CN113077985A - 反铁电材料体系的mlcc脉冲功率电容器及制备方法 - Google Patents

反铁电材料体系的mlcc脉冲功率电容器及制备方法 Download PDF

Info

Publication number
CN113077985A
CN113077985A CN202110324933.6A CN202110324933A CN113077985A CN 113077985 A CN113077985 A CN 113077985A CN 202110324933 A CN202110324933 A CN 202110324933A CN 113077985 A CN113077985 A CN 113077985A
Authority
CN
China
Prior art keywords
mlcc
pulse power
power capacitor
dielectric layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110324933.6A
Other languages
English (en)
Inventor
陈宏伟
王志强
高莉彬
张继华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110324933.6A priority Critical patent/CN113077985A/zh
Publication of CN113077985A publication Critical patent/CN113077985A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5127Cu, e.g. Cu-CuO eutectic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

一种反铁电材料体系的MLCC脉冲功率电容器及制备方法,属于电子信息材料与元器件技术领域。该脉冲功率电容器为“介质层/(电极层/介质层)n”多层结构,介质层为(Pb1‑1.5aLaa)(Zr1‑b‑ cSnbTic)O3与H3BO3的复合陶瓷,(Pb1‑1.5aLaa)(Zr1‑b‑cSnbTic)O3的质量百分比99.1~99.9wt%,H3BO3的质量百分比0.1~0.9wt%。本发明通过在反铁电陶瓷中添加硼酸来引入玻璃骨架元素,在高温熔融状态下硼与金属元素生成玻璃相结构,有效填充了晶粒孔隙;同时,自生的玻璃相可以有效助熔,增加陶瓷致密度,进而提升储能密度,降低MLCC的电极成本。

Description

反铁电材料体系的MLCC脉冲功率电容器及制备方法
技术领域
本发明属于电子信息材料与元器件技术领域,具体涉及一种反铁电材料体系的MLCC脉冲功率电容器及制备方法。
背景技术
多层陶瓷电容器(简称MLCC),是电子设备中最常见且应用最广泛的无源电子元件之一,具有高容值、小体积、低损耗、高耐压等优异性能。MLCC按工作频段分类,可应用于高频(I类)、低频(II类)和微波频段,因此,不仅在手机、计算机主板、家用电器电路、医疗设备中有广泛应用,在航空航天、军事通信中也具有重要的应用价值。脉冲功率电容是对电源能量进行大量存储,并在特定负载上快速释放,从而获得极大的脉冲功率输出。这一应用特性对电容器介质有极高的要求,需要材料具有超高的储能密度、宽的温度和频率稳定性、快速的放电时间以及较高的充放电循环次数,同时要求储能模块的体积越来越小。
目前,应用广泛的陶瓷介质材料主要有铁电材料(钛酸钡等)、铅基反铁电材料(锆钛酸铅,锆锡酸铅等)以及线性介质(如二氧化钛,钛酸锶等)。而介质陶瓷普遍烧结温度较高,通常需要1250℃以上的高温才能充分结晶,实现致密烧结,而MLCC工艺中介质材料与涂覆的内电极需要一起高温烧结,为减少烧结失配等问题,只能选择一些熔点较高的稀有贵金属钯或铂,或者钯银银浆等作为内电极材料,例如,钯3银浆(即含钯30%的高温银浆)的熔点在1150℃左右。这极大地增加了MLCC的物料成本。因此,如何降低介质陶瓷与电极的共烧温度,是目前亟待解决的问题。为了降低介质陶瓷与电极的共烧问题,目前通常采用的方法是复合低熔点玻璃做助熔剂。但是,玻璃的介电常数通常较低(ε小于10),随着玻璃含量的增多,高温退火或者热处理过程中会析晶,导致陶瓷材料的介电性能恶化。
发明内容
本发明的目的在于,针对背景技术存在的缺陷,提出了一种反铁电材料体系的MLCC脉冲功率电容器及制备方法,有效解决了MLCC工艺中介质材料与内电极共烧温度失配的问题。本发明提供的脉冲功率电容器,通过在反铁电陶瓷中添加硼酸来引入玻璃骨架元素,在高温熔融状态下硼与金属元素生成玻璃相结构,有效填充了晶粒孔隙;同时,自生的玻璃相可以有效助熔,增加陶瓷致密度,进而提升储能密度,降低MLCC的电极成本。
为实现上述目的,本发明采用的技术方案如下:
一种反铁电材料体系的MLCC脉冲功率电容器,其特征在于,所述脉冲功率电容器为“介质层/(电极层/介质层)n”的多层结构,其中n为大于1的正整数;所述介质层为(Pb1-1.5aLaa)(Zr1-b-cSnbTic)O3反铁电陶瓷与H3BO3的复合陶瓷,其中,(Pb1-1.5aLaa)(Zr1-b- cSnbTic)O3的质量百分比为99.1wt%~99.9wt%,H3BO3的质量百分比为0.1wt%~0.9wt%;0<a≤0.02,0<b≤0.48,0<c≤0.06。
进一步地,所述介质层的厚度为85μm~90μm。
进一步地,所述电极层为金、银、铜等,厚度为1μm~5μm。
一种反铁电材料体系的MLCC脉冲功率电容器的制备方法,配合固相烧结法和流延工艺,使得玻璃骨架元素与铅基介质材料均匀固溶,来达到降低共烧温度的目的,其特征在于,包括以下步骤:
步骤1、按照“(Pb1-1.5aLaa)(Zr1-b-cSnbTic)O3的质量百分比为99.1wt%~99.9wt%,H3BO3的质量百分比为0.1wt%~0.9wt%”的比例称取各原料,混料,得到混合粉料;其中,0<a≤0.02,0<b≤0.48,0<c≤0.06;
步骤2、将步骤1得到的混合粉料加入球磨罐中,粉料:溶剂:锆球的质量比为1:1:2,进行一次球磨3~5h;
步骤3、将步骤2得到的一次球磨料烘干、过筛后,进行预烧,预烧温度为850~900℃,时间为2~3h;
步骤4、将步骤3得到的预烧料进行二次球磨,烘干,过筛,得到待流延粉料;
步骤5、将步骤4得到的待流延粉料和溶剂加入卧式滚动球磨机中,球磨16~24h,随后加入粘结剂,继续球磨16~24h,得到待流延浆料;其中,待流延粉料、溶剂和粘结剂的质量比为4:2:1;
步骤6、采用流延机制备出20μm~30μm的单层膜片,并筛选无明显暗纹的膜片,因单层膜片过薄无法承受高压,将4张单层膜片通过层叠机压制为1层,作为MLCC电容器的一层介质层,介质层厚度为85μm~90μm;
步骤7、在步骤6得到的膜片上涂覆电极、层叠,得到“介质层/(电极层/介质层)n”的多层结构,通过层压机干压后,裁剪,经等静压处理,得到生坯样品;
步骤8、将步骤7得到多层电容器生坯样品在1070~1250℃的温度下烧结0.5~1h,烧结结束后,自然冷却至室温,取出,涂端、烧银、电镀,即可得到所述MLCC脉冲功率电容器。
进一步地,步骤2中,所述溶剂为去离子水或乙醇。
进一步地,步骤3中,升温速率为1℃/min~3℃/min。
进一步地,步骤5中,所述溶剂包括甲苯、乙醇、消泡剂和分散剂,甲苯、乙醇、消泡剂和分散剂的质量比为48:32:1:1.5,消泡剂为乳化硅油,分散剂为磷酸三丁酯;所述粘结剂为PVB(聚乙烯醇缩丁醛酯),质量分数为3%。
进一步地,步骤6中,压制处理的压强为20~30MPa,保压时间为30~60s。
进一步地,步骤7中,干压处理的压强为20~30MPa,保压时间为30~60s;等静压处理的温度为60~70℃,压力为12000~15000psi,保压时间为10~20min。
进一步地,步骤7中,涂覆的电极层厚度为1~5μm,采用丝网印刷制得。
与现有技术相比,本发明的有益效果为:
本发明提供的一种反铁电材料体系的MLCC脉冲功率电容器,通过在反铁电陶瓷中添加硼酸来引入玻璃骨架元素,在高温熔融状态下硼与金属元素生成玻璃相结构,有效填充了晶粒孔隙;同时,自生的玻璃相可以有效助熔,增加陶瓷致密度,进而提升储能密度,降低MLCC的电极成本。
附图说明
图1为对比例(a)和实施例1(b)得到的单层膜片经烧结后得到的样品的表面形貌;
图2为对比例、实施例1和实施例2得到的单层膜片经烧结后得到的样品的电滞回线对比曲线;
图3为对比例(a)和实施例2(b)得到的单层膜片经烧结后得到的样品的表面形貌;
图4为对比例、实施例3和实施例4得到的单层膜片经烧结后得到的样品的电滞回线对比曲线。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
实施例1
一种反铁电材料体系的MLCC脉冲功率电容器的制备方法,配合固相烧结法和流延工艺,使得玻璃骨架元素与铅基介质材料均匀固溶,来达到降低共烧温度的目的,其特征在于,包括以下步骤:
步骤1、按照“(Pb0.97La0.02)(Zr0.46Sn0.48Ti0.06)O3的质量百分比为99.31wt%,H3BO3的质量百分比为0.69wt%”的比例称取各原料PbO、La2O3、ZrO2、SnO2、TiO2、H3BO3,混料,得到混合粉料;
步骤2、将步骤1得到的混合粉料加入球磨罐中,粉料:去离子水:锆球的质量比为1:1:2,进行一次球磨4h;
步骤3、将步骤2得到的一次球磨料在90℃烘干、过筛后,装入刚玉坩埚中进行预烧处理,预烧温度为850℃,时间为2h,升温速率为3℃/min;
步骤4、预烧结束后,将粉料再次倒入尼龙罐,以相同的溶剂、球配比及球磨参数进行二次球磨(粉料:去离子水:锆球的质量比为1:1:2,时间4h),得到的浆料烘干、玛瑙研钵中研磨均匀后,过100目筛,得到待流延粉料;以上步骤是为了完成陶瓷的初步结晶,防止后续过程中铅的过渡挥发导致组分不均匀;
步骤5、将步骤4得到的待流延粉料和溶剂加入卧式滚动球磨机中,球磨16h,随后加入粘结剂PVB,继续球磨24h,得到待流延浆料;其中,待流延粉料、溶剂和粘结剂的质量比为4:2:1,溶剂为甲苯、乙醇、消泡剂和分散剂的混合溶剂,质量比为48:32:1:1.5;
步骤6、采用流延机制备出30μm的单层膜片,并筛选无明显暗纹的膜片;根据工程经验,流延浆料的粒径不能超过单层膜片厚度的十分之一,本实施例中浆料的平均粒径为1.5μm,故可以流延单层厚度为30μm的膜片;因单层膜片过薄无法承受高压,将4张单层膜片通过层叠机压制为1层,作为MLCC电容器的一层介质层;
步骤7、在步骤6得到的膜片上涂覆电极、层叠,得到“介质层/(电极层/介质层)5”的多层结构,通过层压机在30MPa的压强下干压30s后,根据版图进行切割,再经等静压处理,得到生坯样品,等静压处理的温度为60℃,压强为12000psi,保压时间为10min;等静压的目的是为了消除两层膜片的界面空隙,降低界面缺陷浓度;
步骤8、将步骤7得到的多层电容器生坯样品在1070℃的温度下烧结0.5h,烧结结束后,自然冷却至室温,取出,再经过涂覆端电极、焊接引线作为电容器的两极,即可得到所述MLCC脉冲功率电容器。因反铁电陶瓷介质一般为绝缘物质,需要外涂850℃熔点的高温银浆作电极,来进行高压测试。
实施例2
本实施例与实施例1相比,区别在于:步骤8中,烧结温度调整为1250℃。其余步骤与实施例1相同。
实施例3
本实施例与实施例1相比,区别在于:步骤1中,按照“(Pb0.97La0.02)(Zr0.46Sn0.48Ti0.06)O3的质量百分比为99.14wt%,H3BO3的质量百分比为0.86wt%”的比例称取各原料。其余步骤与实施例1相同。
实施例4
本实施例与实施例3相比,区别在于:步骤8中,烧结温度调整为1250℃。其余步骤与实施例3相同。
对比例
对比例与实施例1相比,区别在于:步骤1中,按照(Pb0.97La0.02)(Zr0.46Sn0.48Ti0.06)O3中各元素的比例称取各原料PbO、La2O3、ZrO2、SnO2、TiO2,混料,得到混合粉料。其余步骤与实施例1相同。
图1为对比例和实施例1得到的单层膜片经烧结后得到的样品的表面形貌;其中,(a)为对比例得到的单层膜片经烧结后得到的样品的表面形貌,(b)为实施例1单层膜片经烧结后得到的样品的表面形貌。由图1可知,对比例未添加硼酸的样品,表面和基体中孔隙率较高;而实施例1添加硼酸后,由于硼酸高温过程会分解为氧化硼,抑制了陶瓷晶粒的异常长大,使得陶瓷致密度变高。
图2为对比例(a)、实施例1(b)和实施例2(c)得到的单层膜片经烧结后得到的样品的电滞回线对比曲线;由图2可知,实施例1降低烧结温度后,储能密度仍能达到2.15J/cm3,是未添加硼酸(对比例)储能密度的2.5倍。表明,本发明方可以有效改善MLCC介质材料与涂覆的内电极烧结温度失配问题,进而降低MLCC电极成本。
图3为对比例(a)和实施例3(b)得到的单层膜片经烧结后得到的样品的表面形貌;由图3可知,实施例3添加硼酸后的样品的致密度变高。
图4为对比例(a)、实施例3(b)和实施例4(c)得到的单层膜片经烧结后得到的样品的电滞回线对比曲线。实施例3降低烧结温度后,储能密度仍能达到1.89J/cm3,是未添加硼酸(对比例)储能密度的2.2倍。

Claims (7)

1.一种反铁电材料体系的MLCC脉冲功率电容器,其特征在于,所述脉冲功率电容器为“介质层/(电极层/介质层)n”的多层结构,其中n为大于1的正整数;所述介质层为(Pb1- 1.5aLaa)(Zr1-b-cSnbTic)O3反铁电陶瓷与H3BO3的复合陶瓷,其中,(Pb1-1.5aLaa)(Zr1-b-cSnbTic)O3的质量百分比为99.1wt%~99.9wt%,H3BO3的质量百分比为0.1wt%~0.9wt%;0<a≤0.02,0<b≤0.48,0<c≤0.06。
2.根据权利要求1所述的反铁电材料体系的MLCC脉冲功率电容器,其特征在于,所述介质层的厚度为85μm~90μm。
3.根据权利要求1所述的反铁电材料体系的MLCC脉冲功率电容器,其特征在于,所述电极层为金、银或铜,厚度为1μm~5μm。
4.一种反铁电材料体系的MLCC脉冲功率电容器的制备方法,其特征在于,包括以下步骤:
步骤1、按照“(Pb1-1.5aLaa)(Zr1-b-cSnbTic)O3的质量百分比为99.1wt%~99.9wt%,H3BO3的质量百分比为0.1wt%~0.9wt%”的比例称取各原料,混料,得到混合粉料;其中,0<a≤0.02,0<b≤0.48,0<c≤0.06;
步骤2、将步骤1得到的混合粉料进行一次球磨3~5h;
步骤3、将步骤2得到的一次球磨料烘干、过筛后,进行预烧,预烧温度为850~900℃,时间为2~3h;
步骤4、将步骤3得到的预烧料进行二次球磨,烘干,过筛,得到待流延粉料;
步骤5、将步骤4得到的待流延粉料球磨16~24h,随后加入粘结剂,继续球磨16~24h,得到待流延浆料;
步骤6、制备20μm~30μm的单层膜片,并将4张单层膜片压制为1层,作为MLCC电容器的介质层;
步骤7、在步骤6得到的膜片上涂覆电极、层叠,得到“介质层/(电极层/介质层)n”的多层结构,通过层压机干压后,裁剪,经等静压处理,得到生坯样品;
步骤8、将步骤7得到的生坯样品在1070~1250℃的温度下烧结0.5~1h,烧结结束后,自然冷却至室温,取出,涂端、烧银、电镀,即可得到所述MLCC脉冲功率电容器。
5.根据权利要求4所述的反铁电材料体系的MLCC脉冲功率电容器的制备方法,其特征在于,步骤6中,压制处理的压强为20~30MPa,保压时间为30~60s。
6.根据权利要求4所述的反铁电材料体系的MLCC脉冲功率电容器的制备方法,其特征在于,步骤7中,干压处理的压强为20~30MPa,保压时间为30~60s;等静压处理的温度为60~70℃,压力为12000~15000psi,保压时间为10~20min。
7.根据权利要求4所述的反铁电材料体系的MLCC脉冲功率电容器的制备方法,其特征在于,涂覆的电极层厚度为1~5μm,采用丝网印刷制得。
CN202110324933.6A 2021-03-26 2021-03-26 反铁电材料体系的mlcc脉冲功率电容器及制备方法 Pending CN113077985A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110324933.6A CN113077985A (zh) 2021-03-26 2021-03-26 反铁电材料体系的mlcc脉冲功率电容器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110324933.6A CN113077985A (zh) 2021-03-26 2021-03-26 反铁电材料体系的mlcc脉冲功率电容器及制备方法

Publications (1)

Publication Number Publication Date
CN113077985A true CN113077985A (zh) 2021-07-06

Family

ID=76610716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110324933.6A Pending CN113077985A (zh) 2021-03-26 2021-03-26 反铁电材料体系的mlcc脉冲功率电容器及制备方法

Country Status (1)

Country Link
CN (1) CN113077985A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894019A (zh) * 2022-12-13 2023-04-04 西安交通大学 一种反铁电陶瓷材料及其低温烧结制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101328068A (zh) * 2008-07-28 2008-12-24 浙江大学 一种含硼的微波介质陶瓷水基流延膜片的制备方法
CN101891461A (zh) * 2010-07-20 2010-11-24 桂林理工大学 Li2O-CoO-TiO2三元体系微波介质材料及低温烧结方法
CN104692799A (zh) * 2015-03-12 2015-06-10 中国科学院上海硅酸盐研究所 一种高储能密度锆钛锡酸铅反铁电陶瓷及其制备方法
CN105198416A (zh) * 2015-09-30 2015-12-30 中国科学院上海硅酸盐研究所 一种低温烧结的高储能密度反铁电陶瓷材料及其制备方法
CN110803928A (zh) * 2019-12-06 2020-02-18 电子科技大学 反铁电材料体系的异质堆叠多层陶瓷电容器的制备方法
CN111548154A (zh) * 2020-05-14 2020-08-18 内蒙古科技大学 高储能密度低钛锆酸铅基反铁电陶瓷及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101328068A (zh) * 2008-07-28 2008-12-24 浙江大学 一种含硼的微波介质陶瓷水基流延膜片的制备方法
CN101891461A (zh) * 2010-07-20 2010-11-24 桂林理工大学 Li2O-CoO-TiO2三元体系微波介质材料及低温烧结方法
CN104692799A (zh) * 2015-03-12 2015-06-10 中国科学院上海硅酸盐研究所 一种高储能密度锆钛锡酸铅反铁电陶瓷及其制备方法
CN105198416A (zh) * 2015-09-30 2015-12-30 中国科学院上海硅酸盐研究所 一种低温烧结的高储能密度反铁电陶瓷材料及其制备方法
CN110803928A (zh) * 2019-12-06 2020-02-18 电子科技大学 反铁电材料体系的异质堆叠多层陶瓷电容器的制备方法
CN111548154A (zh) * 2020-05-14 2020-08-18 内蒙古科技大学 高储能密度低钛锆酸铅基反铁电陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
伍媛婷: "《大学生创新创业项目理论指导与实践》", 31 July 2018 *
黄佳鹏: "储能脉冲电容器用 PLZST 介电性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894019A (zh) * 2022-12-13 2023-04-04 西安交通大学 一种反铁电陶瓷材料及其低温烧结制备方法
CN115894019B (zh) * 2022-12-13 2023-09-22 西安交通大学 一种反铁电陶瓷材料及其低温烧结制备方法

Similar Documents

Publication Publication Date Title
US8753995B2 (en) Ceramic dielectric material matched with nickel internal electrode and method for producing capacitor using same
CN108929112B (zh) 一种掺锡的锆钛酸铅镧厚膜陶瓷及其制备和应用
JP2018041813A (ja) 積層セラミックコンデンサおよびその製造方法
CN106505144A (zh) 多层电卡陶瓷元件及其制备方法
CN111548154A (zh) 高储能密度低钛锆酸铅基反铁电陶瓷及其制备方法
CN113582683B (zh) 一种X8R MLCC用BaTiO3基陶瓷材料的制备方法
CN110451955A (zh) 钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法
CN111205087A (zh) 一种铋基三明治结构的高储能密度陶瓷及其制备方法
CN109592980B (zh) 一种低温共烧压电多层陶瓷及其制备方法
CN113077985A (zh) 反铁电材料体系的mlcc脉冲功率电容器及制备方法
CN106747420B (zh) 一种x5r型多层陶瓷电容器用薄介质材料及其制备方法
CN111704463A (zh) 电介质陶瓷材料及其制备方法
US5006956A (en) Dielectric ceramic composition
CN113511893B (zh) 一种bnt基三层结构的高储能密度陶瓷及其制备方法
CN114566382A (zh) 一种陶瓷介质材料及其制备方法和应用
JP3828073B2 (ja) 積層セラミックコンデンサ用誘電体組成物及びこれを用いた積層セラミックコンデンサ
CN111574198A (zh) 高储能锆酸铅基反铁电多层陶瓷电容器及其制备方法
CN107573060B (zh) 一种用于高耐压mlcc的陶瓷介质材料及其制备方法
EP0731066A1 (en) Temperature stable dielectric
US6387835B2 (en) Dielectric ceramic composition, ceramic capacitor using the composition and method of producing thereof
CN112960981A (zh) 一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法
CN115159984B (zh) 一种钐钽共掺的铌酸银基多层介电储能材料及其制备方法
CN115108826B (zh) 一种低电场驱动高储能密度和超快放电速率的弛豫铁电陶瓷材料及其制备方法
JP2000049031A (ja) コンデンサの電極組成物及びそれを用いた電極ペースト
CN113929454B (zh) 一种反铁电高储能密度陶瓷粉料及其制备方法和含有其的电容器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210706