CN113101946A - 一种NiMoO4基Z-型异质结光催化剂及制备与应用 - Google Patents

一种NiMoO4基Z-型异质结光催化剂及制备与应用 Download PDF

Info

Publication number
CN113101946A
CN113101946A CN202110259157.6A CN202110259157A CN113101946A CN 113101946 A CN113101946 A CN 113101946A CN 202110259157 A CN202110259157 A CN 202110259157A CN 113101946 A CN113101946 A CN 113101946A
Authority
CN
China
Prior art keywords
nimoo
znin
doped
wrapped
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110259157.6A
Other languages
English (en)
Other versions
CN113101946B (zh
Inventor
楼宏铭
苏行
周兰
邱学青
杨东杰
庞煜霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202110259157.6A priority Critical patent/CN113101946B/zh
Publication of CN113101946A publication Critical patent/CN113101946A/zh
Application granted granted Critical
Publication of CN113101946B publication Critical patent/CN113101946B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种NiMoO4基Z‑型异质结光催化剂及制备与应用。本发明采用一步溶剂热法构建了Mo掺杂Ni负载以及Z‑型异质结光催化剂,通过合理设计出Mo掺杂Ni负载ZnIn2S4包裹NiMoO4Z‑型异质结光催化剂。本发明无需使用模板剂以及表面活性剂,避免了助催化剂修饰(贵金属)以及异质结分步构建的繁琐。本发明所得光催化剂不仅拓宽了光吸收范围,提高了太阳光的利用效率,还极大地改善了异质结的能带结构并且提高了载流子的分离效率,表现出优异的光催化性能。

Description

一种NiMoO4基Z-型异质结光催化剂及制备与应用
技术领域
本发明属于光催化剂领域,具体涉及一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂及其制备与应用。
背景技术
目前,人类社会的发展主要建立在不可在生的传统能源(煤、石油及天然气等)的基础上。随着传统能源的大量消耗导致严重的环境和能源问题,因此迫使人们探索更加清洁的能源。在诸多能源中如:太阳能、风能、核能以及氢能,其中氢能由于其高的能量密度,零排放以及可持续备受人们关注。目前制氢的手段有很多种,如蒸汽甲烷转化、水煤气法、电解水法以及光分解水法。在诸多方法中,光分解水制氢的可持续性,能从根本上缓减能源和环境问题。
Fujishima和Honda在1972年研究发现TiO2能够在光激发下将水裂解成氢气。因此,光催化分解水制氢受到诸多科研工作者的广泛关注。近年来不同类型的半导体光催化剂(金属氧化物、金属硫化物等)被广泛用于光催化分解水制氢研究。对于金属氧化物而言,大部分金属氧化物仅在紫外范围内响应,对太阳光的利用率较低。然而,双金属氧化物具有可见光效应、抗光腐蚀性以及较高的空穴氧化能力,如:NiMoO4和Bi2WO6,广泛地用于光催化研究。但多数双金属氧化物的光生电子还原能力差,不能够有效的用于光催化制氢。相比于金属氧化物而已,金属硫化物(ZnIn2S4)光生电子具有较强的还原能力以及可见光响应等特点,成为光催化制氢的候选材料。但其光生载流子复合严重,直接限制了该催化剂的应用。因此,大多数科研工作者主要聚焦于元素掺杂、金属负载或构建异质结来改善光催化分解水制氢活性。本专利首次协同元素掺杂、金属负载、形貌调控以及异质结构建用于光催化析氢研究。
发明内容
为解决现有技术的缺点和不足之处,本发明的首要目的在于提供一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂的制备方法。
本发明通过一步溶剂热法制备Mo掺杂Ni负载ZnIn2S4包裹的NiMoO4 Z体系光催化剂。其中Mo掺杂能够引入杂质能级,优化H的吸附自由能,提高ZnIn2S4的内在活性以及拓展催化剂的光吸收范围。金属Ni能够与半导体材料形成肖特基结,抑制载流子的复合;还可以充当非贵金属助催化剂,降低析氢电位,促进光催化析氢反应的发生。Z体系异质结的构建能够维持该催化剂的强氧化/还原电位以及延长光生载流子寿命。本发明中,ZnIn2S4均匀负载在NiMoO4表面,避免了ZnIn2S4自身的团聚,从而暴露出更多的活性位点。本发明所述Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结制备方法简单,原料来源丰富,光催化性能优异,具有显著的经济和社会效益。
本发明的另一目的在于提供上述方法制得的一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂。
本发明的再一目的在于提供上述一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4Z-型异质结催化剂在光催化领域中的应用。
本发明目的通过以下技术方案实现:
一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂的制备方法,包括以下步骤:
(1)将四水合钼酸铵和四水合醋酸镍溶于去离子水中,180-200℃水热反应10-24h,冷却,洗涤,干燥,得到NiMoO4的水合物;
(2)将NiMoO4的水合物进行高温烧结,得到NiMoO4
(3)将NiMoO4分散于乙二醇中,加入锌源、铟源和硫源,混合均匀后,于80-200℃反应1-24h,冷却,洗涤,干燥,得到Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂。
所得Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂既具有Mo的掺杂和金属Ni的负载,又具有异质结结构,表现出优异的光催化性能。
优选地,步骤(1)所述四水合钼酸铵、四水合醋酸镍与去离子水的比例为0.25g:0.2g:30mL。
优选地,步骤(1)所述洗涤指依次用水和乙醇各洗涤3-5次,即先水洗3-5次,再乙醇洗3-5次,所述干燥为常规干燥。
优选地,步骤(2)所述高温烧结的温度为400-600℃,时间为1-5h。
更优选地,步骤(2)所述高温烧结在空气氛围中进行,由室温以5℃/min的升温速率升温到设定温度。
优选地,步骤(3)所述锌源为无水氯化锌,所述铟源为四水合氯化铟,所述硫源为硫代乙酰胺。
优选地,步骤(3)所述NiMoO4质量与乙二醇体积比为8.46-169.2mg:40mL。
优选地,步骤(3)所述NiMoO4加入乙二醇后超声分散10-30min。
优选地,步骤(3)所述锌源、铟源和硫源的质量比为272:1172:600,所述NiMoO4与锌源的质量比为8.46-169.2:272mg。
优选地,步骤(3)所述反应温度为80-120℃。
优选地,步骤(3)所述混合均匀指超声混合10-40min。
优选地,步骤(3)所述洗涤指用无水乙醇洗涤3-5次,所述干燥为常规干燥。
优选地,步骤(3)所述反应的时间为1-12h。
上述方法制得的一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂。
所述一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂既具有Mo的掺杂和金属Ni的负载,又具有异质结结构。
上述一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂在光分解水产氢和生物质重整制氢的应用。
本发明采用一步溶剂热法构建了一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4Z-型异质结光催化剂。本发明无需使用模板剂以及表面活性剂即可制备出Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂。该催化剂能够在不使用助催化剂的条件下于400nm的光激发下光催化析氢速率高达5.14mol/h/g,是ZnIn2S4光催化析氢速率的7.6倍。以俄罗斯木钠为前驱体,通过光催化重整制氢,其析氢速率可达0.53mol/h/g。目前,Mo掺杂Ni负载ZnIn2S4包裹NiMoO4Z-型异质结光催化剂的制备方法及应用尚未报道。
与现有技术相比,本发明具有以下优点及有益效果:
(1)本发明首次制备了Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂,该催化剂的制备条件温和,对设备要求低,无需加入表面活性剂和模板剂,无贵金属使用,原子利用率高且原料成本较低,有利于实现产业化生产。
(2)本发明所制备的催化剂具有一维和二维材料复合体,更有利于光生载流子的定向传输和迁移,增加催化剂的比表面积,使其暴露出更多的活性位点。
(3)本发明通过组分调控,在NiMoO4@ZnIn2S4中掺杂Mo,引入杂质能级,促进光生载流子的分离以及增加ZnIn2S4的内在活性位点。金属Ni负载在ZnIn2S4表面能够充当助催化剂,促进光催化析氢反应的发生。NiMoO4@ZnIn2S4异质结的形成有助于延长光生载流子的寿命以及维持复合材料的氧化还原电势,是能够促进光催化重整木质素制氢的关键所在。
(4)本发明中ZnIn2S4纳米片均匀包裹在NiMoO4的表面,能够有效抑制ZnIn2S4自身的团聚,提供更多的活性位点。
(5)本发明通过合理的组分调控和结构设计,所得Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂表现出优异的光催化析氢性能以及生物质重整制氢性能。
附图说明
图1为本发明实施例所得样品光催化剂的(a)XRD;(b-c)实施例3的TEM;(d)实施例3的HRTEM图。
图2为本发明实施例所得样品光催化剂的(a-b)紫外-可见漫反射图以及对应的带隙值;(c)BET图;(d)PL光谱。
图3为本发明实施例所得样品光催化剂的(a)I-t图;(b)EIS图;(c)M-S图以及(d)对应的能带位置图。
图4为本发明实施例3所得样品光催化剂以及NiMoO4的Ni 2p的XPS光谱:上半部分表示实施例3光催化剂的Ni 2p的XPS光谱;下半部分表示NiMoO4中Ni 2p的XPS光谱。
图5为本发明实施例3所得样品光催化剂以及NiMoO4的Mo 3d的XPS光谱:上半部分表示实施例3光催化剂的Mo 3d的XPS光谱;下半部分表示NiMoO4中Mo 3d的XPS光谱。
图6为本发明实施例所得样品光催化剂的(a)析氢量随时间变化图;(b)析氢速率图;(c)实施例3所得样品的循环稳定测试图以及(d)实施例中不同温度下所得样品的性能对比图。
图7为本发明实施例所得样品光催化剂的俄罗斯木钠重整析氢测试:(a)析氢速率图以及(b)实施例3所得样品的循环稳定测试图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
本发明实施例中未注明具体条件者,按照常规条件或者制造商建议的条件进行。所用未注明生产厂商者的原料、试剂等,均为可以通过市售购买获得的常规产品。
本发明的制备工艺如下所示:
通过水热过程以及煅烧过程合成NiMoO4,将NiMoO4(8.46-169.2g)加入到40ml的乙二醇溶剂中超声10min,再将锌源、四水合氯化铟、硫代乙酰胺按质量比为272:1172:600溶解于上述乙二醇溶液中,搅拌均匀20min并转移至高压反应釜中,80-120℃保温2h,自然冷却至室温,所得产物用无水乙醇离心洗涤,真空干燥后得到不同Mo掺杂Ni负载ZIS包裹NM体系光催化剂,命名为x NM@ZIS-y(x:NiMoO4加入的质量百分比;y:反应温度)。
测试条件:
以三乙醇胺为牺牲剂:10mg的催化剂+100mL三乙醇胺水溶液(10ml三乙醇胺+90ml的水),在300W氙灯下大于400nm的波长,其功率密度为:515mW/cm。
以俄罗斯木钠为牺牲剂:10mg的催化剂+100mL浓度为500ppm俄罗斯木钠水溶液,在300W氙灯下大于400nm的波长,其功率密度为:515mW/cm。
对比例1
将无水氯化锌、四水合氯化铟、硫代乙酰胺按质量比量分别为272.0mg、1172.0mg和600.0mg分散在40mL的乙二醇中超声10min,搅拌均匀20min并转移至高压反应釜中,120℃保温2h,自然冷却至室温,所得产物用无水乙醇离心洗涤,真空干燥后得到ZnIn2S4,命名为ZIS。
实施例1
将0.25g四水合钼酸铵溶于30mL去离子水溶液中,搅拌均匀后在加入0.2g四水合硝酸镍,超声10min,然后转入高压反应釜,180℃保温10h,自然冷却至室温,所得产物依次用去离子水和无水乙醇各洗涤三次,真空干燥后得到NiMoO4的水合物,最后以5℃/min的升温速率由室温升温至450℃并保温2小时,即可得到NiMoO4。将8.46mg NiMoO4分散在40mL的乙二醇中超声10min;将272mg无水氯化锌、1172mg四水合氯化铟、600mg硫代乙酰胺溶解于上述乙二醇溶液中,搅拌均匀30min并转移至高压反应釜中,120℃保温2h,自然冷却至室温,所得产物用无水乙醇离心洗涤三次,真空干燥后得到Mo掺杂的Ni负载ZnIn2S4包裹NiMoO4 Z型异质结,命名为1NM@ZIS-120。
实施例2
将0.25g四水合钼酸铵溶于30mL去离子水溶液中,搅拌均匀后在加入0.2g四水合硝酸镍,超声10min,然后转入高压反应釜,180℃保温10h,自然冷却至室温,所得产物依次用去离子水和无水乙醇各洗涤三次,真空干燥后得到NiMoO4的水合物,最后以5℃/min的升温速率由室温升温至450℃并保温2小时,即可得到NiMoO4。将42.3mg NiMoO4分散在40mL的乙二醇中超声10min;将272mg无水氯化锌、1172mg四水合氯化铟、600mg硫代乙酰胺溶解于上述乙二醇溶液中,搅拌均匀30min并转移至高压反应釜中,120℃保温2h,自然冷却至室温,所得产物用无水乙醇离心洗涤三次,真空干燥后得到Mo掺杂的Ni负载ZnIn2S4包裹NiMoO4 Z型异质结,命名为5NM@ZIS-120。
实施例3
将0.25g四水合钼酸铵溶于30mL去离子水溶液中,搅拌均匀后在加入0.2g四水合硝酸镍,超声10min,然后转入高压反应釜,180℃保温10h,自然冷却至室温,所得产物依次用去离子水和无水乙醇各洗涤三次,真空干燥后得到NiMoO4的水合物,最后以5℃/min的升温速率由室温升温至450℃并保温2小时,即可得到NiMoO4。将84.6mg NiMoO4分散在40mL的乙二醇中超声10min;将272mg无水氯化锌、1172mg四水合氯化铟、600mg硫代乙酰胺溶解于上述乙二醇溶液中,搅拌均匀30min并转移至高压反应釜中,120℃保温2h,自然冷却至室温,所得产物用无水乙醇离心洗涤三次,真空干燥后得到Mo掺杂的Ni负载ZnIn2S4包裹NiMoO4 Z型异质结,命名为10NM@ZIS-120。
实施例4
将0.25g四水合钼酸铵溶于30mL去离子水溶液中,搅拌均匀后在加入0.2g四水合硝酸镍,超声10min,然后转入高压反应釜,180℃保温10h,自然冷却至室温,所得产物依次用去离子水和无水乙醇各洗涤三次,真空干燥后得到NiMoO4的水合物,最后以5℃/min的升温速率由室温升温至450℃并保温2小时,即可得到NiMoO4。将169.2mg NiMoO4分散在40mL的乙二醇中超声10min;将272mg无水氯化锌、1172mg四水合氯化铟、600mg硫代乙酰胺溶解于上述乙二醇溶液中,搅拌均匀30min并转移至高压反应釜中,120℃保温2h,自然冷却至室温,所得产物用无水乙醇离心洗涤三次,真空干燥后得到Mo掺杂的Ni负载ZnIn2S4包裹NiMoO4 Z型异质结,命名为20NM@ZIS-120。
实施例5
将0.25g四水合钼酸铵溶于30mL去离子水溶液中,搅拌均匀后在加入0.2g四水合硝酸镍,超声10min,然后转入高压反应釜,180℃保温10h,自然冷却至室温,所得产物依次用去离子水和无水乙醇各洗涤三次,真空干燥后得到NiMoO4的水合物,最后以5℃/min的升温速率由室温升温至450℃并保温2小时,即可得到NiMoO4。将84.6mg NiMoO4分散在40mL的乙二醇中超声10min;将272mg无水氯化锌、1172mg四水合氯化铟、600mg硫代乙酰胺溶解于上述乙二醇溶液中,搅拌均匀30min并转移至高压反应釜中,80℃保温2h,自然冷却至室温,所得产物用无水乙醇离心洗涤三次,真空干燥后得到Mo掺杂的Ni负载ZnIn2S4包裹NiMoO4 Z型异质结,命名为10NM@ZIS-80。
实施例6
将0.25g四水合钼酸铵溶于30mL去离子水溶液中,搅拌均匀后在加入0.2g四水合硝酸镍,超声10min,然后转入高压反应釜,180℃保温10h,自然冷却至室温,所得产物依次用去离子水和无水乙醇各洗涤三次,真空干燥后得到NiMoO4的水合物,最后以5℃/min的升温速率由室温升温至450℃并保温2小时,即可得到NiMoO4。将84.6mg NiMoO4分散在40mL的乙二醇中超声10min;将272mg无水氯化锌、1172mg四水合氯化铟、600mg硫代乙酰胺溶解于上述乙二醇溶液中,搅拌均匀30min并转移至高压反应釜中,100℃保温2h,自然冷却至室温,所得产物用无水乙醇离心洗涤三次,真空干燥后得到Mo掺杂的Ni负载ZnIn2S4包裹NiMoO4 Z型异质结,命名为10NM@ZIS-100。
本发明中所制备得到的Mo掺杂Ni负载的ZnIn2S4包裹NiMoO4/Z型异质结光催化剂经XRD和TEM测试(图1),说明所制备得到的催化剂形貌是由ZIS纳米片包裹的NiMoO4结构。此外,图2a-b说明本发明制备的复合材料都表现出好的红移现象,进一步对其带隙进行计算可以看出明显的变小,证明了本专利所制备的光催化剂具有很好的光吸收范围。通过BET测试,如图2c所示,可以看出10NM@ZIS-120具有较大的比表面积,能够暴露出更多的活性位点。图2d展示了样品的荧光光谱(PL)从图可看出,10NM@ZIS-120具有很好的光生载流子分离效率。图3a-b同样说明10NM@ZIS-120能够表现出较优的光生载流子分离效率。通过图3c以及图2b可以得出复合材料的能带位置,如图3d所示。图4和图5分别表示10NM@ZIS-120和NiMoO4中Ni 2p和Mo 3d的XPS谱图,从图可以看出有金属性质的Ni存在以及Mo5+的掺杂,证实了我们成功制备了Mo掺杂的Ni负载ZnIn2S4包裹NiMoO4 Z型异质结光催化剂。图6是本发明中的样品的光催化析氢性能测试图。从图6a-b中可以看出10NM@ZIS-120的析氢速率为5.14mol/h/g,是ZIS析氢速率的7.6倍。图6(c)可以看出10NM@ZIS-120在25小时循环以后,其析氢速率并没有明显的衰减,说明本专利所制备的复合光催化剂具有很好的光催化稳定性。进一步测试了不同反应温度下合成的Mo掺杂的Ni负载ZnIn2S4包裹NiMoO4 Z型异质结光催化剂,如图6d所示。在反应温度为120℃下所制备的复合材料能够表现出优异的光催化析氢活性。从图7a-b中可以产看,以俄罗斯木钠为前驱体,通过光催化生物质重整制氢,其析氢速率可达0.53mol/h/g,且在每次5小时,循环5次测试以后,其光催化重整木质素制氢任然具有优异的光催化析氢活性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂的制备方法,其特征在于,包括以下步骤:
(1)将四水合钼酸铵和四水合硝酸镍溶于水溶液中,180-200℃水热反应10-24h,冷却,洗涤,干燥,得到NiMoO4水合物;
(2)将NiMoO4的水合物进行高温烧结,得到NiMoO4
(3)将NiMoO4分散于乙二醇中,加入锌源、铟源和硫源,混合均匀后,于80-200℃反应1-24h,冷却,洗涤,干燥,得到Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂。
2.根据权利要求1所述一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂的制备方法,其特征在于,步骤(3)所述NiMoO4质量与乙二醇体积比为8.46-169.2mg:40mL。
3.根据权利要求1所述一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂的制备方法,其特征在于,步骤(3)所述锌源、铟源和硫源的质量比为272:1172:600,所述NiMoO4与锌源的质量比为8.46-169.2:272mg;步骤(1)所述四水合钼酸铵、四水合醋酸镍与去离子水的比例为0.25g:0.2g:30mL。
4.根据权利要求1所述一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂的制备方法,其特征在于,步骤(2)所述高温烧结的温度为400-600℃,时间为1-5h。
5.根据权利要求1所述一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂的制备方法,步骤(3)所述NiMoO4加入乙二醇后超声分散10-30min。
6.根据权利要求1所述一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂的制备方法,其特征在于,步骤(3)所述锌源为无水氯化锌,所述铟源为四水合氯化铟,所述硫源为硫代乙酰胺。
7.根据权利要求1所述一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂的制备方法,其特征在于,步骤(3)所述反应的时间为1-12h;所述反应温度为80-120℃。
8.根据权利要求1所述一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂的制备方法,其特征在于,步骤(1)所述洗涤指依次用水和乙醇各洗涤3-5次,即先水洗3-5次,再乙醇洗3-5次,所述干燥为常规干燥;
步骤(2)所述高温烧结在空气氛围中进行,由室温以5℃/min的升温速率升温到设定温度;
步骤(3)所述混合均匀指超声混合10-40min;所述洗涤指用无水乙醇洗涤3-5次,所述干燥为常规干燥。
9.权利要求1-8任一项所述方法制得的一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂。
10.权利要求9所述一种Mo掺杂Ni负载ZnIn2S4包裹NiMoO4 Z-型异质结光催化剂在光催化析氢以及生物质重整制氢领域中的应用。
CN202110259157.6A 2021-03-10 2021-03-10 一种NiMoO4基Z-型异质结光催化剂及制备与应用 Active CN113101946B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110259157.6A CN113101946B (zh) 2021-03-10 2021-03-10 一种NiMoO4基Z-型异质结光催化剂及制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110259157.6A CN113101946B (zh) 2021-03-10 2021-03-10 一种NiMoO4基Z-型异质结光催化剂及制备与应用

Publications (2)

Publication Number Publication Date
CN113101946A true CN113101946A (zh) 2021-07-13
CN113101946B CN113101946B (zh) 2022-03-25

Family

ID=76710982

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110259157.6A Active CN113101946B (zh) 2021-03-10 2021-03-10 一种NiMoO4基Z-型异质结光催化剂及制备与应用

Country Status (1)

Country Link
CN (1) CN113101946B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116899589A (zh) * 2023-06-09 2023-10-20 常州大学 一种用于降解抗生素的蛋黄蛋壳结构复合微纳米光催化材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103084189A (zh) * 2013-01-29 2013-05-08 南昌大学 一种适合海水或盐湖卤水的制氢光催化剂的制备方法
CN104282446A (zh) * 2014-11-08 2015-01-14 安徽师范大学 一种钴酸镍@钼酸镍核壳结构纳米材料、制备方法及其应用
CN105914051A (zh) * 2016-06-02 2016-08-31 安徽师范大学 一维MnO2@NiMoO4核壳异质结复合材料及其制备方法和应用
CN109621979A (zh) * 2018-12-13 2019-04-16 上海纳米技术及应用国家工程研究中心有限公司 一种ZnO/锌铟硫纳米异质结的制备方法
CN111617781A (zh) * 2020-07-10 2020-09-04 福州大学 硫铟锌包裹氢化钼青铜z型复合光催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103084189A (zh) * 2013-01-29 2013-05-08 南昌大学 一种适合海水或盐湖卤水的制氢光催化剂的制备方法
CN104282446A (zh) * 2014-11-08 2015-01-14 安徽师范大学 一种钴酸镍@钼酸镍核壳结构纳米材料、制备方法及其应用
CN105914051A (zh) * 2016-06-02 2016-08-31 安徽师范大学 一维MnO2@NiMoO4核壳异质结复合材料及其制备方法和应用
CN109621979A (zh) * 2018-12-13 2019-04-16 上海纳米技术及应用国家工程研究中心有限公司 一种ZnO/锌铟硫纳米异质结的制备方法
CN111617781A (zh) * 2020-07-10 2020-09-04 福州大学 硫铟锌包裹氢化钼青铜z型复合光催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCHINDRA KUMAR RAY ET AL.: ""Visible light driven MoS2/α-NiMoO4 ultra-thin nanoneedle composite for efficient Staphylococcus aureus inactivation"", 《JOURNAL OF HAZARDOUS MATERIALS》 *
XUANHAO LI ET AL.: ""Amorphous CoS modified nanorod NiMoO4 for hydrogen production"", 《JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116899589A (zh) * 2023-06-09 2023-10-20 常州大学 一种用于降解抗生素的蛋黄蛋壳结构复合微纳米光催化材料及其制备方法与应用

Also Published As

Publication number Publication date
CN113101946B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN112495401B (zh) 一种Mo掺杂MoO3@ZnIn2S4 Z体系光催化剂及其制备方法与应用
CN110694648B (zh) 一种光催化水裂解产氢钼掺杂硫化铟锌空心分级结构光催化剂及其制备方法
CN111389442A (zh) 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用
WO2021232751A1 (zh) 一种多孔CoO/CoP纳米管及其制备方法和应用
CN111111668A (zh) 一种mof基衍生复合光催化剂及其制备方法
CN107983371B (zh) 一种光催化材料Cu2-xS/Mn0.5Cd0.5S/MoS2及其制备方法与应用
CN113145138A (zh) 热响应型复合光催化剂及其制备方法和应用
CN113262809A (zh) 一种基于ZIF-67前驱体制备CdS@CoP@NC异质结光催化剂的方法
Zhang et al. Metal-organic framework-derived nitrogen-doped carbon-coated hollow tubular In2O3/CdZnS heterojunction for efficient photocatalytic hydrogen evolution
CN111841530A (zh) 一种促进水光解产氢的催化剂及其制备方法
CN114308132B (zh) 一种质子化的CdS-COF-366-M复合光催化剂及其制备方法
CN115305480A (zh) 一种合金纳米材料催化剂及其制备方法和应用
CN111822014A (zh) 一种钛箔负载Fe-CoP纳米阵列结构催化剂及其制备方法和应用
CN109589985B (zh) 掺杂纳米锗酸锌的制备方法及其催化还原二氧化碳
CN113101946B (zh) 一种NiMoO4基Z-型异质结光催化剂及制备与应用
Yuan et al. Synergistically enhanced photothermal catalytic CO2 reduction by spatially separated oxygen and sulphur dual vacancy regulated redox half-reactions
CN110404546B (zh) 一种Ni(OH)2纳米颗粒改性的SrTiO3复合催化剂及其制备方法和应用
CN116173987A (zh) CdIn2S4/CeO2异质结光催化剂及其制备方法和应用
CN114534746B (zh) 一种基于异质结光催化剂和甲醛水溶液的光催化制氢体系
CN114570385A (zh) 一种太阳光催化水分解制氢制氧半导体催化剂的制备方法
CN112007663B (zh) 一种MoS2@CrOx/La,Al-SrTiO3/CoOOH光催化剂及制备方法
CN114292641A (zh) 一种硫化铟锌量子点的制备方法
CN112657516A (zh) 一种直接z型光催化剂及其制备方法和应用
CN107175111B (zh) 一种负载型Bi2MoO6/Cu(OH)2光催化剂的制备方法
CN114100682B (zh) 一种羽状叶异质结光催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant