/013051 external-priority patent/WO2021060907A1/ko
Publication of CN113166316A publication Critical patent/CN113166316A/zh
Application granted granted Critical
Publication of CN113166316B publication Critical patent/CN113166316B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • C08F8/22Halogenation by reaction with free halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/02Anti-static agent incorporated into the catalyst
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/07Heteroatom-substituted Cp, i.e. Cp or analog where at least one of the substituent of the Cp or analog ring is or contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本发明提供了一种聚乙烯和使用它制备的氯化聚乙烯,通过实现具有低含量的低分子量和高含量的高分子量的分子结构,所述聚乙烯在制备氯化聚乙烯化合物时,能够在保持优异的加工性和门尼粘度特性的同时提高拉伸强度。

Description

聚乙烯及其氯化聚乙烯
技术领域
对相关申请的交叉引用
本申请要求于2019年9月27日向韩国知识产权局提交的韩国专利申请第10-2019-0120102和10-2019-0120103号和于2020年9月24日提交的韩国专利申请第10-2020-0123878号的权益,其公开内容通过引用整体并入本文。
本公开涉及一种聚乙烯和使用它制备的氯化聚乙烯,通过实现具有低含量的低分子量和高含量的高分子量的分子结构,所述聚乙烯在制备氯化聚乙烯化合物时,能够在保持优异的加工性和门尼粘度特性的同时提高拉伸强度。
背景技术
烯烃聚合催化剂体系可分为齐格勒-纳塔催化剂和茂金属催化剂,并且已经根据它们的特性开发了这些高活性催化剂体系。齐格勒-纳塔催化剂自1950年代开发以来,已广泛应用于商业工艺。但是,由于齐格勒-纳塔催化剂是混合有多个活性位点的多活性位点催化剂,因此其具有所得聚合物具有宽分子量分布的特征。另外,由于共聚单体的组成分布不均一,因此存在难以获得期望的物性的问题。特别是,由于分子量分布宽,具有相对较低分子量的聚合物链可能使物理性质劣化。
同时,茂金属催化剂包括以茂金属化合物为主要成分的主催化剂和以铝为主要成分的有机金属化合物助催化剂。所得聚合物的立构规整度、共聚特性、分子量、结晶度等可以通过改变催化剂的配体结构和聚合条件来控制。
美国专利第5,032,562号公开了一种通过将两种不同的过渡金属催化剂负载在一种载体上来制备聚合催化剂的方法。该催化剂是通过在一种载体上负载产生高分子量的钛(Ti)类齐格勒-纳塔催化剂和产生低分子量的锆(Zr)类茂金属催化剂来制备,并产生双众数分子量分布。该催化剂的不利之处在于,由于助催化剂的原因,负载过程复杂并且聚合物形态差。
美国专利5,525,678号公开了一种将催化剂体系用于烯烃聚合的方法,其中,茂金属化合物和非茂金属化合物同时负载在载体上,以实现高分子量聚合物和低分子量聚合物的同时聚合。但是,存在以下缺点:必须分别负载茂金属化合物和非茂金属化合物,并且必须用各种化合物预处理载体以便负载。
美国专利5,914,289号公开了一种使用分别负载在载体上的茂金属催化剂控制聚合物的分子量和分子量分布的方法。但是,制备负载型催化剂需要大量溶剂和长时间,并且将茂金属催化剂负载在各种载体上的过程很麻烦。
而且,根据现有技术,存在难以有效地制备聚烯烃、特别是同时满足期望的密度水平和窄分子量分布的乙烯(共聚)聚合物的缺点。
同时,氯化聚乙烯(CPE)是通过用氯取代聚乙烯中的一部分氢而获得的产物,并且用作聚氯乙烯(PVC)的冲击改性剂或交联以制造电缆护套或橡胶软管。
氯化聚乙烯以通过过氧化物类交联剂热交联的结构用作电缆护套的材料。为了防止在弯曲电缆时损坏护套,氯化聚乙烯在交联的化合物中必须具有优异的拉伸强度。
在PVC混炼产品的情况中,混炼物的强度会根据氯化聚烯烃的性质而变化。在目前广为人知的通用氯化聚乙烯的情况下,由于应用了使用齐格勒-纳塔催化剂制备的聚乙烯,因此由于宽分子量分布,聚乙烯中的氯分布均匀性降低。还有一个缺点是当与PVC混炼时冲击强度不足。
近来,为了提高用于电缆的氯化聚烯烃混炼物的拉伸强度,使用茂金属催化剂制备的高密度聚乙烯(HDPE)被氯化以产生氯化聚乙烯,然后向其中添加交联剂以制备混炼物。
通常,氯化聚乙烯的门尼粘度(MV)越高,混炼物的门尼粘度越高,混炼物的拉伸强度越高,但是存在压缩过程中的加工性降低的问题。
因此,需要制备能够提高混炼物的拉伸强度而不降低加工性同时具有相似的门尼粘度的高密度聚乙烯,以及开发用于其的催化剂。
发明内容
技术问题
因此,提供了一种聚乙烯及其制备方法,通过实现具有低含量的低分子量和高含量的高分子量的分子结构,所述聚乙烯在制备氯化聚乙烯化合物时,能够在保持优异的加工性和门尼粘度特性的同时提高拉伸强度。
还提供了使用上述聚乙烯制备的氯化聚乙烯。
技术方案
根据本公开的实施方式,提供了一种密度(根据ASTM D-1505测量)为0.945g/cm3以上的聚乙烯,
其中,代表log Mw>6.0的高分子量含量的面积分数为4%至12%,
代表4.5<log Mw<5.0的中等分子量含量的面积分数为35%至50%,并且
代表log Mw<4.0的低分子量含量的面积分数为10%以下,
上述面积分数相对于使用凝胶渗透色谱法以重均分子量的对数值(log Mw)为x轴并且以相对于对数值的分子量分布(dw/dlog Mw)为y轴绘制的分子量分布曲线的总面积,并且
下式1的缠结分子量(Me)为27,000至52,000g/mol:
[式1]
Me=(ρRT)/GN 0
在式1中,
ρ=0.8×(按照ASTM D-1505测量的聚乙烯的密度(kg/m3),
R为聚乙烯的气体常数(8.314Pa·m3/mol·K),
T是测量温度的绝对温度(K),并且
GN 0是聚乙烯的平台模量,其是在储能模量大于损耗模量的区域中损耗模量具有最小值时的储能模量,其中,储能模量和损耗模量使用旋转流变仪在190℃和0.5%应变的条件下在改变角频率到0.05至500rad/s的情况下测量。
根据本公开的另一个实施方式,提供了一种通过使所述聚乙烯与氯反应制备的氯化聚乙烯。
在本公开中,术语“第一”、“第二”等用于描述各种成分,并且这些术语仅用于将特定成分与其他成分区分开。
本文所使用的术语仅出于描述具体实施方式的目的,而并非意图限制本发明。单数形式意图也包括复数形式,除非上下文另外明确指出。将进一步理解的是,当在本说明书中使用时,术语“包含”、“具有”或“含有”指定所陈述的特征、数字、步骤、成分或其组合的存在,但不排除存在或加入一个或多个其他特征、数字、步骤、成分或其组合。
由于可以对本发明进行各种修改并具有各种形式,因此将通过实例示出本发明的具体实施方式并将对其进行详细描述。然而,无意将本发明限制为所公开的具体形式,并且应当理解,本发明包括在本发明的构思和技术范围内的所有修改、等同物和替换形式。
在下文中,将更详细地描述根据本公开的具体实施方式的聚乙烯、其制备方法以及使用所述聚乙烯制备的氯化聚乙烯。
用于橡胶软管或电缆护套的氯化聚乙烯要求高拉伸强度。虽然通过提高氯化聚乙烯的门尼粘度或混炼物的门尼粘度可以提高氯化聚乙烯的拉伸强度,但存在挤出加工性劣化的问题。为了解决这个问题,有必要优化聚乙烯的分子结构,特别是应用于氯化聚乙烯的高密度聚乙烯。
在本公开中证实,组合使用具有特定结构的两种过渡金属化合物可以提供具有高含量的高分子量和最小含量的低分子量的聚乙烯。因此,当制备氯化聚乙烯化合物时,聚乙烯具有提高的交联度并保持优异的加工性和门尼粘度特性,同时改善了拉伸强度。在此基础上,完成了本发明。
在本公开中,分子量分布曲线使用凝胶渗透色谱法(GPC)以重均分子量的对数值(log Mw)为x轴并且以相对于对数值的分子量分布(dw/dlog Mw)为y轴绘制。log Mw>6.0,即重均分子量(Mw)超过106.0g/mol,定义为“高分子量”;log Mw<4.0,即重均分子量(Mw)小于104.0g/mol,定义为“低分子量”;4.0≤log Mw≤6.0,即104.0g/mol以上且106.0g/mol以下的重均分子量(Mw),定义为“中等分子量”。
另外,高分子量含量和低分子量含量可以由相对于分子量分布曲线的总面积的log Mw>6.0面积或log Mw<4.0面积所占的面积比算出,即,通过GPC获得的具有log Mw的x轴和dw/dlogMw的y轴的图中的分数(%)。
在本公开中,聚乙烯的分子量分布曲线可以使用Waters PL-GPC220作为凝胶渗透色谱(GPC)仪器和Polymer Laboratories PLgel MIX-B 300mm长柱来具体测量。评价温度可以为160℃,并且1,2,4-三氯苯可以以1mL/min的流速用于溶剂。可以使用GPC分析仪(PL-GP220)将每种聚乙烯样品溶解在含有0.0125%的BHT(丁基化羟基甲苯)的1,2,4-三氯苯中10小时进行预处理,并且可以按200μL的量提供浓度为10mg/10mL的样品。Mw和Mn可以使用利用聚苯乙烯标准物形成的校准曲线来获得。使用了分子量为2000g/mol、10000g/mol、30000g/mol、70000g/mol、200000g/mol、700000g/mol、2000000g/mol、4000000g/mol和10000000g/mol的9种聚苯乙烯标准品。
具体地,当根据ASTM D-1505测量时,本公开的聚乙烯具有0.945g/cm3以上的密度,
其中,代表log Mw>6.0的高分子量含量的面积分数为4%至12%,代表4.5<log Mw<5.0的中等分子量含量的面积分数为35%至50%,并且代表log Mw<4.0的低分子量含量的面积分数为10%以下,上述面积分数相对于使用凝胶渗透色谱法以重均分子量的对数值为x轴并且以相对于对数值的分子量分布为y轴绘制的分子量分布曲线的总面积,并且
下式1的缠结分子量(Me)为27,000至52,000g/mol。
聚乙烯分子中的高分子量含量和低分子量含量影响聚乙烯的物理性质,如交联度。例如,聚乙烯中的低分子量含量越低且高分子量含量越高,交联度越高。然而,当制备氯化聚乙烯化合物时,门尼粘度增加,导致加工性降低。另一方面,当聚乙烯中的低分子量含量太高时,低分子量成分熔化并且流动性变高,使得聚乙烯颗粒的孔隙可能堵塞,导致氯化生产率低。
在根据本公开的实施方式的聚乙烯中,小于Mw 104.0g/mol的低分子量含量的分数,即分子量分布曲线中代表log Mw<4.0的低分子量含量的面积分数为10%以下,更具体地为7%以下,或5%以下。另外,在上述低分子量含量中,小于Mw 103.5g/mol的超低分子量含量的分数,即分子量分布曲线中代表log Mw<3.5的超低分子量含量的面积分数为2%以下、1.5%以下或1%以下,并且Mw 103.5g/mol以上且小于Mw 104.0g/mol的低分子量含量,即3.5≤log Mw<4.0的低分子量含量为7%以下、5%以下或4%以下。当如上所述具有低含量的低分子量时,交联度增加,并且可以防止由低分子量成分的熔化引起的氯化生产率的降低。
另外,在聚乙烯中,大于Mw 106.0g/mol的高分子量含量的分数,即分子量分布曲线中代表log Mw>6.0的高分子量含量的面积分数为4至12%。当代表高分子量含量的面积分数小于4%时,存在交联度降低的担忧,而当其超过12%时,存在氯化聚乙烯的门尼粘度由于高分子量含量的过高含量而增加、因此加工性可能劣化的担忧。更具体地,在聚乙烯的分子量分布曲线中,代表log Mw>6.0的高分子量含量的面积分数可以为5%以上、7%以上且12%以下或10%以下。
此外,聚乙烯具有在分子量分布曲线中形成高分子量尾部的结构。因此,在上述高分子量含量中,代表6.5<log Mw、更特别是6.5<log Mw≤7.0的超高分子量含量的面积分数可以为0.1%至3%,更具体地为0.1%以上、0.5%以上或者0.7%以上,或者3%以下、2%以下或者1.6%以下。当比常规的具有更高的超高分子量含量时,可以表现出更加改善的交联度和缠结特性。
当聚乙烯中的低分子量含量低而高分子量含量高时,存在门尼粘度增加并且因此在制备氯化聚乙烯化合物的过程中加工性降低的问题。由于聚乙烯的代表4.5<log Mw<5.0的中等分子量含量的面积分数为35%至50%,更特别地为35%以上且50%以下或45%以下,因此可以维持氯化聚乙烯的优异的加工性和门尼粘度特性。
另外,聚乙烯具有0.945g/cm3以上、或0.945至0.955g/cm3的高密度。这意味着聚乙烯的晶体结构含量高且致密,并且在氯化过程中晶体结构难以改变。在本公开中,聚乙烯的密度可以根据ASTM D-1505测量。
另外,聚乙烯的缠结分子量(Me)为27,000g/mol至52,000g/mol。缠结分子量是指乙烯聚合物链之间的缠结点的平均分子量。当缠结分子量较小时,乙烯聚合物链的缠结度增加,这意味着优良的抗外力变形能力和优异的抗裂性。通常,加工性和长期耐久性是相反的性质,因此,如果增加熔体指数或熔体流动速率比以提高加工性,则长期耐久性降低。
当根据以下式1通过使用由在温度为150至230℃、特别是190℃在0.05rad/s至500rad/s的角频率在0.5%应变下测得的聚乙烯的储能模量和损耗模量获得的平台模量(GN 0)计算时,本公开的聚乙烯的缠结分子量在上述范围内,从而具有优异的长期耐久性,而不会降低加工性。更具体地,聚乙烯的缠结分子量为30,000g/mol以上,或33,000g/mol以上,且50,000g/mol以下,或49,500g/mol以下。
在本公开中,缠结分子量(Me)可以根据下式1计算:
[式1]
Me=(ρRT)/GN 0
在式1中,
ρ=0.8×(按照ASTM D-1505测量的聚乙烯的密度(kg/m3),
R为聚乙烯的气体常数(8.314Pa·m3/mol·K),
T是测量温度的绝对温度(K),并且
GN 0是聚乙烯的平台模量,其是在储能模量大于损耗模量的区域中损耗模量具有最小值时的储能模量,其中,储能模量和损耗模量使用旋转流变仪在190℃和0.5%应变的条件下在改变角频率到0.05至500rad/s的情况下测量。
另外,当聚乙烯是用于制备门尼粘度(MV)为70以上的氯化聚乙烯以防止CPE混炼物的物性降低时,熔体指数(MI5;根据ASTM D 1238在190℃在5.0kg的载荷下测量)优选为3g/10min以下。另外,当聚乙烯是用于制备门尼粘度(MV)为80以下的氯化聚乙烯以防止CPE混炼物的加工性降低时,熔体指数优选为0.5g/10min以上。具体地说,聚乙烯的MI5熔体指数可以为0.5至3g/10min,更具体地为0.5g/10min以上,或者1g/10min以上且3g/10min以下,或者2.5g/10min以下。
所述聚乙烯的熔体流动速率比(MFRR21.6/5)可以为10至20,所述熔体流动速率比(MFRR21.6/5)通过将根据ASTM D 1238在190℃在21.6kg的载荷下测得的MFR21.6除以根据ASTM D 1238在190℃在5kg的载荷下测得的MFR5获得。当熔体流动指数在上述范围内时,可以在不降低氯化聚乙烯的物理性质的情况下适当地控制MV,并且可以获得优异的加工性和改善混炼物的拉伸强度的效果。如果熔体流动速率比超过20,则存在CPE混炼物的物理性质可能劣化的担忧,如果其低于10,则CPE混炼物的加工性可能降低。更具体而言,其可以为10以上,或10.3以上,且20以下,15以下,12以下或11以下。
另外,聚乙烯具有高的重均分子量(Mw)和分子量分布(PDI)。具体而言,聚乙烯的重均分子量(Mw)为150,000至300,000g/mol,更特别地为150,000g/mol以上,或185,000g/mol以上,且300,000g/mol以下,或250,000g/mol以下。此外,聚乙烯的PDI为5至15,更具体地为5以上,或5.5以上,且15以下,或10以下。如果分子量分布超过15,则聚乙烯之间的分子量差异大,因此氯化反应后的氯化聚乙烯中的氯难以均匀分布。当Mw和PDI在上述范围内时,可以以良好的平衡获得改善加工性并具有优异的机械性能的效果。特别是,氯化反应后聚乙烯之间的分子量差异不大,因此氯可以均匀地进行取代。
在本公开中,可以使用凝胶渗透色谱法测量重均分子量和分子量分布(PDI,多分散性指数)。可以通过测量重均分子量(Mw)和数均分子量(Mn),然后将重均分子量除以数均分子量来确定分子量分布。其具体方法如后文描述的实验例所述。
另外,聚乙烯的MDR扭矩(MH-ML)可以为7Nm以上,10Nm以上,或11Nm以上,且12Nm以下,或11.8Nm以下。当MDR扭矩在上述范围内时,可以实现高交联度和优异的机械性能。
在本文中,聚乙烯的MDR扭矩(MH-ML)是指交联度。交联度越高,MH-ML越高。当使用相同的交联剂时,高MDR扭矩意味着优异的交联效率。聚乙烯的MDR扭矩可以例如使用动模流变仪(MDR)通过在180℃下测量MH值和ML值10分钟并从MH值减去ML值计算MDR扭矩来测量。在此,MH是在完全固化时测得的最大硫化扭矩,而ML是存储的最小硫化扭矩。其具体方法如后文描述的实验例所述。
同时,本公开的聚乙烯可以是不包含共聚单体的乙烯均聚物。
聚乙烯的最佳分子结构和物理性质可以通过包括以下步骤的制备方法实现:在引入氢气的同时,在包含以下化学式1的第一过渡金属化合物、以下化学式2的第二过渡金属化合物和负载第一和第二过渡金属化合物的载体的杂化负载型催化剂的存在下聚合乙烯单体,其中,使用的第一过渡金属化合物和第二过渡金属化合物的摩尔比为1:3至3:1。因此,本公开的另一个实施方式提供了聚乙烯的制备方法。
[化学式1]
(Cp1R11)m(Cp2R12)M1(Z1)3-m
在化学式1中,
M1是第4族的过渡金属;
Cp1和Cp2彼此相同或不同,并且各自独立地为选自由环戊二烯基、茚基、4,5,6,7-四氢-1-茚基和芴基组成的组中的任一种。在此,它们可以取代有C1-20烃。
R11和R12彼此相同或不同,各自独立地为氢、C1-20烷基、C1-20烷氧基、C2-20烷氧基烷基、C6-20芳基、C6-20芳氧基、C2-20烯基、C7-40烷基芳基、C7-40芳基烷基、C8-C40芳基烯基、C2-20炔基、或包含一个或多个选自由N、O和S组成的组中的杂原子的C2-20杂芳基;
Z1为卤素、C1-20烷基、C2-20烯基、C7-40烷基芳基、C7-40芳烷基、C6-20芳基、取代或未取代的C1-20亚烷基、取代或未取代的氨基、C2-20烷基烷氧基或C7-40芳基烷氧基;并且
m为1或0;
[化学式2]
Figure GDA0003096738310000091
在化学式2中,
A是碳或硅,
M2是第4族的过渡金属,
R21为取代有C1-20烷基的C6-20芳基,
R22为C3-20支化烷基,
R23至R25各自独立地为C1-20烷基,
Z21和Z22各自独立地为卤素或C1-10烷基,并且
n是1至10的整数。
在该杂化负载型催化剂中,将在下面更详细地说明化学式1和2中的取代基。
C1-20烷基可包括直链、支化或环式烷基,并且具体地为甲基(Me)、乙基(Et)、丙基(Pr)、异丙基、正丁基(n-Bu)、叔丁基(t-Bu)、戊基(Pt)、己基(Hx)、庚基、辛基、环丁基、环戊基或环己基等,但不限于此。
C1-20亚烷基可包括直链或支化亚烷基,具体而言,亚甲基、亚乙基、亚丙基、亚丁基、亚戊基或亚己基等,但不限于此。
C4-20环烷基是指上述烷基中的环式烷基,具体而言,可以包括环丁基、环戊基或环己基等,但不限于此。
C2-20烯基可包括直链或支化烯基,具体而言,烯丙基、乙烯基、丙烯基、丁烯基或戊烯基等,但不限于此。
C6-20芳基可包括单环或稠环芳基,具体而言,苯基、联苯基、萘基、菲基或芴基等,但不限于此。
C1-20烷氧基可包括甲氧基、乙氧基、苯氧基或环己氧基等,但不限于此。
C2-20烷氧基烷基可以是其中上述烷基的一个或多个氢被烷氧基取代的官能团,具体而言,可以包括:烷氧基烷基,如甲氧基甲基、甲氧基乙基、乙氧基甲基、异丙氧基甲基、异丙氧基乙基、异丙氧基己基、叔丁氧基甲基、叔丁氧基乙基或叔丁氧基己基等;或芳氧基烷基,如苯氧基己基等,但不限于此。
C1-20烷基甲硅烷基或C1-20烷氧基甲硅烷基可以是其中-SiH3的1至3个氢被如上所述的1至3个烷基或烷氧基取代的官能团,具体而言,可以包括:烷基甲硅烷基,如甲基甲硅烷基、二甲基甲硅烷基、三甲基甲硅烷基、二甲基乙基甲硅烷基、二乙基甲基甲硅烷基或二甲基丙基甲硅烷基等;烷氧基甲硅烷基,如甲氧基甲硅烷基、二甲氧基甲硅烷基、三甲氧基甲硅烷基或二甲氧基乙氧基甲硅烷基等;烷氧基烷基甲硅烷基,如甲氧基二甲基甲硅烷基、二乙氧基甲基甲硅烷基或二甲氧基丙基甲硅烷基等,但不限于此。
C1-20甲硅烷基烷基是其中上述烷基的一个或多个氢被甲硅烷基取代的官能团,具体而言,可以包括-CH2-SiH3、甲基甲硅烷基甲基或二甲基乙氧基甲硅烷基丙基等,但不限于此。
卤素可以是氟(F)、氯(Cl)、溴(Br)或碘(I)。
磺酸酯基具有-O-SO2-R'的结构,其中R'可以是C1-20烷基。具体而言,C1-20磺酸酯基可包括甲磺酸酯基或苯磺酸酯基等,但不限于此。
杂芳基是包含N、O和S中的一个或多个作为杂原子的C2-20杂芳基,其具体实例可以包括呫吨(xanthene)、噻吨(thioxanthen)、噻吩、呋喃、吡咯、咪唑、噻唑、噁唑、噁二唑、三唑、吡啶基、联吡啶基、嘧啶基、三嗪、吖啶基、哒嗪、吡嗪基、喹啉基、喹唑啉、喹喔啉基、邻苯二甲酰基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉、吲哚、咔唑、苯并噁唑、苯并咪唑、苯并噻唑、苯并咔唑、苯并噻吩、苯并呋喃基、菲咯啉(phenanthroline)、异噁唑基、噻二唑基、吩噻嗪基或二苯并呋喃基等,但不限于此。
在具有与所需效果相同或相似效果的范围内,上述取代基可以可选地取代有一个或多个选自由下述基团组成的组中的取代基:羟基;卤素;烷基、烯基、芳基或烷氧基;包含第14至16族的杂原子中的一个或多个杂原子的烷基、烯基、芳基或烷氧基;甲硅烷基;烷基甲硅烷基或烷氧基甲硅烷基;膦;磷化物;磺酸酯和砜。
此外,第4族的过渡金属可以包括钛(Ti)、锆(Zr)或铪(Hf)等,但是本公开不限于此。
在杂化负载型催化剂中,第一过渡金属化合物表现出高聚合活性,并且容易制备低分子量聚合物。并且,与第一过渡金属化合物相比,更容易用第二过渡金属化合物制备高分子量聚合物。因此,当调节杂化负载型催化剂中的第一过渡金属化合物和第二过渡金属化合物的混合比时,制得的聚合物中的低分子量含量被最小化,并且由于第二过渡金属化合物的高分子量特性,分子量分布可以提高。另外,可以容易地调节粘度。如此制备的聚乙烯可以具有增加的交联度和缠结度。
具体而言,由化学式1表示的第一过渡金属化合物是含有Cp1和Cp2配体的未交联化合物,其中Cp1和Cp2配体可以彼此相同或不同,各自独立地为选自由环戊二烯基、茚基、4,5,6,7-四氢-1-茚基和芴基组成的组中的任一种。这些配体可以取代有一个或多个或1至3个C1-20烃,更特别是C1-10烷基。由于Cp1和Cp2配体具有一对能够充当路易斯碱的非共价电子,因此可以实现高聚合活性。特别是,当Cp1和Cp2配体是具有相对较小的空间位阻的环戊二烯基时,它们显示出高聚合活性和低氢反应性,因此可以以高活性聚合得到低分子量的烯烃聚合物。
另外,Cp1和Cp2配体可通过调节取决于取代的官能团的类型的空间位阻效应的程度来容易地控制要制备的烯烃聚合物的性质,如化学结构、分子量、分子量分布、机械性能和透明度。具体而言,Cp1和Cp2配体分别取代有R11和R12,其中,R11和R12彼此相同或不同,并且各自可以独立地为氢、C1-20烷基、C2-20烷氧基烷基、C7-40芳基烷基或含有至少一个选自由N、O和S组成的组中的杂原子的C2-12杂芳基,更具体地为C1-10烷基、C2-10烷氧基烷基、C7-20芳烷基或含有至少一个选自由N、O和S组成的组中的杂原子的C4-12杂芳基。为了具有优异的催化活性,当R11和R12各自为以上定义的取代基时,R11和R12中的至少一个可以是C2-20烷氧基烷基或C2-10烷氧基烷基。
此外,在Cp1和Cp2配体之间存在M1(Z1)3-m,并且M1(Z1)3-m可以影响金属络合物的储存稳定性。为了更有效地确保效果,Z1可以各自独立地为卤素或C1-20烷基,更具体而言,各自独立地为F、Cl、Br或I。此外,M1可以为Ti、Zr或Hf,更具体地为Zr或Hf,并且更具体地为Zr。
更具体而言,在第一过渡金属化合物中,M1为Ti、Zr或Hf;Cp1和Cp2彼此相同或不同,并且各自独立地为选自由可以被C1-10烷基取代或未被取代的环戊二烯基、茚基、4,5,6,7-四氢-1-茚基和芴基组成的组中的任一种;R11和R12各自独立地为氢、C1-20烷基、C2-20烷氧基烷基、C6-20芳基、C7-20芳基烷基、呋喃基或噻吩基,其中R11和R12中的至少一个为C2-20烷氧基烷基;Z1为卤素。
化学式1表示的第一过渡金属化合物可以是例如以下结构式中任一个表示的化合物,但不限于此:
Figure GDA0003096738310000121
另外,第一过渡金属化合物可以是下述化合物,其中,M1为Zr;Cp1和Cp2各自独立地为未取代的环戊二烯基或取代有至少一个如甲基等C1-10烷基的环戊二烯基;R11和R12各自独立地为氢、C1-20烷基、C2-20烷氧基烷基、C7-20芳基或C7-20芳基烷基,其中,R11和R12中的至少一个或两个为C2-20烷氧基烷基,更特别是C2-10烷氧基烷基,甚至更特别地为叔丁氧基己基;Z1为卤素基团;在化学式1中m为1。
化学式1表示的第一过渡金属化合物可以通过应用已知反应来合成。具体地,通过各种合成方法制备配体化合物,然后通过添加金属前体化合物进行金属化。然而,本公开不限于此,并且合成方法可以参照实施例。
同时,在杂化负载型催化剂中,化学式2表示的第二过渡金属化合物形成其中茚衍生物和胺衍生物通过桥化合物交联的配体结构,并且具有一对能够在配体结构中作为路易斯碱的非共价电子,因此表现出高聚合活性。特别是,所述催化剂可以通过具有结构稳定且电子富集的茚结构而表现出高催化活性,并且可以通过在桥基中包含系链基团而表现出对载体的优异的负载稳定性。
另外,第二过渡金属化合物在茚结构的2位取代有具有支化结构的官能团(R22),并且胺衍生物的氮原子在其中生长的聚合物链中的β-氢通过氢键得到稳定,从而制备中等分子量和高分子量的聚合物。另外,要制备的聚合物具有窄分子量分布,从而表现出优异的机械性能。具体而言,R22可以是C3-12或C3-6支化烷基,例如异丙基、异丁基、叔丁基和异戊基等,并且可以是异丙基,就空间效应而言其是更有利的。
另外,茚结构具有通过在4位处键合R21、特别是取代有一个或多个(或一个或两个)C1-20烷基的C6-20芳基而能够提供足够的电子的诱导效应,从而表现出更高的催化活性。更具体而言,在化学式2中,R21可以是取代有一个或两个C3-6支化烷基(如4-叔丁基苯基和3,5-二叔丁基苯基)的苯基。
另外,化学式2中与N键合的R23可以为C1-20直链或支化烷基,更具体地是C3-C12或C3-C6支化烷基,如叔丁基。当R23具有支化结构时,过渡金属化合物在空间上稳定,并且催化剂通过给电子效应而稳定,从而表现出更高的催化活性。
更具体而言,在化学式2中,R21为取代有一个或两个C3-6支化烷基的苯基,并且R22和R23可以各自独立地为C3-6支化烷基。甚至更具体地,R22可以是异丙基。
另外,在化学式2中,桥基包括能够与R24的官能团一起系到载体的-(CH2)n-O-R25的系链基团。因此,可以表现出优异的负载稳定性,并保持优异的催化活性以制备具有高分子量的聚合物。
具体地,R24可以为C1-12或C1-6直链或支化烷基。更具体地,它可以是C1-4直链烷基或甲基以增加溶解度,从而改善负载效率。
另外,所述系链基团中的R25可以为C1-12或C1-6直链或支化烷基,更具体地,可以为C3-6支化烷基,或叔丁基。当系链基团具有诸如叔丁基等支化结构时,它可以容易地分离并结合到载体上,从而表现出优异的负载稳定性。
另外,系链基团中的n可以具体地为3至8或4至6,并且在上述范围内的系链基团可以具有适当的长度,从而稳定地显示出具有优异的负载稳定性的催化活性。
在桥基中,A可以是硅(Si)。
更具体地,在化学式2中,A是硅,R25是C3-6支化烷基,并且n可以是4至6的整数。
另外,化学式2的第二过渡金属化合物可以包含第4族的过渡金属、如钛(Ti)、锆(Zr)和铪(Hf)作为中心金属(M2)。当过渡金属化合物包含Ti作为中心金属时,该催化剂通过增加结构开放性而显示出比包含诸如Zr和Hf等第4族其他过渡金属的情况更优异的聚合活性,并且通过给电子效应而稳定化,从而产生具有高分子量的聚合物。
在化学式2中,Z21和Z22可以各自独立地为如氯等卤素;或如甲基等C1-4烷基。更具体地,Z21和Z22都可以是甲基,并且在这种情况下,与Z21和Z22是卤素的情况相比,可以表现出更好的催化活性。
更具体地,在化学式2中,M2为钛,并且Z21和Z22可以各自独立地为C1-4烷基。
更具体地,化学式2的化合物可以是下述化合物,其中,A是硅;M2是钛;R21是取代有一个或两个如叔丁基等C3-10支化烷基的苯基;R22为C3-6支化烷基,如异丙基;R23为C3-6支化烷基,如叔丁基;R24为C1-4直链烷基,如甲基;R25为C3-6支化烷基,如叔丁基;Z21和Z22各自独立地为C1-4烷基,如甲基;n是4至6的整数。
由化学式2表示的第二过渡金属化合物可以是由以下结构式之一表示的化合物,但不限于此:
Figure GDA0003096738310000141
上述第二过渡金属化合物可以通过以下化学式3的配体化合物的锂化和随后与含有第4族过渡金属的卤化物的反应来制备:
[化学式3]
Figure GDA0003096738310000142
在化学式3中,A、R21至R25和n与以上定义相同。
以下反应方案1表示根据本发明的一个实施方式制备化学式2的第二过渡金属化合物的方法。以下反应方案1仅是用于说明本发明的实例,但本发明不限于此:
[反应方案1]
Figure GDA0003096738310000151
在反应方案1中,A、M2、R21至R25、Z21、Z22和n与以上定义相同,并且X1和X2各自独立地为卤素。
如反应方案1中所述,可以通过使化学式3的配体化合物(3)与如正丁基锂(NBL)等烷基锂反应以进行锂化,然后与含有第4族的过渡金属的卤化物(4)(如TiCl4)反应来制备化学式2的化合物(2)。另外,当化学式2的化合物(2)中的Z21和Z22各自为C1-10烷基时,可以在锂化后另外添加用于金属M的烷基化的烷基化试剂,如MMB(甲基溴化镁)。
另外,用于制备化学式2的化合物(2)的配体化合物(3)可以通过如下反应方案2中的合成方法来制备。反应方案2仅是用于解释本发明的实例,而本发明不限于此。
[反应方案2]
Figure GDA0003096738310000152
在反应方案2中,A、R21至R24和n与以上定义相同,并且X3和X4各自独立地为卤素。
参照反应方案2,可以制备配体化合物(3),包括以下步骤:使作为Cp单元的茚类化合物(5)与如正丁基锂(NBL)等烷基锂反应以进行锂化;使所得的反应物与用于提供系链基团的原料(6)反应,以制备其中系链基团键合到茚结构上的化合物(7);使化合物(7)与具有R3取代基的叔胺(8)(如t-BuNH2)反应。
各个步骤中的反应可以通过应用已知的反应来进行,并且更详细的合成方法可以参照后述的制备例。
如上所述,包含第一过渡金属化合物和第二过渡金属化合物的杂化负载型催化剂可以有效地提供聚烯烃,特别是在制备氯化聚烯烃和氯化混炼物时由于交联度增加而能够提高拉伸强度的高密度聚乙烯,因为通过在分子量分布曲线中形成高分子量尾部,聚烯烃具有最小化的低分子量含量和宽分子量分布。另外,通过控制杂化负载型催化剂中的第一过渡金属化合物和第二过渡金属化合物的混合比,可以进一步增强上述效果。具体地,第一过渡金属化合物和第二过渡金属化合物的混合摩尔比可以为1:3至3:1,或1:1.5至2:1。
另外,在杂化负载型催化剂中,以负载在载体上的负载型催化剂的形式包含第一过渡金属化合物和第二过渡金属化合物。当过渡金属化合物以负载型催化剂的形式使用时,可以进一步改善制备的聚乙烯的形态和物理性质,并且其可以适用于淤浆聚合、本体聚合和气相聚合。
具体地,载体可以在其表面上具有拥有高反应性的羟基、硅烷醇基或硅氧烷基。载体可以通过煅烧进行表面改性,或者可以干燥以从表面除去水分。例如,载体可以是通过煅烧硅胶制备的二氧化硅、在高温下干燥的二氧化硅、二氧化硅-氧化铝或二氧化硅-氧化镁,并且其通常可以包含氧化物、碳酸盐、硫酸盐或硝酸盐,例如Na2O、K2CO3、BaSO4和Mg(NO3)2等。
载体优选在200至600℃、更优选250至600℃下煅烧或干燥。当温度低于200℃时,载体含有过多水分,以致表面上的水分可能与助催化剂发生反应。此外,由于过量的羟基,助催化剂负载率可能相对较高,但这需要大量的助催化剂。当温度高于600℃时,载体表面上的孔隙可彼此结合以减小表面积,并且许多羟基或硅烷醇基可从表面失去,仅留下硅氧烷基。因此,与助催化剂的反应性位点可能减少,这不是优选的。
羟基量可以通过载体的制备方法、制备条件或干燥条件、如温度、时间、真空或喷雾干燥来控制。当羟基的量过低时,与助催化剂的反应性位点可能不足。当羟基的量过高时,除了存在于载体颗粒表面上的羟基以外,还可能由水分引起,这是不希望的。例如,表面上的羟基的量可以为0.1至10mmol/g,或0.5至5mmol/g。
在上述载体中,通过煅烧二氧化硅、特别是硅胶而制备的二氧化硅在丙烯的聚合过程中几乎没有催化剂从载体表面释放,因为过渡金属化合物化学键合并负载在二氧化硅载体上。结果,当通过淤浆聚合或气相聚合制备聚乙烯时,粘附在反应器壁表面上或彼此粘附的结垢现象可以最小化。
当过渡金属化合物以负载型催化剂的形式使用时,基于载体的重量、例如1g的二氧化硅,第一过渡金属化合物和第二过渡金属化合物的含量可以为10μmol以上、30μmol以上或60μmol以上,并且120μmol以下或100μmol以下。当负载在上述含量范围内时,负载的催化剂可以表现出适当的活性,这在保持催化活性方面是有利的。
具有上述构造的杂化负载型催化剂表现出优异的聚合活性,并且可以制备具有经优化以改善氯化聚乙烯或氯化混炼物的拉伸强度的结构的聚乙烯。
杂化负载型催化剂可以直接引入到聚合体系中,或者可以溶解或稀释在C5至C12脂肪烃溶剂(如戊烷、己烷、庚烷、壬烷、癸烷及其异构体)中、芳香烃溶剂(如甲苯和苯)中或氯取代的烃溶剂(如二氯甲烷和氯苯)中,然后引入聚合体系中。在此使用的溶剂优选在通过用少量的烷基铝处理除去少量的作为催化剂毒物的水或空气之后使用。
另外,就提高活性和稳定性而言,上述催化剂组合物可以进一步包含助催化剂。助催化剂可以包括由以下化学式9、化学式10和化学式11表示的一种或多种化合物:
[化学式9]
-[Al(Ra)-O]m-
在化学式9中,
Ra’可以彼此相同或不同,并且各自独立地为卤素、C1-20烃、或卤素取代的C1-20烃;并且
m为2以上的整数;
[化学式10]
J(Rb)3
在化学式10中,
Rb’可以彼此相同或不同,并且各自独立地为卤素、C1-20烃、或卤素取代的C1-20烃;并且
J是铝或硼;
[化学式11]
[E-H]+[ZQ4]-或[E]+[ZQ4]-
在化学式11中,
E为中性或阳离子路易斯碱;
H是氢原子;
Z是第13族的元素;并且
Q可以彼此相同或不同,并且各自独立地为其中一个或多个氢原子未被取代或被卤素、C1-20烃、烷氧基或苯氧基取代的C6-20芳基或C1-20烷基。
化学式9表示的化合物的实例可以包括C1-20烷基铝氧烷类化合物,如甲基铝氧烷、乙基铝氧烷、异丁基铝氧烷或丁基铝氧烷等,其中,可以使用其任何一种或两种以上的混合物。
另外,化学式10表示的化合物的实例可以包括三甲基铝、三乙基铝、三异丁基铝、三丙基铝、三丁基铝、二甲基氯铝、三异丙基铝、三仲丁基铝、三环戊基铝、三戊基铝、三异戊基铝、三己基铝、三辛基铝、乙基二甲基铝、甲基二乙基铝、三苯基铝、三对甲苯基铝、二甲基甲醇铝、二甲基乙醇铝、三甲基硼、三乙基硼、三异丁基硼、三丙基硼或三丁基硼等,更具体而言,其可以选自三甲基铝、三乙基铝和三异丁基铝。
另外,化学式11表示的化合物的实例可以包括三乙基铵四苯基硼、三丁基铵四苯基硼、三甲基铵四苯基硼、三丙基铵四苯基硼、三甲基铵四(对甲苯基)硼、三甲基铵四(邻,对-二甲基苯基)硼、三丁基铵四(对三氟甲基苯基)硼、三甲基铵四(对三氟甲基苯基)硼、三丁基铵四(五氟苯基)硼、N,N-二乙基苯胺四苯基硼、N,N-二乙基苯铵四(五氟苯基)硼、二乙基铵四(五氟苯基)硼、三苯基鏻四苯基硼、三甲基鏻四苯基硼、三乙基铵四苯基铝、三丁基铵四苯基铝、三甲基铵四苯基铝、三丙基铵四苯基铝、三甲基铵四(对甲苯基)铝、三丙基铵四(对甲苯基)铝、三乙基铵四(邻,对-二甲基苯基)铝、三丁基铵四(对三氟甲基苯基)铝、三甲基铵四(对三氟甲基苯基)铝、三丁基铵四(五氟苯基)铝、N,N-二乙基苯铵四苯基铝、N,N-二乙基苯铵四(五氟苯基)铝、二乙基铵四(五氟苯基)铝、三苯基鏻四苯基铝、三甲基鏻四苯基铝、三丙基铵四(对甲苯基)硼、三乙基铵四(邻,对-二甲基苯基)硼、三丁基铵四(对三氟甲基苯基)硼、三苯基碳鎓四(对三氟甲基苯基)硼或三苯基碳鎓四(五氟苯基)硼等,其中,可以使用其任何一种或两种以上的混合物。
在上述助催化剂中,考虑到助催化剂在与过渡金属化合物一起使用时可以表现出更优异的催化活性,所述助催化剂可以是由化学式9表示的化合物,更具体而言,C1-C20烷基铝氧烷类化合物,如甲基铝氧烷等。烷基铝氧烷类化合物用作存在于载体表面上的羟基的清除剂以改善催化活性,并将催化剂前体的卤素基团转变为甲基,从而在聚乙烯聚合过程中促进链增长。
基于载体重量,例如1克二氧化硅,助催化剂的负载量可以为0.1mmol以上,或者5mmol以上,或者8mmol以上,或者10mmol以上,并且25mmol以下,或者20mmol以下。当助催化剂的含量在上述含量范围内时,可以充分获得由于使用助催化剂而提高催化活性的效果和减少细粉产生的效果。
另外,催化剂组合物可以还包含抗静电剂。作为抗静电剂,可以使用乙氧基化烷基胺,具体而言,可以使用以下化学式12表示的化合物。当催化剂组合物包含抗静电剂时,在聚乙烯聚合过程中抑制了静电的产生,从而进一步改善了所制备的聚乙烯的物理性质。
[化学式12]
RN-(CH2CH2OH)2
在化学式12中,R可以是C8-30烷基,并且当R包括具有在上述范围内的碳数的烷基时,它可以表现出通过优异的抗静电作用而减少细粉而不会引起难闻的气味的效果。
更具体而言,乙氧基化烷基胺可以为具有化学式12的化合物,其中,R为C8-22直链烷基或C10-18直链烷基或C13-15直链烷基,并且这些化合物可以单独使用或以两种以上的混合物使用。其具体实例可以包括N,N-二(2-羟乙基)十三烷基胺或N,N-二(2-羟乙基)十五烷基胺等,并且可以使用市售的Atmer 163TM(可从CRODA获得)。
当进一步包含抗静电剂时,基于100重量份的载体,例如二氧化硅,其含量可以为0.5重量份以上、1重量份以上或2重量份以上,并且20重量份以下、10重量份以下或7重量份以下。
上述助催化剂和抗静电剂可以分别与上述杂化负载型催化剂组合使用,或者可以以负载在杂化负载型催化剂中的载体上的状态使用。当它们以负载在杂化负载型催化剂中的载体上的状态使用时,催化剂组合物可以通过包括以下步骤的制备方法来制备:将助催化剂化合物负载在载体上,并且将过渡金属化合物负载在载体上;将淤浆状态的抗静电剂引入负载有助催化剂和过渡金属化合物的载体中,然后进行热处理。就这一点而言,过渡金属化合物的负载可以通过负载第一过渡金属化合物然后负载第二过渡金属化合物来进行,反之亦然。具有根据这种负载顺序确定的结构的负载型催化剂在聚乙烯制备过程中可以表现出更高的催化活性和优异的工艺稳定性。
催化剂组合物可以根据聚合方法以淤浆的形式或在溶剂中的稀释液的形式使用,或者可以以与油脂的混合物混合的泥浆催化剂的形式使用。
当催化剂组合物以淤浆或在溶剂中的稀释液形式使用时,溶剂是适合于丙烯单体的聚合工艺的具有5至12个碳原子的脂肪烃溶剂,如戊烷、己烷、庚烷、壬烷、癸烷及其异构体,以及如甲苯和苯等芳香烃溶剂,或如二氯甲烷和氯苯等氯原子取代的烃溶剂等,可以使用它们中的任何一种或两种以上的混合物。在这种情况下,催化剂组合物可以进一步包含上述溶剂,并且可以在使用前通过用少量的烷基铝处理溶剂来除去可能作为催化剂毒物的少量水或空气。
另一方面,用于制备聚乙烯的聚合反应可以使用连续淤浆聚合反应器、环流淤浆反应器、气相反应器或溶液反应器进行。但是,根据本实施方式的方法,为了更有效地控制分子量分布,淤浆聚合或气相聚合更合适。
特别是,聚合反应可以通过在烃类溶剂(例如,诸如己烷、丁烷或戊烷等脂肪烃类溶剂)中的淤浆相聚合来进行。由于本公开的第一过渡金属化合物和第二过渡金属化合物在脂肪烃类溶剂中具有优异的溶解性,因此它们被稳定地溶解并供应至反应体系,于是可以有效地进行聚合反应。
此外,根据本发明的一个实施方式的制备聚乙烯的方法可以在单CSTR反应器中进行。
在聚合反应器中,聚合可以例如在如氮气等惰性气体的存在下进行。惰性气体可以通过抑制在聚合反应开始时茂金属催化剂的快速反应来延长催化剂中包含的茂金属化合物的反应活性。
另外,聚合反应在引入氢气的同时进行。
在聚合反应期间引入的氢气活化茂金属催化剂的惰性位点并引起链传递反应,从而控制分子量和分子量分布。在根据本公开的聚乙烯的制备中,基于100重量份的乙烯单体,可以以0.001重量份以上或者0.005重量份以上并且15重量份以下、5重量份以下、1重量份以下或0.015重量份以下的量引入氢气。当在如上所述的杂化负载型催化剂的存在下在上述范围内引入氢气时,可以实现本公开的聚乙烯的优化的分子结构和物理性质。
另外,聚合反应过程中的温度可以为70℃至100℃,或80℃至90℃。当聚合温度太低时,就聚合速率和生产率而言是不优选的。相反,当聚合温度高于必要温度时,可能引起反应器中的结垢。
此外,聚合压力可以为6.8至8.7kg/cm2、7.0至8.5kg/cm2或7.0至7.5kg/cm2,以确保最佳的生产率。聚合压力可以为约6.8kg/cm2以上以防止由于高分子量的过量产生而引起的粘连并优化生产率,并且可以为约8.7kg/cm2以下以防止乙烯源在高压聚合条件下的单元降解。
另外,有机溶剂可以进一步用作聚合反应中的反应介质或稀释剂。考虑到乙烯单体的含量,可以以足以适当地进行淤浆相聚合等的量使用这种有机溶剂。
另外,在聚合反应过程中可以可选地添加三烷基铝,如三乙基铝。
当聚合反应器中存在水分或杂质时,一部分催化剂分解。三烷基铝用作清除剂,以预先捕获反应器中的水分或杂质或单体中包含的水分。因此,可以使制备中使用的催化剂的活性最大化,结果,可以更有效地制备具有优异的物理性质、特别是窄分子量分布的均聚乙烯。具体而言,在三烷基铝中,烷基如上所定义,具体地是C1-20烷基,并且更具体地是C1-6直链或支化烷基,如甲基、乙基或异丁基等。
基于1kg的乙烯单体,三烷基铝(基于1M)的添加量可以为10cc以上且50cc以下,或30cc以下。当在该含量范围内的三烷基铝的存在下进行聚合反应时,可以更容易地制备具有优异的强度特性的均聚乙烯。
通过上述制备方法制备具有优化的分子结构、特别是具有最小化的低分子量含量和较高的高分子量含量的分子结构的聚乙烯。聚乙烯可以提高氯化聚乙烯的制备中的交联度,结果可以大大改善拉伸强度。
聚乙烯可以是不包含另外的共聚物的乙烯的均聚物。例如,当聚乙烯为乙烯均聚物,优选高密度聚乙烯(HDPE)时,可以更适当地满足上述物理性质。高密度聚乙烯具有优异的软化点、硬度、强度和电绝缘性,因此可以用于各种容器、包装膜、纤维和管等。
氯化聚乙烯的制备
根据本公开的另一个实施方式,提供了一种通过用氯对上述聚乙烯进行氯化而制备的氯化聚乙烯及其制备方法。
具体而言,氯化聚乙烯的制备方法包括以下步骤:在引入氢气的同时,在包含杂化负载型催化剂的催化剂组合物的存在下通过使乙烯类单体聚合来制备聚乙烯,在该催化剂中,至少一种由化学式1表示的第一过渡金属化合物和至少一种由化学式2表示的第二过渡金属化合物负载在载体上;和通过用氯处理聚乙烯将它氯化。
如上所述,在使乙烯类单体聚合以制备聚乙烯的步骤中的反应条件、第一和第二过渡金属化合物、载体、助催化剂和包括它们的杂化负载催化剂的具体实例如上所述。
另外,聚乙烯的氯化可以通过使聚乙烯与氯以悬浮状态反应的水相法,或使聚乙烯在HCl水溶液中与氯反应的酸相法来进行。例如,水相法是使用乳化剂和分散剂以及水来氯化的方法,酸相法是使用乳化剂和分散剂将如盐酸(HCl)溶液等酸性水溶液氯化的方法。
更具体而言,在根据本公开的氯化聚乙烯的制备方法中,可以通过将制备的聚乙烯与水、乳化剂和分散剂一起分散,然后加入催化剂和氯进行反应来进行氯化反应。
作为乳化剂,可以使用聚醚或聚氧化亚烷基。分散剂可以是聚合物盐或有机酸聚合物盐。有机酸可以是甲基丙烯酸或丙烯酸。
催化剂是例如氯化催化剂,并且其另一个实例是过氧化物或有机过氧化物。氯可以单独使用或可以与惰性气体混合然后使用。
氯化反应可以在60℃至150℃、90至140℃或120至140℃的温度下进行。
另外,氯化反应可以进行约10分钟至10小时、1小时至6小时或2小时至4小时。
例如,氯化反应可以通过将100重量份的聚乙烯、0.01至1.0重量份或0.05至0.5重量份的乳化剂和0.1至10重量份或0.5至5.0重量份的分散剂分散在水中,然后加入0.01至1.0重量份或0.05至0.5重量份的催化剂和80至200重量份或100至150重量份的氯进行反应来进行。
通过上述反应或氯化过程制备的氯化聚乙烯可以进一步进行中和过程、洗涤过程和干燥过程,由此可以以粉末形式获得。
中和过程可以是例如在70至90℃或75至80℃下用碱溶液将已经进行氯化处理的反应物中和4至8小时的过程。
根据该实施方式的制备方法获得的氯化聚乙烯具有高交联度和适当水平的门尼粘度,因此可以表现出优异的拉伸强度。
具体而言,氯化聚乙烯在121℃的温度下测得的门尼粘度(MV)为70至80,更特别地为70以上且80以下,或76以下。
氯化聚乙烯的门尼粘度可以使用门尼粘度计进行测量,具体而言,可以在121℃下预热1分钟后使转子旋转4分钟来测量。其更具体方法将在后文描述的实验例中详细说明。
另外,氯化聚乙烯可以是例如无规氯化聚乙烯。
上述氯化聚乙烯具有优异的耐化学性、耐候性、阻燃性、加工性和冲击强度增强效果,于是可用于电线或电缆。
混炼物
根据本公开的另一个实施方式,提供了一种包含通过上述方法制备的氯化聚乙烯的具有优异的拉伸强度性能的混炼物。
该混炼物具体地可以是包含交联氯化聚乙烯的CPE混炼物,该交联氯化聚乙烯通过在过氧化物类交联剂的存在下使氯化聚乙烯交联而制备。
交联反应可以在140至230℃下进行,并且可以使用如过氧化二异丙苯等过氧化物类交联剂作为交联剂。另外,在交联反应过程中可以可选地进一步添加抗氧化剂。
例如,基于100重量份的氯化聚乙烯,氯化聚乙烯(CPE)混炼物可包含100重量份至280重量份的无机添加剂(如滑石和炭黑)、20重量份至50重量份的增塑剂和1重量份至20重量份的交联剂。
包含氯化聚乙烯的化合物可以表现出优异的拉伸强度,具体而言,根据ASTMD412在500mm/min下测量的拉伸强度为12以上,或12至14。
另外,本领域的常规方法可以应用于由根据本公开的氯化聚乙烯制备成型制品的方法。例如,可以将氯化聚乙烯辊轧混炼并挤出以制造成型产品。
有益效果
本公开的聚乙烯具有拥有低含量的低分子量和高含量的高分子量的分子结构,因此在制备氯化聚乙烯混炼物时可以在保持优异的加工性和门尼粘度特性的同时提高拉伸强度。
具体实施方式
将通过以下实施例更详细地描述本发明。然而,这些实施例仅出于说明目的,并且本发明并不意图受这些实施例的限制。
<第一过渡金属化合物的制备>
合成例1:[叔丁基-O-(CH2)6-C5H4]2ZrCl2的制备
叔丁基-O-(CH2)6-Cl由Tetrahedron Lett.2951(1988)中示出的方法使用6-氯己醇制备,并与NaCp反应,得到叔丁基-O-(CH2)6-C5H5(收率60%,沸点80℃/0.1mmHg)。
另外,在-78℃下将叔丁基-O-(CH2)6-C5H5溶解在THF中,并向其中缓慢加入正丁基锂(n-BuLi)。之后,将其加热至室温并反应8小时。在-78℃下,将如上所述合成的锂盐溶液缓慢添加到ZrCl4(THF)2(1.70g,4.50mmol)/THF(30mL)的悬浮液中,并在室温下进一步反应约6小时。
真空干燥掉所有挥发物,并通过加入己烷溶剂过滤所得油状液体材料。将过滤的溶液在真空中干燥,并加入己烷以在低温(-20℃)下获得沉淀。将获得的沉淀在低温下过滤以获得白色固体形式的[叔丁基-O-(CH2)6-C5H4]2ZrCl2(收率92%)。
1H NMR(300MHz,CDCl3):6.28(t,J=2.6Hz,2H),6.19(t,J=2.6Hz,2H),3.31(t,6.6Hz,2H),2.62(t,J=8Hz),1.7-1.3(m,8H),1.17(s,9H)。
13CNMR(CDCl3):135.09,116.66,112.28,72.42,61.52,30.66,30.61,30.14,29.18,27.58,26.00。
<第二过渡金属化合物的制备>
合成例2
步骤1:配体化合物的制备
将4-(3,5-二叔丁基苯基)-2-异丙基-1H-茚(1.39g,4mmol)作为Cp单元添加到50ml Schlenk烧瓶中,并向其中添加THF(13ml),然后冷却至-20℃以下。将冷却的混合溶液搅拌5分钟后,加入NBL(1.7ml,2.5M己烷溶液),反应过夜以制备锂化Cp。当加入NBL时,混合溶液变成红褐色。
将二氯(叔丁氧基)己基)甲基硅烷(1.14g)添加到另一个100mL Schlenk烧瓶中,并向其中添加THF(13ml)。将Schlenk烧瓶冷却至-20℃以下后,滴加上述制备的锂化Cp进行反应。当反应完成时,通过在减压下真空蒸馏除去所得反应物中的溶剂,并用己烷(Hex)滤出所得盐。在将t-BuNH2(1.7ml)添加到所得反应物中以进行反应后,使用己烷过滤所得沉淀,得到1-(6-(叔丁氧基)己基)-N-(叔丁基)-1-(4-(3,5-二叔丁基苯基)-2-异丙基-1H-茚-1-基)-1-甲基硅烷基胺的配体化合物(黄色油,2.41g,收率97%(以摩尔计))。
NMR(400MHz,C6D6),7.70-7.68(m,1H),7.60-7.47(m,4H),7.34-7.19(m,2H),7.07(s,0.5H),6.89(s,0.5H),3.36-3.21(m,4H),3.12(s,1H),2.52-2.44(m,0.5H),2.00-1.92(m,0.5H),1.72-1.39(m,8H),1.39(s,9H),1.31(s,9H),1.23(s,3H)1.19(s,3H),1.13(s,9H)0.98(s,9H)0.32(s,1H),0.25(s,0.5H),0.2 0(s,1H),0.12(s,0.5H)
步骤2:过渡金属化合物的制备
将在步骤1中制备的1-(6-(叔丁氧基)己基)-N-(叔丁基)-1-(4-(3,5-二叔丁基苯基)-2-异丙基-1H-茚-1-基)-1-甲基硅烷基胺的配体化合物(2.4g,3.9mmol)加入100ml的Schlenk烧瓶中,并向其中加入甲苯(13ml),然后冷却至-20℃以下。在通过搅拌充分冷却5分钟后,将NBL(5.1ml,2.5M己烷溶液)添加到所得混合溶液中以进行锂化。确认锂化后混合溶液的颜色变为褐色。当锂化完成后,将所得反应溶液冷却至0℃。向其中加入NMB(13ml,3M乙醚溶液)后,立即将温度降至-20℃,并添加TiCl4(3.9ml,1M甲苯)。添加时产生烟,反应溶液立即变成褐色。添加后,进行o/n搅拌,然后通过过滤器除去盐,得到过渡金属化合物(2a)(褐色油,2.16g,收率80%(以摩尔计))。
Figure GDA0003096738310000251
NMR(400MHz,C6D6),7.79-7.76(m,2H),7.64-7.47(m,5H),3.35-3.21(m,2H),2.76-2.49(s,2H),1.99-1.91(m,4H),1.70-1.60(m,4H),1.53(s,9H),1.51-1.44(m,4H),1.36(s,9H),1.30(s,9H),1.20(s,6H),1.13(s,9H),0.59(s,3H),0.12(s,3H)
<杂化负载型催化剂的制备>
合成例3
(1)载体的准备
将二氧化硅(SYLOPOL 948TM,Grace Davison制造)在真空下在600℃的温度下脱水并干燥12小时。
(2)杂化负载型催化剂的制备
将在步骤(1)中干燥的10g二氧化硅引入玻璃反应器中,并另外添加100mL的甲苯并搅拌。在二氧化硅充分分散之后,向其中添加60.6mL的10重量%的甲基铝氧烷(MAO)/甲苯溶液。此后,将温度升至80℃,并在以200rpm搅拌的同时使混合物缓慢反应16小时。再次降低温度至40℃后,将反应溶液用足量的甲苯洗涤以除去未反应的铝基化合物,并在减压下除去剩余的甲苯。再次向其中加入100mL的甲苯,将0.24mmol的溶于甲苯的在合成例1中制备的第一过渡金属化合物一起添加至其中并且反应1小时。反应结束后,加入0.12mmol的溶于甲苯的合成例2中制备的第二过渡金属化合物,并在搅拌下进一步反应2小时。反应完成后,停止搅拌,分离并除去甲苯层。然后,在40℃减压下除去剩余的甲苯,以制备杂化负载型催化剂。
合成例4
除了将第二过渡金属化合物的量变为0.06mmol(第一过渡金属化合物:第二过渡金属化合物的摩尔比=4:1)以外,按照与合成例3相同的方式制备杂化负载型催化剂。
<聚乙烯的制备>
实施例1
使用合成例3中制备的杂化负载型催化剂,在以下条件下进行乙烯均聚反应。
首先,将30kg/hr的己烷、10kg/hr的乙烯、1g/hr的氢气和130cc/hr的三乙基铝(TEAL)引入0.2m3单CSTR反应器中,然后将合成例3中制备的杂化负载型催化剂以0.2kg/hr注入其中。此时,将反应器保持在82℃的温度和7.0kg/cm2至7.5kg/cm2的压力下,并且进行聚合约4小时。之后,通过溶剂去除设备和干燥器将聚合产物制成最终的聚乙烯。
实施例2
除了以1.5g/hr引入氢气以外,按照与实施例1相同的方式制备聚乙烯。
实施例3
除了以0.5g/hr引入氢气以外,按照与实施例1相同的方式制备聚乙烯。
比较例1
使用利用齐格勒-纳塔催化剂制备的高密度聚乙烯(CE2080TM,LG化学制造)。
比较例2
使用利用茂金属催化剂制备的高密度聚乙烯(SC200TM,LG化学制造)。
比较例3
使用利用茂金属催化剂制备的高密度聚乙烯(SC100ETM,LG化学制造)。
比较例4
使用利用齐格勒-纳塔催化剂制备的高密度聚乙烯(CE6040XTM,LG化学制造)。
比较例5
除了在聚合过程中不引入氢气以外,按照与实施例1相同的方式制备聚乙烯。
比较例6
除了使用合成例4中制备的杂化负载型催化剂以外,按照与实施例1相同的方式制备聚乙烯。
比较例7
使用市售的聚乙烯(5000CpTM,Lotte Chemical制造)。
实验例1
按下述方式对实施例和比较例中制备的聚乙烯进行GPC分析,并计算各分子量分布的含量,即分数。结果示于下表1中。
分数(%):进行GPC分析,并将该分数计算为相对于所得分子量分布曲线中的总面积的log Mw部分所占的面积(%)。分数的总和是100±1,可能不正好是100。
GPC分析具体在以下条件下进行。
使用Waters PL-GPC220作为凝胶渗透色谱(GPC)仪器,并且使用PolymerLaboratories PLgel MIX-B 300mm长柱。评价温度为160℃,并且1,2,4-三氯苯以1mL/min的流速用于溶剂。使用GPC分析仪(PL-GP220)将每种聚乙烯样品溶解在含有0.0125%的BHT的1,2,4-三氯苯中10小时进行预处理,并且按200μL的量提供浓度为10mg/10mL的样品。使用利用聚苯乙烯标准物形成的校准曲线来获得Mw和Mn。使用了分子量为2000g/mol、10000g/mol、30000g/mol、70000g/mol、200000g/mol、700000g/mol、2000000g/mol、4000000g/mol和10000000g/mol的9种聚苯乙烯标准品。
【表1】
Figure GDA0003096738310000281
实验例2
按照下述方式测量实施例和比较例中制备的聚乙烯的物理性质,结果示于表2。
(1)重均分子量(Mw,g/mol)和分子量分布(PDI,多分散指数):按照与实验例1相同的方式进行GPC分析,并且通过测量重均分子量(Mw)和数均分子量(Mn),然后获得Mw/Mn之比来计算分子量分布(PDI)。
(2)MI5.0和MFRR21.6/5:根据ASTM D1238(条件E,190℃,5.0kg载荷)测量实施例和比较例中制备的聚乙烯的熔体指数(MI5.0)。另外,通过将MFR21.6除以MFR5来计算熔体流动速率比(MFRR21.6/5),MFR21.6根据ASTM D 1238在190℃在21.6kg的载荷下测得,MFR5根据ASTM D1238在190℃在5kg的载荷下测得。
(3)密度(g/cm3):根据ASTM D-1505测量密度(g/cm3)。
(4)MDR扭矩(MH-ML):为了评估聚乙烯的交联度,用Alpha TechnologiesProduction MDR(动模流变仪)测量每个聚乙烯样品的MDR扭矩。
具体而言,在80℃将100g实施例和比较例中制备的每种聚乙烯样品、0.4g酚类抗氧化剂(AO)和1.2g交联剂(DCP,过氧化二异丙苯)混合后,在140℃下制备样品片10分钟。然后,用MDR(动模流变仪)在180℃下测量样品片的MH值和ML值10分钟。通过从MH值减去ML值来计算MDR扭矩(MH-ML)。在此,MH是在完全固化时测得的最大硫化扭矩,而ML是存储的最小硫化扭矩。
(5)缠结分子量(Me):由利用旋转流变仪测量的储能模量和损耗模量计算出缠结分子量(Me)。
具体而言,用旋转流变仪测量实施例和比较例的每个聚乙烯样品的储能模量和损耗模量。然后,由它们获得平台模量(GN 0),并根据下式1计算缠结分子量。
[式1]
Me=(ρRT)/GN 0
在式1中,
ρ=0.8×(按照ASTM D-1505测量的聚乙烯的密度(kg/m3),
R为聚乙烯的气体常数(8.314Pa·m3/mol·K),
T是测量温度的绝对温度(K),并且
GN 0是聚乙烯的平台模量,其是在储能模量大于损耗模量的区域中损耗模量具有最小值时的储能模量,其中,储能模量和损耗模量使用旋转流变仪在190℃和0.5%应变的条件下在改变角频率到0.05至500rad/s的情况下测量。
【表2】
Figure GDA0003096738310000291
实验例3
使用在以上实施例和比较例之一中制备的聚乙烯来制备氯化聚乙烯,并且通过以下方法评价所制备的氯化聚乙烯的物理性质。结果示于图3。
(1)氯化聚乙烯的制备
将5,000L的水和实施例和比较例之一中制备的550kg的聚乙烯添加到反应器中,随后是作为分散剂的聚甲基丙烯酸钠、作为乳化剂的氧化丙烯和氧化乙烯共聚醚以及作为催化剂的过氧化苯甲酰。然后,通过在132℃的最终温度下注入气态氯来进行氯化3小时。将氯化反应物用NaOH或Na2CO3中和4小时,再用流水洗涤4小时,最后在120℃下干燥,制得粉末形式的氯化聚乙烯。
(2)门尼粘度(MV):用CPE样品将转子包裹在门尼粘度计中,然后关上模具。预热至121℃1分钟后,旋转转子4分钟以测量MV(门尼粘度,121℃,ML1+4)。
【表3】
MV
实施例1 73
实施例2 71
实施例3 76
比较例1 72
比较例2 72
比较例3 85
比较例4 87
比较例5 86
比较例6 64
比较例7 83
实验例4
使用在实验例3中的以上实施例和比较例之一中制备的聚乙烯制备CPE混炼物,并评价物理性质。
(1)CPE混炼物的制备
将使用实验例3中的实施例和比较例之一中制备的聚乙烯制备的氯化聚乙烯40重量%、增塑剂15重量%、交联剂2重量%和余量的滑石和炭黑无机添加剂混炼并处理以制备CPE混炼样品。
(2)CPE混炼物的MV(门尼粘度):用CPE混炼物将转子包裹在门尼粘度计中,然后关上模具。预热至100℃1分钟后,旋转转子4分钟以测量MV(门尼粘度,100℃,ML1+4)。结果示于表4。
(3)CPE混炼物的拉伸强度(MPa):在160℃下将上述制备的CPE混炼物样品交联10分钟后,根据ASTM D-412在500mm/min的条件下测量CPE混炼物的拉伸强度(MPa)。结果示于下表4中。
【表4】
Figure GDA0003096738310000311
参见实验结果,与比较例相比,使用实施例1至3的聚乙烯制备的CPE混炼物具有改善的拉伸强度,同时保持优异的门尼粘度特性。

Claims (12)

1.一种聚乙烯,所述聚乙烯在根据ASTM D-1505测量时的密度为0.945g/cm3以上,
其中,相对于使用凝胶渗透色谱法以重均分子量的对数值(log Mw)为x轴并且以相对于所述对数值的分子量分布为y轴绘制的分子量分布曲线的总面积,
代表log Mw>6.0的高分子量含量的面积分数为4%至12%,
代表4.5<log Mw<5.0的中等分子量含量的面积分数为35%至50%,且
代表log Mw<4.0的低分子量含量的面积分数为10%以下;并且
下式1的缠结分子量(Me)为27,000g/mol至52,000g/mol:
[式1]
Me=(ρRT)/GN 0
在式1中,
ρ=0.8×(按照ASTM D-1505测量的以kg/m3计的聚乙烯的密度)),
R为聚乙烯的气体常数,为8.314Pa·m3/mol·K,
T是测量温度的绝对温度,并且
GN 0是聚乙烯的平台模量,其是在储能模量大于损耗模量的区域中损耗模量具有最小值时的储能模量,其中,储能模量和损耗模量使用旋转流变仪在190℃和0.5%应变的条件下在改变角频率到0.05rad/s至500rad/s的情况下测量,
其中,所述聚乙烯通过包括在杂化负载型催化剂的存在下聚合乙烯单体的步骤的方法进行制备,所述杂化负载型催化剂包含以下化学式1的第一过渡金属化合物和以下化学式2的第二过渡金属化合物:
[化学式1]
(Cp1R11)m(Cp2R12)M1(Z1)3-m
在化学式1中,
M1是第4族的过渡金属;
Cp1和Cp2彼此相同或不同,并且各自独立地为选自由环戊二烯基、茚基、4,5,6,7-四氢-1-茚基和芴基组成的组中的任一种;
R11和R12彼此相同或不同,各自独立地为氢、C1-20烷基、C1-20烷氧基、C2-20烷氧基烷基、C6-20芳基、C6-20芳氧基、C2-20烯基、C7-40烷基芳基、C7-40芳基烷基、C8-40芳基烯基、C2-20炔基、或包含一个或多个选自由N、O和S组成的组中的杂原子的C2-20杂芳基;
Z1为卤素、C1-20烷基、C2-20烯基、C7-40烷基芳基、C7-40芳基烷基、C6-20芳基、取代或未取代的C1-20亚烷基、取代或未取代的氨基、C2-20烷基烷氧基或C7-40芳基烷氧基;并且
m为1或0;
[化学式2]
Figure FDA0004054351510000021
在化学式2中,
A是碳或硅,
M2是第4族的过渡金属,
R21为取代有C1-20烷基的C6-20芳基,
R22为C3-20支化烷基,
R23至R25各自独立地为C1-20烷基,
Z21和Z22各自独立地为卤素或C1-10烷基,并且
n是1至10的整数。
2.如权利要求1所述的聚乙烯,其中,所述聚乙烯在根据ASTM D-1505测量时的密度为0.945g/cm3至0.955g/cm3
3.如权利要求1所述的聚乙烯,其中,在使用凝胶渗透色谱法绘制的分子量分布曲线中,相对于分子量分布曲线的总面积,代表log Mw>6.5的超高分子量含量的面积分数为0.1%至3%。
4.如权利要求1所述的聚乙烯,其中,在分子量分布曲线中,相对于分子量分布曲线的总面积,代表log Mw<3.5的超低分子量含量的面积分数为2%以下,并且代表3.5≤log Mw<4.0的低分子量含量的面积分数为7%以下。
5.如权利要求1所述的聚乙烯,其中,根据ASTM D 1238在190℃的温度在5kg的载荷下测量时,所述聚乙烯的熔体指数为0.5g/10min至3g/10min。
6.如权利要求1所述的聚乙烯,其中,所述聚乙烯的通过将根据ASTM D 1238在190℃在21.6kg的载荷下测得的MFR21.6除以根据ASTM D 1238在190℃在5.0kg的载荷下测得的MFR5.0获得的熔体流动速率比为10至20。
7.如权利要求1所述的聚乙烯,其中,所述聚乙烯的重均分子量为150,000g/mol至300,000g/mol。
8.如权利要求1所述的聚乙烯,其中,所述聚乙烯的分子量分布为5至15。
9.如权利要求1所述的聚乙烯,其中,使用动模流变仪在180℃下测量10分钟时,所述聚乙烯的MDR扭矩为7Nm至12Nm。
10.如权利要求1所述的聚乙烯,其中,所述聚乙烯是乙烯均聚物。
11.一种氯化聚乙烯,其通过使权利要求1至10中任一项所述的聚乙烯与氯反应而制得,并且在121℃下测量时的门尼粘度为70至80。
12.一种氯化聚乙烯混炼物,其包含权利要求11所述的氯化聚乙烯。
CN202080006688.8A 2019-09-27 2020-09-25 聚乙烯及其氯化聚乙烯 Active CN113166316B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
KR20190120102 2019-09-27
KR20190120103 2019-09-27
KR10-2019-0120103 2019-09-27
KR10-2019-0120102 2019-09-27
KR1020200123878A KR102589954B1 (ko) 2019-09-27 2020-09-24 폴리에틸렌 및 이의 염소화 폴리에틸렌
KR10-2020-0123878 2020-09-24
PCT/KR2020/013051 WO2021060907A1 (ko) 2019-09-27 2020-09-25 폴리에틸렌 및 이의 염소화 폴리에틸렌

Publications (2)

Publication Number Publication Date
CN113166316A CN113166316A (zh) 2021-07-23
CN113166316B true CN113166316B (zh) 2023-05-02

Family

ID=76460405

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202080006688.8A Active CN113166316B (zh) 2019-09-27 2020-09-25 聚乙烯及其氯化聚乙烯
CN202080006137.1A Active CN113039217B (zh) 2019-09-27 2020-09-25 混杂负载型催化剂和使用该催化剂制备聚烯烃的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202080006137.1A Active CN113039217B (zh) 2019-09-27 2020-09-25 混杂负载型催化剂和使用该催化剂制备聚烯烃的方法

Country Status (4)

Country Link
US (3) US12006378B2 (zh)
EP (2) EP3865522A4 (zh)
JP (1) JP7118500B2 (zh)
CN (2) CN113166316B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12122903B2 (en) 2019-02-20 2024-10-22 Lg Chem, Ltd. Crosslinked polyethylene pipe having excellent physical properties
EP3909988B1 (en) * 2019-02-20 2025-12-03 LG Chem, Ltd. Polyethylene having high degree of crosslinking and cross-linked polyethylene pipe comprising same
CN113166316B (zh) * 2019-09-27 2023-05-02 株式会社Lg化学 聚乙烯及其氯化聚乙烯

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032562A (en) 1989-12-27 1991-07-16 Mobil Oil Corporation Catalyst composition and process for polymerizing polymers having multimodal molecular weight distribution
US5525678A (en) 1994-09-22 1996-06-11 Mobil Oil Corporation Process for controlling the MWD of a broad/bimodal resin produced in a single reactor
US5693719A (en) 1994-12-16 1997-12-02 Mitsubishi Chemical Corporation Ethylene polymers
US5914289A (en) 1996-02-19 1999-06-22 Fina Research, S.A. Supported metallocene-alumoxane catalysts for the preparation of polyethylene having a broad monomodal molecular weight distribution
PL331526A1 (en) 1996-08-08 1999-07-19 Dow Chemical Co Metal complexes containing cyclopentadienyl substututed with a heteroatom at position 2 and method of polymerising olefins
US6245868B1 (en) 1998-05-29 2001-06-12 Univation Technologies Catalyst delivery method, a catalyst feeder and their use in a polymerization process
WO2000014129A1 (en) * 1998-09-04 2000-03-16 The Dow Chemical Company Long chain branched ethylene homopolymer made by a slurry process and blends thereof
ATE366757T1 (de) 1999-07-15 2007-08-15 Dow Global Technologies Inc Polyethylen mit hoher dichte und mischungen davon
ES2307956T3 (es) 2002-03-14 2008-12-01 Dow Global Technologies Inc. Complejos metalicos con indenilo sustituido y procedimientos de polimerizacion.
JP4490115B2 (ja) 2002-04-23 2010-06-23 ダウ グローバル テクノロジーズ インコーポレイティド アルカリール置換4族金属錯体、触媒、及びオレフィン重合方法
US7427506B2 (en) * 2004-04-13 2008-09-23 Exxonmobil Chemical Patents Inc. High throughput property testing of olefin copolymers using rheological determinations
ES2487517T3 (es) 2009-05-26 2014-08-21 Borealis Ag Composición polimérica para artículos reticulados
PL2354184T3 (pl) 2010-01-29 2013-01-31 Borealis Ag Tłoczywo polietylenowe o ulepszonym stosunku odporność na pękanie /sztywność i ulepszone udarności
WO2013099927A1 (ja) 2011-12-28 2013-07-04 三井化学株式会社 エチレン系重合体組成物、及びこれから得られる成形体
JP5907079B2 (ja) 2013-01-17 2016-04-20 日立金属株式会社 シラングラフト塩素化ポリエチレンを用いた電線及びケーブル
JP6000439B2 (ja) 2013-02-20 2016-09-28 株式会社プライムポリマー 二軸延伸フィルムおよびエチレン系重合体組成物
KR101603407B1 (ko) 2013-04-19 2016-03-21 주식회사 엘지화학 저입도 폴리에틸렌, 이의 염소화 폴리에틸렌 및 이를 포함하는 pvc 조성물
KR101549209B1 (ko) 2013-11-18 2015-09-02 주식회사 엘지화학 가공성이 우수한 올레핀계 중합체
EP2878623B1 (en) 2013-11-28 2018-07-11 Abu Dhabi Polymers Company Limited (Borouge) Multimodal polymer
KR20150063828A (ko) 2013-12-02 2015-06-10 삼성전자주식회사 터치 스크린의 데이터 처리 방법, 저장 매체 및 전자 장치
KR101774615B1 (ko) 2013-12-02 2017-09-04 주식회사 엘지화학 인덴기를 갖는 메탈로센형 촉매 및 이를 이용한 올레핀 중합체의 제조방법
KR101783897B1 (ko) 2014-12-10 2017-10-10 주식회사 엘지화학 섬유 제조용 폴리올레핀 펠렛 및 이를 포함하는 섬유
KR102028736B1 (ko) 2015-03-19 2019-10-04 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
KR20160121940A (ko) 2015-04-13 2016-10-21 주식회사 엘지화학 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
WO2016204457A1 (ko) 2015-06-15 2016-12-22 주식회사 엘지화학 폴리올레핀의 제조 방법
CA2914166C (en) 2015-12-08 2022-07-26 Nova Chemicals Corporation High density rotomolding resin
KR102204960B1 (ko) 2015-12-24 2021-01-19 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법, 상기 제조방법으로 제조된 혼성 담지 메탈로센 촉매, 및 이를 이용하는 폴리올레핀의 제조방법
KR102107084B1 (ko) * 2016-03-11 2020-05-06 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법, 상기 제조방법으로 제조된 혼성 담지 메탈로센 촉매, 및 이를 이용하는 폴리올레핀의 제조방법
KR101725004B1 (ko) 2016-04-27 2017-04-18 한화케미칼 주식회사 혼성 담지 메탈로센 촉매 및 이를 이용한 가공성이 우수한 폴리올레핀 수지
EP3538570B1 (en) 2016-11-08 2022-05-18 Univation Technologies, LLC Polyethylene composition
CA3043011A1 (en) 2016-11-08 2018-05-17 Univation Technologies, Llc Bimodal linear low density polyethylene composition
BR112019008131B1 (pt) 2016-11-08 2022-12-20 Univation Technologies, Llc Polietileno bimodal
KR102097132B1 (ko) 2016-11-24 2020-04-03 주식회사 엘지화학 폴리에틸렌 수지의 물성 평가 방법
US20180258559A1 (en) * 2017-03-10 2018-09-13 University Of Tennessee Research Foundation Materials for improved polymeric 3d printing
WO2019125065A1 (ko) 2017-12-21 2019-06-27 주식회사 엘지화학 가공성이 우수한 에틸렌/1-부텐 공중합체
KR102411597B1 (ko) 2018-01-15 2022-06-22 주식회사 엘지화학 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR102779863B1 (ko) 2019-08-14 2025-03-10 주식회사 엘지화학 신규 전이금속 화합물 및 이를 이용한 폴리에틸렌의 제조방법
CN113166316B (zh) 2019-09-27 2023-05-02 株式会社Lg化学 聚乙烯及其氯化聚乙烯

Also Published As

Publication number Publication date
CN113039217A (zh) 2021-06-25
US20220017663A1 (en) 2022-01-20
US20240294680A1 (en) 2024-09-05
US12006378B2 (en) 2024-06-11
JP2022508115A (ja) 2022-01-19
CN113166316A (zh) 2021-07-23
EP3865517A1 (en) 2021-08-18
EP3865522A1 (en) 2021-08-18
CN113039217B (zh) 2023-05-12
US11993665B2 (en) 2024-05-28
EP3865522A4 (en) 2022-05-18
JP7118500B2 (ja) 2022-08-16
US20220017657A1 (en) 2022-01-20
EP3865517A4 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
CN106661160B (zh) 具有优异加工性的乙烯/α-烯烃共聚物
CN112088174B (zh) 聚乙烯及其氯化聚乙烯
CN112088176B (zh) 聚乙烯及其氯化聚乙烯
CN113366033B (zh) 具有高交联度的聚乙烯和包含该聚乙烯的交联聚乙烯管
CN112020522B (zh) 混杂负载型茂金属催化剂及使用其制备烯烃聚合物的方法
CN113166322B (zh) 具有优异的长期物理性能和加工性的乙烯/1-己烯共聚物
EP3173429B1 (en) Metallocene compound, metallocene supported catalyst, and method for preparing polyolefin using same
US20240294680A1 (en) Polyethylene and Its Chlorinated Polyethylene
KR102648795B1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
CN112292407B (zh) 催化剂组合物和使用该催化剂组合物制备聚烯烃的方法
KR102589954B1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
JP2020505480A (ja) オレフィン重合体、その製造方法、そしてこれを利用したフィルム
CN111491952B (zh) 使用负载型混杂茂金属催化剂制备聚烯烃的方法
KR102775684B1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
CN114302899B (zh) 聚乙烯及其氯化聚乙烯
KR102568406B1 (ko) 혼성 담지 촉매 및 이용한 폴리올레핀의 제조 방법
US20220340696A1 (en) Polyethylene and chlorinated polyethylene thereof
CN116648466A (zh) 聚乙烯及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant