CN113072380B - 一种用于pld的钴酸镧陶瓷靶材及其制备方法与应用 - Google Patents

一种用于pld的钴酸镧陶瓷靶材及其制备方法与应用 Download PDF

Info

Publication number
CN113072380B
CN113072380B CN202110331198.1A CN202110331198A CN113072380B CN 113072380 B CN113072380 B CN 113072380B CN 202110331198 A CN202110331198 A CN 202110331198A CN 113072380 B CN113072380 B CN 113072380B
Authority
CN
China
Prior art keywords
heating
target material
pld
lanthanum
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110331198.1A
Other languages
English (en)
Other versions
CN113072380A (zh
Inventor
乔梁
何永恒
赵洋
沈烨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110331198.1A priority Critical patent/CN113072380B/zh
Publication of CN113072380A publication Critical patent/CN113072380A/zh
Application granted granted Critical
Publication of CN113072380B publication Critical patent/CN113072380B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种用于PLD的钴酸镧陶瓷靶材及其制备方法与应用,其制备方法包括以下步骤:(1)混合并造粒;(2)预烧;(3)压靶成型;(4)烧结。本发明通过添加粘结剂并在预定温度下预烧脱碳造粒,初步反应形成前驱体,然后再二次研磨、干燥压片并最终在高温下烧结成单相的用于PLD系统的钴酸镧陶瓷靶材。该方法成本低、工艺简单以及制备周期短,适用于大规模生产。由该方法制备出的陶瓷靶材,能够生长出高质量的外延薄膜,适用范围更广泛,具有强大的经济效益。

Description

一种用于PLD的钴酸镧陶瓷靶材及其制备方法与应用
技术领域
本发明涉及过渡金属氧化物陶瓷靶材制备技术及薄膜生长技术领域,具体涉及到一种用于PLD的钴酸镧陶瓷靶材及其制备方法与应用。
背景技术
外延生长在晶格常数大于钴酸镧的单晶衬底上的钴酸镧薄膜在低温下表现出铁磁绝缘性,这一奇特现象近年来引起了人们极大的兴趣和关注,尤其是对引起铁磁性的原因的探索。而薄膜低温特性和高质量薄膜的生长与生长源即钴酸镧靶材的相和纯度密切相关。目前,钴酸镧薄膜主要有两种物理制备方法,一种是高真空频射磁控溅射技术,另一种是高真空脉冲激光沉积技术。而这两种钴酸镧薄膜的制备都需要用到高质量的钴酸镧靶材,其中高真空脉冲激光沉积技术是最近几年发展起来的前沿科学研究中长膜的先进技术。使用高真空脉冲激光沉积技术制备钴酸镧薄膜对所用到的钴酸镧薄陶瓷相的纯度要求很高,并且需要的靶材应符合相应脉冲沉积系统的尺寸要求。所以符合脉冲激光沉积系统的高质量酸镧薄陶瓷靶材是生长相应高质量外延薄膜的先决条件和关键因素。
而传统的靶材制备方法主要有两种,一种是溶胶—凝胶法,一种是传统的固相反应法。溶胶—凝胶法是用含有高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经缓慢聚合,最终形成凝胶。凝胶再经过干燥、烧结固化制备出单一相的粉末材料,然后再成型烧结得到致密陶瓷材料。该方法工艺复杂,步骤繁琐,并且不容易直接得到适用于脉冲激光沉积系统(PLD系统)的块体靶材。而传统的固相反应法是直接将含有目标物质的氧化物混合压制成型后在烧结温度下长时间烧制,使其充分反应形成目标物质的陶瓷材料。但这种直接烧制会使反应不充分,高温下长时间烧制靶材各部分受内部应力不均,容易碎裂,而且时间成本高。
因此,寻求工艺简单、时间成本低、效益高的制备出纯相钴酸镧陶瓷靶的方法是符合科学技术发展需求的重要一步。
发明内容
本发明的目的是提供一种用于PLD的钴酸镧陶瓷靶材及其制备方法与应用,可以生长出用于脉冲激光沉积系统的钴酸镧靶材,减小烧结过程中的能耗及碎裂概率,工艺简单,成本低廉。
为达上述目的,本发明提供了一种用于PLD的钴酸镧陶瓷靶材的制备方法,包括以下步骤:
(1)混合并造粒
以La和Co物质的量为1:1的比例称取氧化镧和四氧化三钴粉末,于有机溶剂中混合并首次研磨后,加热干燥,再依次加入有机溶剂和粘结剂进行再次研磨,再次加热干燥,制得混合粉末;
(2)预烧
将步骤(1)制得的混合粉末升温至脱水脱碳,冷却至室温,研磨制得前驱体粉末;
(3)压靶成型
将前驱体粉末于10-15MPa保持7-15min,压制成靶材形状;
(4)烧结
将步骤(3)所得物于常压、空气氛围中并程序升温后烧结,制得。
采用上述方案的有益效果是:首先通过LaCoO3的配比,称量氧化镧和四氧化三钴,于有机溶剂中混合均匀,有机溶剂的流动性可以增大两种粉末的扩散性,使搅拌和研磨更均匀;再依次加入有机溶剂和粘结剂,先加入有机溶剂可以作为混合粉末和粘结剂的载体,使混合粉末与粘结剂可以充分混合,粘结剂可以使混合粉末有效粘结,再升温至预烧温度即可以脱除有机溶剂中的水和粘结剂中的碳,就会得到初步反应的LCO前驱体粉末。放在模具中压制成型,就可以得到成型的靶材,最后于烧结温度下进行高温烧结,就可以得到致密的LCO陶瓷靶材。在靶材烧制中,因为目标物质为钴酸镧(LaCoO3),所以为了得到纯相的材料,不能引入其他元素,因此原材料只能是只含La、Co、O三种元素的化合物。由于对La而言,其氧化物只有氧化镧(La2O3),而对Co而言,有两种氧化物,即一氧化钴(CoO)和四氧化三钴(Co3O4),但CoO具有高毒性,因此从安全性角度来讲Co3O4是最好的选择,所以在烧制钴酸镧靶材时,使用氧化镧和四氧化三钴。
进一步地,步骤(1)中有机溶剂均为无水乙醇,所述首次研磨中无水乙醇与混合粉末的添加比例为1.0-1.5mL:1g,所述再次研磨中再次添加无水乙醇与粘结剂的添加比例为体积比4-5:1。
采用上述方案的有益效果是:液体具有流动性,当粉末放入液体后会扩散,因此多种不同类型粉末放入同一液体会由于扩散性使这些粉末混合,无水乙醇边起到了这样的作用,此外无水乙醇易挥发,在50、60℃就会挥发掉,所以作为载体使两种粉末混合后在干燥箱使酒精挥发,不会影响原材料,就算无水乙醇中有0.01%的水分,也会在后续脱水处理掉。
进一步地,步骤(1)中首次研磨的时间和加入粘结剂后再次研磨的时间分别为10-20min和5-10min。
进一步地,步骤(1)中两次加热干燥的温度均为55-65℃,干燥时间均为20-30min。
进一步地,步骤(1)中粘结剂为聚乙烯醇和去离子水于80-120℃水浴锅中加热搅拌6-10h后制得的,其中聚乙烯醇与去离子水的添加比例为1g:10.0-15.0mL。
进一步地,步骤(2)中升温过程为:首先室温条件下升温至150-200℃保持1-2h,再升温至450-550℃保持1-2h,最后升温至800-950℃保持8-12h,其中升温速率均为7-10℃/min。
采用上述方案的有益效果是:首先升温可以除去混合粉末中的残余水分,第二次升温可以作为温度的缓冲,避免温度升高过快导致破裂,最后升温可以在粘结剂的作用下初步反应并出去粘结剂中的碳。
进一步地,步骤(4)中程序升温过程为:由室温升温至800-950℃保持1-3h,然后升温至1150-1300℃并保持10-12h,最后自然冷却至室温。
采用上述方案的有益效果是:首先升温到预烧结温度,粘结剂为碳水化合物,在800-950℃足够使其变为二氧化碳,所以既起到使粉末充分反应的作用,也不会污染原材料,然后升温到烧结温度,就可以得到钴酸镧相的陶瓷靶材。
采用用于PLD的钴酸镧陶瓷靶材的制备方法制备得到的用于PLD的钴酸镧陶瓷靶材。
一种LCO外延薄膜,通过用于PLD的钴酸镧陶瓷靶材进行制备。
进一步地,制备过程包括:将用于PLD的钴酸镧陶瓷靶材使用砂纸打磨光滑,使用PLD系统进行激光溅射,再用于生长单晶LCO薄膜;其中,激光的能量密度为1.0-2.0J/cm2
综上所述,本发明具有以下优点:
1、本发明所提供的制备方法,原料来源丰富,价格低廉,操作容易,制作时间成本低而且安全无污染;
2、本发明所制备的钴酸镧陶瓷靶材相纯且致密,在靶材制备过程中使用了由聚乙烯醇制备的粘结剂,能降低烧制过程中的碎裂概率,而且粘结剂是碳水化合物,高温下转化为了二氧化碳,对靶材无污染;
3、本发明所述的钴酸镧靶材适用于脉冲激光沉积系统,并且能用脉冲激光系统生长出高质量的不同晶体学取向的钴酸镧外延薄膜。
附图说明
图1为实施例1制备的钴酸镧陶瓷靶材的外观形貌图;
图2为实施例1制备的钴酸镧陶瓷靶材的XRD图;
图3为应用例制备的钴酸镧陶瓷靶材用于PLD系统生长LCO外延时监测到的RHEED振荡曲线;
图4为应用例制备的钴酸镧陶瓷靶材用于PLD系统生长的LCO外延薄膜的XRD谱图。
具体实施方式
以下结合实施例对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
本实施例提供了一种用于PLD的钴酸镧陶瓷靶材的制备方法,包括以下步骤:
(1)混合并造粒
(1.1)用电子天平称取5.36g三氧化二镧和2.64g四氧化三钴置于研钵中;
(1.2)称取2g聚乙烯醇放于50mL烧杯中,加入25mL去离子水,并放入搅拌子后用锡箔纸封住烧杯口,将烧杯放入100℃水浴锅进行加热搅拌,8h后得到粘结剂;
(1.3)向步骤(1.1)研钵中加入12mL无水乙醇并研磨15min,放入60℃干燥箱中通风干燥30min;
(1.4)将干燥后的粉末研磨2min后,加入10mL无水乙醇后搅拌,再加入2mL步骤(1.2)制得的粘结剂,再次研磨15min后置于60℃干燥箱中干燥30min;
(2)预烧
将步骤(1.4)所得物放入坩埚并置于马弗炉中,首先升温至200℃并保温2h,再升温至500℃并保温2h,最后再升温至900℃并保温10h,冷却至室温得到LCO前驱体粉末;其中升温速率均为8℃/min;
(3)压靶成型
将步骤(2)制得的前驱体粉末置于模具中,于12MPa压力下压制10min,得到直径为1英寸,厚度为4mm规格的预烧结靶材;
(4)烧结
将预烧结靶材置于马弗炉中,于常压、空气氛围中先以8℃/min的升温速率升温至900℃保持3h,再升温至1250℃烧结10h即可制得致密的用于PLD的钴酸镧陶瓷靶材。
将实施例1制得的用于PLD的钴酸镧陶瓷靶材依次使用150号和80号砂纸打磨,靶材外貌见图1。利用X射线衍射仪对本实施例所制备的用于PLD的钴酸镧陶瓷靶材进行物性表征,结果见图2。
由图2可知,与标准卡片对照可以确定所烧制的钴酸镧陶瓷靶材为纯相的LaCoO3钙钛矿结构。并且在XRD谱图中,衍射峰强度高,衍射峰尖锐且半高宽较小,这表明了制备的LaCoO3结晶性非常好。
实施例2
本实施例提供了一种用于PLD的钴酸镧陶瓷靶材的制备方法,包括以下步骤:
(1)混合并造粒
(1.1)用电子天平称取5.36g三氧化二镧和2.64g四氧化三钴置于研钵中;
(1.2)称取1g聚乙烯醇放于50mL烧杯中,加入5mL去离子水,并放入搅拌子后用锡箔纸封住烧杯口,将烧杯放入100℃水浴锅进行加热搅拌,8h后得到粘结剂;
(1.3)向步骤(1.1)研钵中加入10mL无水乙醇并研磨15min,放入60℃干燥箱中通风干燥30min;
(1.4)将干燥后的粉末研磨2min后,加入20mL无水乙醇后搅拌,再加入4mL步骤(1.2)制得的粘结剂,再次研磨15min后置于60℃干燥箱中干燥30min;
(2)预烧
将步骤(1.4)所得物放入坩埚并置于马弗炉中,首先升温至150℃并保温2h,再升温至450℃并保温2h,最后再升温至800℃并保温10h,冷却至室温得到LCO前驱体粉末;其中升温速率均为10℃/min;
(3)压靶成型
将步骤(2)制得的前驱体粉末置于模具中,于12MPa压力下压制10min,得到直径为1英寸,厚度为4mm规格的预烧结靶材;
(4)烧结
将预烧结靶材置于马弗炉中,于常压、空气氛围中先以10℃/min的升温速率升温至800℃保持3h,再升温至1150℃烧结10h即可制得致密的用于PLD的钴酸镧陶瓷靶材。
实施例3
本实施例提供了一种用于PLD的钴酸镧陶瓷靶材的制备方法,包括以下步骤:
(1)混合并造粒
(1.1)用电子天平称取5.36g三氧化二镧和2.64g四氧化三钴置于研钵中;
(1.2)称取4g聚乙烯醇放于50mL烧杯中,加入30mL去离子水,并放入搅拌子后用锡箔纸封住烧杯口,将烧杯放入100℃水浴锅进行加热搅拌,8h后得到粘结剂;
(1.3)向步骤(1.1)研钵中加入12mL无水乙醇并研磨15min,放入60℃干燥箱中通风干燥30min;
(1.4)将干燥后的粉末研磨2min后,加入10mL无水乙醇后搅拌,再加入2mL步骤(1.2)制得的粘结剂,再次研磨15min后置于60℃干燥箱中干燥30min;
(2)预烧
将步骤(1.4)所得物放入坩埚并置于马弗炉中,首先升温至200℃并保温2h,再升温至550℃并保温2h,最后再升温至950℃并保温10h,冷却至室温得到LCO前驱体粉末;其中升温速率均为8℃/min;
(3)压靶成型
将步骤(2)制得的前驱体粉末置于模具中,于12MPa压力下压制10min,得到直径为1英寸,厚度为4mm规格的预烧结靶材;
(4)烧结
将预烧结靶材置于马弗炉中,于常压、空气氛围中先以8℃/min的升温速率升温至950℃保持3h,再升温至1300℃烧结10h即可制得致密的用于PLD的钴酸镧陶瓷靶材。
应用例
将实施例1得到的钴酸镧陶瓷靶材放入脉冲激光沉积系统的真空腔,设置10mm×10mm的激光溅射扫描区域,激光能量设置为260mJ,激光脉冲设置为5Hz,清理靶材表面。然后放入准备好的(001)晶体取向的5mm×5mm单晶STO(SrTiO3)基片,并将基片加热到生长温度,通入氧压为100mTorr的氧气,待条件稳定后开启反射高能电子衍射(RHEED)对LaCoO3外延生长进行原子级监控,生长过程的RHEED监控结果如图3所示。生长结束后得到了高质量的LaCoO3外延薄膜。
对本应用例中用实施例1得到的钴酸镧陶瓷靶材制备的上述高质量LaCoO3外延薄膜做了单晶XRD的物相表征,XRD结果见图4。图4中能清晰的看到STO(001)单晶衬底的衍射峰和LaCoO3单晶薄膜的峰,薄膜峰衍射强度高,并且由峰位计算得到的LaCoO3晶格常数为
Figure BDA0002994536390000091
与受张应力的外延LaCoO3薄膜晶格常数一致,所以用本方法得到钴酸镧陶瓷靶材制备的LaCoO3外延薄膜质量非常高。
对比例
本对比例提供了一种用于PLD的钴酸镧陶瓷靶材的制备方法,包括以下步骤:
(1)混合并造粒
用电子天平称取5.36g三氧化二镧和2.64g四氧化三钴置于研钵中,研磨60min,得到混合粉末;
(2)预烧
将混合粉末放入坩埚并置于马弗炉中,首先升温至200℃并保温2h,再升温至500℃并保温2h,最后再升温至900℃并保温10h,冷却至室温得到LCO前驱体粉末;其中升温速率均为8℃/min;
(3)压靶成型
将步骤(2)制得的前驱体粉末置于模具中,于12MPa压力下压制10min,得到直径为1英寸,厚度为4mm规格的预烧结靶材;
(4)烧结
将预烧结靶材置于马弗炉中,于常压、空气氛围中先以8℃/min的升温速率升温至900℃保持3h,再升温至1250℃烧结10h,制得的钴酸镧陶瓷靶材,破裂无法使用。
由对比例可知,没有使用无水乙醇使粉末混合均匀,并且也未使用粘结剂造粒使预烧结过程各部分反应不均匀,所以最终导致烧制的靶材破裂无法使用。
虽然结合附图对本发明的具体实施方式进行了详细地描述,但不应理解为对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可作出的各种修改和变形仍属本专利的保护范围。

Claims (4)

1.一种用于PLD的钴酸镧陶瓷靶材的制备方法,其特征在于,包括以下步骤:
(1)混合并造粒
以La和Co物质的量为1:1的比例称取氧化镧和四氧化三钴粉末,于有机溶剂中混合并首次研磨后,加热干燥,再依次加入有机溶剂和粘结剂进行再次研磨,再次加热干燥,制得混合粉末;混合研磨的时间和加入粘结剂后研磨的时间分别为10-20min和5-10min;两次加热干燥的温度均为55-65℃,干燥时间均为20-30min;
所述有机溶剂均为无水乙醇,所述首次研磨过程中加入的无水乙醇与混合粉末的添加比例为1.0-1.5mL:1g,所述再次研磨过程中再次添加无水乙醇与粘结剂的添加比例为体积比4-5:1;
所述粘结剂为聚乙烯醇和去离子水于80-120℃水浴锅中加热搅拌6-10h后制得的,其中聚乙烯醇与去离子水的添加比例为1g:10.0-15.0mL;
(2)预烧
将步骤(1)制得的混合粉末升温至脱水脱碳,冷却至室温,研磨制得前驱体粉末;
升温过程为:首先室温条件下升温至150-200℃保持1-2h,再升温至450-550℃保持1-2h,最后升温至800-950℃保持8-12h,其中升温速率均为7-10℃/min;
(3)压靶成型
将前驱体粉末于10-15MPa保持7-15min,压制成靶材形状;
(4)烧结
将步骤(3)所得物于常压、空气氛围中程序升温烧结,制得;所述程序升温过程为:由室温升温至800-950℃保持1-3h,然后升温至1150-1300℃并保持10-12h,最后自然冷却至室温,升温速率均为7-10℃/min。
2.采用权利要求1所述的用于PLD的钴酸镧陶瓷靶材的制备方法制备得到的用于PLD的钴酸镧陶瓷靶材。
3.一种LCO外延薄膜,其特征在于,通过权利要求2所述的用于PLD的钴酸镧陶瓷靶材进行制备。
4.如权利要求3所述的LCO外延薄膜,其特征在于,制备过程包括:将用于PLD的钴酸镧陶瓷靶材使用砂纸打磨光滑,使用PLD系统进行激光溅射,再用于生长单晶LCO薄膜;其中,激光的能量密度为1.0-2.0J/cm2
CN202110331198.1A 2021-03-26 2021-03-26 一种用于pld的钴酸镧陶瓷靶材及其制备方法与应用 Expired - Fee Related CN113072380B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110331198.1A CN113072380B (zh) 2021-03-26 2021-03-26 一种用于pld的钴酸镧陶瓷靶材及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110331198.1A CN113072380B (zh) 2021-03-26 2021-03-26 一种用于pld的钴酸镧陶瓷靶材及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN113072380A CN113072380A (zh) 2021-07-06
CN113072380B true CN113072380B (zh) 2022-09-16

Family

ID=76611561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110331198.1A Expired - Fee Related CN113072380B (zh) 2021-03-26 2021-03-26 一种用于pld的钴酸镧陶瓷靶材及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN113072380B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1058276A2 (en) * 1999-06-03 2000-12-06 Matsushita Electric Industrial Co., Ltd. Thin film thermistor element and method for the fabrication of thin film thermistor element
CN101913869A (zh) * 2010-08-12 2010-12-15 哈尔滨工业大学 一种可低温烧结的氧化物热电材料及其制备方法
CN103664170A (zh) * 2012-08-28 2014-03-26 河北联合大学 镍酸镧陶瓷靶材的制备技术
CN104404464A (zh) * 2014-11-25 2015-03-11 天津大学 射频反应溅射外延镧锶钴氧薄膜的制备方法
CN104944951A (zh) * 2015-06-18 2015-09-30 盐城工学院 一种bmn陶瓷靶材的制备方法
CN109182981A (zh) * 2018-11-16 2019-01-11 福建师范大学 一种钴酸锶薄膜材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1058276A2 (en) * 1999-06-03 2000-12-06 Matsushita Electric Industrial Co., Ltd. Thin film thermistor element and method for the fabrication of thin film thermistor element
CN101913869A (zh) * 2010-08-12 2010-12-15 哈尔滨工业大学 一种可低温烧结的氧化物热电材料及其制备方法
CN103664170A (zh) * 2012-08-28 2014-03-26 河北联合大学 镍酸镧陶瓷靶材的制备技术
CN104404464A (zh) * 2014-11-25 2015-03-11 天津大学 射频反应溅射外延镧锶钴氧薄膜的制备方法
CN104944951A (zh) * 2015-06-18 2015-09-30 盐城工学院 一种bmn陶瓷靶材的制备方法
CN109182981A (zh) * 2018-11-16 2019-01-11 福建师范大学 一种钴酸锶薄膜材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"The fabrication of layer‐by‐layer mode LaCoO3 film by pulsed laser deposition";Yue Liu et al;《SURFACE AND INTERFACE ANALYSIS》;20170724;第49卷(第11期);第1160-1164页 *

Also Published As

Publication number Publication date
CN113072380A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
US7875155B2 (en) Transparent electrically conductive film and method for production thereof
CN106927809B (zh) 一种高极化强度铁酸铋陶瓷材料及其制备方法
CN110002853A (zh) 两步烧结工艺制备igzo陶瓷靶材的方法
CN115557787B (zh) 一种倍半氧化物透明陶瓷及其制备方法
CN115385683B (zh) 一种兼具高居里温度和高压电系数的压电陶瓷材料及其制备方法
CN101483219A (zh) Co-Ga共掺的ZnO基稀磁半导体薄膜及其制备方法
CN101580393B (zh) 一种铪酸钇透明陶瓷的制备方法
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN114150375A (zh) 一种磁控共溅射制备Fe-Sn-Se-Te四元薄膜的方法
CN102815941B (zh) 稀土离子掺杂锆酸镧钆透明陶瓷材料及其制备方法
CN109574680A (zh) 一种气固反应结合液相烧结法制备多孔氮化硅陶瓷的方法
CN108218422A (zh) 耐磨陶瓷流延成型用浆料及其应用方法
CN113185277B (zh) 一种高热稳定性陶瓷材料及其制备方法和应用
CN113072380B (zh) 一种用于pld的钴酸镧陶瓷靶材及其制备方法与应用
CN104909747A (zh) 一种高介电常数、低介电损耗CaCu3Ti4-xZrxO12陶瓷的制备方法
CN102815945B (zh) 锆酸镧钆透明陶瓷材料及其制备方法
CN108603276A (zh) 多晶介电体薄膜及电容元件
CN116003106A (zh) 一种高介电纯相高熵氧化物材料及其制备方法
CN102557624B (zh) 一种锆酸钇透明陶瓷的制备方法
WO2022105203A1 (zh) 一种新型透明导电氧化物薄膜的制备方法及其应用
CN114380340A (zh) 无限层镍基超导体前驱物Nd1-xSrxNiO3的制备方法
CN113355732A (zh) 一种稀土掺杂铌酸钠光致发光单晶及其制备方法
CN111454059A (zh) 一种制备LaxSr1-xCoO3-δ复合氧化物的方法
JPH0570286A (ja) 透明酸化亜鉛の製造方法
CN113235159B (zh) 一种制备单晶镍铁氧体薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220916