CN111454059A - 一种制备LaxSr1-xCoO3-δ复合氧化物的方法 - Google Patents

一种制备LaxSr1-xCoO3-δ复合氧化物的方法 Download PDF

Info

Publication number
CN111454059A
CN111454059A CN202010428603.7A CN202010428603A CN111454059A CN 111454059 A CN111454059 A CN 111454059A CN 202010428603 A CN202010428603 A CN 202010428603A CN 111454059 A CN111454059 A CN 111454059A
Authority
CN
China
Prior art keywords
coo
mixture
composite oxide
temperature
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010428603.7A
Other languages
English (en)
Inventor
崔月华
张向华
刘潇
兰晓松
钟育其
刘明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Yaoneng Energy Saving Technology Co ltd
Chongqing Institute of Green and Intelligent Technology of CAS
Original Assignee
Chengdu Yaoneng Energy Saving Technology Co ltd
Chongqing Institute of Green and Intelligent Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Yaoneng Energy Saving Technology Co ltd, Chongqing Institute of Green and Intelligent Technology of CAS filed Critical Chengdu Yaoneng Energy Saving Technology Co ltd
Priority to CN202010428603.7A priority Critical patent/CN111454059A/zh
Publication of CN111454059A publication Critical patent/CN111454059A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于半导体材料技术领域,具体公开了一种制备LaxSr1‑xCoO3‑δ复合氧化物的方法,包括如下步骤:将La(NO3)3·6H2O或Co(NO3)2·6H2O溶于水中,加入沉淀剂,生成沉淀;将沉淀烘干,按照预定LaxSr1‑xCoO3的化学式加入理论化学计量比的La2O3、CoO和SrCO3,混合后润湿,研磨;然后烧结,冷却得到LaxSr1‑xCoO3‑δ复合氧化物。本发明结合固相和液相方法的优点,通过部分沉淀反应物在固相合成中有一部分氧化物或氢氧化物以非晶态的形式存在,从而提高固相合成中界面反应的速度,促进反应物的彼此渗透,降低合成温度,从而避免原料的损失及对环境的污染。本方法步骤简单,反应条件容易控制,适用于工业化规模化生产。

Description

一种制备LaxSr1-xCoO3-δ复合氧化物的方法
技术领域
本发明涉及半导体材料技术领域,特别是涉及一种制备LaxSr1-xCoO3-δ复合氧化物的方法。
背景技术
复合型稀土金属氧化LaxSr1-xCoO3-δ是一种远红外材料陶瓷,并且其具有一定的半导体性能,是很好的半导体材料,由于其钙钛矿的结构具有稳定的晶体结构,并且Co金属氧化物在一定的氧化还原条件下,可以进行变价过程,因此在催化过程中有较好的促进氧化还原循环过程,因此可以作为较好的催化剂材料,用作各种催化剂的载体。并且复合型稀土金属氧化LaxSr1-xCoO3-δ作为固体氧化物电解质燃料电池的氧化极板,具有很好的氧化催化活性和稳定性。LaxSr1-xCoO3-δ还可以与磁性物质相结合,提高材料的顺磁特性。因此开发稀土金属 LaxSr1-xCoO3-δ复合型氧化物具有很好的应用价值。
其中,因为La和Sr的摩尔比例不同会造成x数值的不同,进而直接影响晶体的晶格参数和远红外线发射能力,导电和导热的性能也受到很大的影响。其中,δ的数值的不同可以引起材料的晶格缺陷,随着δ的数值的增大,(1)材料的导电性能增强,电子跃迁能力增强,半导体更容易导电;(2)吸附气体分子的能力,材料的催化活性更高;(3)表面能提高,亲水性也会提高;(4)吸收光的能力增强,辐射远红外的能力增强。
目前制LaxSr1-xCoO3-δ的方法,有射频磁控溅射方法,固相合成法,液相共沉淀法等等。其中每种方法都有一定的特点,其中射频磁控溅射法,可以控制比较精确的x值和δ值,但是这种方法需要设备昂贵,控制反应条件苛刻,难于实现工业化规模化生产。液相沉淀法由于反应过程涉及到溶剂相,各组分的沉淀条件存在差异,同时沉淀时难免造成材料的一定的流失,进而对环境造成比较严重的污染。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种制备LaxSr1-xCoO3-δ复合氧化物的方法,用于解决现有技术中LaxSr1-xCoO3-δ的制备方法反应条件苛刻、难于实现工业化生产、原料损失严重、污染环境等问题。
为实现上述目的及其他相关目的,本发明提供一种制备LaxSr1-xCoO3-δ复合氧化物的方法,包括如下步骤:
(1)将La(NO3)3·6H2O或Co(NO3)2·6H2O溶于水中,加入沉淀剂,生成沉淀,将沉淀烘干;
(2)将步骤(1)得到的沉淀,按照化学式LaxSr1-xCoO3中La、Sr、Co的理论化学计量比x:1-x:1加入La2O3、CoO和SrCO3,0.5≤x≤0.9,混合后润湿,研磨得到混合物;
(3)将步骤(2)得到的混和物烧结,冷却后得到LaxSr1-xCoO3-δ复合氧化物。
进一步,所述LaxSr1-xCoO3-δ复合氧化物中,0<δ<1.5。
进一步,步骤(1)中,所述沉淀剂为氨水。
进一步,步骤(1)中,烘干温度为80-120℃。将烘干温度控制在上述范围内,可以使前驱体充分干燥,去除沉淀物孔道上表面吸附的水。
进一步,步骤(2)中,采用水、乙醇或水和乙醇的混合物润湿混合物。通过不同研磨润湿试剂可以改变氧化物中δ的值,即改变产物的含氧量。
进一步,步骤(2)中,在玛瑙研钵中研磨混合物。
进一步,步骤(2)中,研磨时间为4-8小时,优选为6小时。
进一步,步骤(3)中,混合物在惰性或氧化气氛下进行烧结。烧结时在氧化或惰性气氛下进行,可以改变复合氧化物的晶体组分,降低烧失率。
进一步,步骤(3)中,烧结时间为4-8小时。将烧结时间控制在上述范围内,可使材料烧结充分,固相反应生成目标化学计量的化合物。烧结时间的改变可以改变材料的晶体大小或结构。
进一步,步骤(3)中,烧结温度不低于步骤(2)得到的沉淀物的分解温度,并低于复合氧化物的熔点温度。
进一步,步骤(3)中,烧结温度为800-1000℃。
进一步,步骤(3)中,烧结时逐步升温至800-1000℃。逐步升温的方式能让晶体有更充分的时间生长,生长更加完全。
进一步,步骤(3)中,先将混合物在通风条件下干燥后,再进行烧结。先将混合物干燥后再烧结是为了保持材料的完整性,否则会让材料会在高温下失水造成物理性裂痕,不易于烧结扩散过程。
进一步,步骤(3)中,混合物在40-60℃通风条件下干燥,便于易挥发组分挥发和水分挥发。
本发明另一方面还提供一种采用上述制备方法制到的LaxSr1-xCoO3-δ复合氧化物。
如上所述,本发明的制备LaxSr1-xCoO3-δ复合氧化物的方法,具有以下有益效果:
本发明通过固相和液相方法的结合,融合了固相合成和液相沉淀法合成的优点,因为在固相合成过程中,研磨进行混合均匀以及晶界上的部分反应是进行比较缓慢的,通过部分沉淀反应物使得在固相合成中有一部分氧化物或氢氧化物以一种非晶态的形式存在,这样就可以大大提高固相合成中界面反应的速度,促进反应物的彼此渗透,从而也降低了固溶体 LaxSr1-xCoO3-δ的合成温度,从而避免原料的损失及对环境的污染。
本方法步骤简单,反应条件容易控制,适用于工业化规模化生产。
附图说明
图1显示为本发明实施例1-6中产物的实物图。
图2显示为本发明实施例1-6中产物的X-射线衍射(XRD)图。
图3显示为本发明对比例1中产物的X-射线衍射(XRD)图。
图4显示为本发明对比例2中产物的X-射线衍射(XRD)图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
实施例1
一种制备LaxSr1-xCoO3-δ复合氧化物的方法,步骤如下:
(1)将Co(NO3)2·6H2O称取1g含量溶于少量去离子水中,并加入氨水,生成粉红色沉淀;
(2)沉淀经80℃烘干6小时;
(3)将步骤(2)得到的样品,按照预定LaxSr1-xCoO3的化学式加入余量的La2O3:0.97g, SrCO3:0.85g、和CoO:0.61g后,用水润湿其混和物,在玛瑙研钵中研磨6小时;
(4)混合物在50℃通风条件下干燥;
(5)在空气气氛下逐步升温在800℃烧结8小时,升温曲线为:从室温,升温至200℃,以5℃/min,恒温200℃,1小时;再以5℃/min,升温至800℃,恒温800℃,8小时;然后随炉冷却,得到产物,即LaxSr1-xCoO3-δ复合氧化物。
实施例2
一种制备LaxSr1-xCoO3-δ复合氧化物的方法,步骤如下:
(1)将Co(NO3)2·6H2O称取1g含量溶于少量去离子水中,并加入氨水,生成粉红色沉淀;
(2)沉淀经80℃烘干6小时;
(3)将步骤(2)得到的样品,按照预定LaxSr1-xCoO3的化学式加入余量的La2O3:0.97g, SrCO3:0.85g、和CoO:0.61g后,用水与乙醇1:1润湿其混和物,在玛瑙研钵中研磨6小时;
(4)混合物在50℃通风条件下干燥;
(5)在空气气氛下逐步升温在1000℃烧结4小时,升温曲线为:从室温,升温至150℃,以8℃/min,恒温150℃,1小时;再以8℃/min,升温至1000℃,恒温1000℃,4小时;然后随炉冷却,得到产物,即LaxSr1-xCoO3-δ复合氧化物。
实施例3
一种制备LaxSr1-xCoO3-δ复合氧化物的方法,步骤如下:
(1)将Co(NO3)2·6H2O称取2g含量溶于少量去离子水中,并加入氨水,生成粉红色沉淀;
(2)沉淀经80℃烘干6小时;
(3)将步骤(2)得到的样品,按照预定LaxSr1-xCoO3的化学式加入余量的La2O3:0.97g, SrCO3:0.85g、和CoO:0.36g后,用水与乙醇1:1润湿其混和物,在玛瑙研钵中研磨6小时;
(4)混合物在50℃通风条件下干燥;
(5)在空气气氛下逐步升温在900℃烧结6小时,升温曲线为:从室温,升温至150℃,以6℃/min,恒温150℃,1小时;再以6℃/min,升温至900℃,恒温900℃,6小时;然后随炉冷却,得到产物,即LaxSr1-xCoO3-δ复合氧化物。
实施例4
一种制备LaxSr1-xCoO3-δ复合氧化物的方法,步骤如下:
(1)将Co(NO3)2·6H2O称取2g含量溶于少量去离子水中,并加入氨水,生成粉红色沉淀;
(2)沉淀经120℃烘干6小时;
(3)将步骤(2)得到的样品,按照预定LaxSr1-xCoO3的化学式加入余量的La2O3:0.97g, SrCO3:0.85g、和CoO:0.36g后,用乙醇润湿其混和物,在玛瑙研钵中研磨6小时;
(4)混合物在50℃通风条件下干燥;
(5)在氮气气氛下逐步升温在900℃烧结4小时,升温曲线为:升温曲线为:从室温,升温至200℃,以8℃/min,恒温200℃,1小时;再以8℃/min,升温至900℃,恒温900℃, 4小时;然后随炉冷却,得到产物,即LaxSr1-xCoO3-δ复合氧化物。
实施例5
一种制备LaxSr1-xCoO3-δ复合氧化物的方法,步骤如下:
(1)将La(NO3)2·6H2O称取0.258g含量溶于少量去离子水中,并加入氨水0.273mL,生成白色沉淀;
(2)沉淀经去离子水多次清洗后,烘干7小时,烘干温度为120℃;
(3)将步骤(2)得到的样品,按照预定LaxSr1-xCoO3的化学式加入余量的0.87gLa2O3、 0.85g SrCO3、0.87g CoO后,用水润湿其混和物,在玛瑙研钵中研磨6小时,其中最初和结束前半小时由人工研磨,中间时间由机械研磨。
(4)混合物在50℃通风条件下干燥;
(5)在空气气氛下逐步升温,在1000℃烧结5小时,升温曲线为:室温-600℃,5℃/min,在600℃保温2h;600-800℃,5℃/min,在800℃保温2h;800-1000℃,5℃/min,在1000℃下保温5h,然后随炉冷却,得到产物,即LaxSr1-xCoO3-δ复合氧化物。
实施例6
一种制备LaxSr1-xCoO3-δ复合氧化物的方法,步骤如下:
(1)将La(NO3)2·6H2O称取0.406g含量溶于少量去离子水中,并加入氨水0.429mL,生成白色沉淀;
(2)沉淀经去离子水多次清洗后,烘干8小时,烘干温度为100℃;
(3)将步骤(2)得到的样品,按照预定LaxSr1-xCoO3的化学式加入余量的1.37gLa2O3、 0.16g SrCO3、0.78g CoO后,用水润湿其混和物,在玛瑙研钵中研磨6小时,其中最初和结束前半小时由人工研磨,中间时间由机械研磨。
(4)混合物在50℃通风条件下干燥;
(5)在空气气氛下逐步升温,在800℃烧结5小时,升温曲线为:室温-600℃,5℃/min,在600℃保温2h;600-800℃,5℃/min,在800℃保温2h,然后随炉冷却,得到产物,即LaxSr1-xCoO3-δ复合氧化物。
对比例1
本对比例单独使用液相合成法制备LaxSr1-xCoO3-δ复合氧化物,步骤如下:
(1)用称量纸分别称取La(NO3)3·6H2O、Sr(NO3)2、Co(NO3)2·6H2O各16.20g、0.88g、12.10g,倒入500mL烧杯中,加入适量的去离子水,然后放置于磁力搅拌器上先缓慢搅拌后提升速度搅拌至溶解;称取14.96g H2C2O4倒入2000mL的烧杯中,加入1L去离子水搅拌溶解。
(2)沉淀:在溶解的草酸溶液中缓慢加入硝酸盐溶液,并搅拌;然后用氨水调节pH至 9-12(靠近11),直至完全沉淀为止;静置一段时间(具体时间看沉淀看溶液的分离效果)。
(3)静置以后,去除上清液;然后加入去离子水搅拌、离心这种方式(反复加水搅拌、离心)来清洗样品使得清洗液的达到pH=7。
(4)烘干:设置烘箱温度80℃,然后将装有样品的烧杯放入烘箱鼓风干燥箱中,烘干时间2小时。(温度不能过高,因为样品中可能有残留的氨气)
(5)玛瑙研磨:清洗研钵,烘干,放入样品研磨,至细小、均匀。
(6)将研磨好的样品放置于洁净的坩埚中(平均分成2份)。
(7)在空气气氛下逐步升温在1000℃烧结5小时,烧结升温曲线为:室温-400℃,5℃ /min,在400℃保温2h;400-600℃,5℃/min(40min),在600℃保温2h;600-1000℃,5℃ /min(80min),在1000℃保温5h;然后随炉自然冷却,得到产物,即LaxSr1-xCoO3-δ复合氧化物。
对比例2
本对比例单独使用固相合成法制备LaxSr1-xCoO3-δ复合氧化物,步骤如下:
(1)按照预定LaxSr1-xCoO3的化学式加入余量的La2O3:0.41g,SrCO3:3.33g、和CoO:1.88g后,用乙醇润湿其混和物,在玛瑙研钵中研磨6小时;
(2)混合物在50℃通风条件下干燥;
(3)在空气气氛下逐步升温,在1000℃烧结5小时,升温曲线为:室温-600℃,5℃ /min,在600℃保温2h;600-800℃,5℃/min,在800℃保温2h;800-1000℃, 5℃/min,在1000℃保温5h;然后随炉冷却,得到产物,即LaxSr1-xCoO3-δ复合氧化物。
图1显示为实施例1-6中得到的产物的实物图。
通过X射线衍射(XRD)对实施例1-6、对比例1-2中得到的LaxSr1-xCoO3-δ复合氧化物进行表征,结果如图2、图3、图4、表1、表2所示。
表1 不同介质固相合成的样品烧失率
Figure BDA0002499651240000061
Figure BDA0002499651240000071
表2 X-射线衍射结果
Figure BDA0002499651240000072
从表1、表2及图2-4可出得出,实施例1-6中,不同La与Sr比例及烧结条件下得到的材料烧失率略有不同,当总体来说烧失率均高于对比例1和2,说明本方法减少了原料的损失。对于XRD结果的进一步半定量分析发现,实施例1-6、对比例1-2生成了组成及含量不同的LaxSr1-xCoO3-δ复合材料,其组成如表2所示,上述结果表明,液相法在制备过程中,有部分成分随清洗液流失,造成产物各元素比例发生变化;固相法由于原料各成分难以完全均匀混合,造成产物不纯;而本发明的方法较对比例1和2,在不同的生成条件下,有更多的复合氧化物产生。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种LaxSr1-xCoO3-δ复合氧化物的制备方法,其特征在于,包括如下步骤:
(1)将La(NO3)3·6H2O或Co(NO3)2·6H2O溶于水中,加入沉淀剂,生成沉淀,将沉淀烘干;
(2)将步骤(1)得到的沉淀,按照化学式LaxSr1-xCoO3中La、Sr、Co的理论化学计量比加入x:1-x:1加入La2O3、CoO和SrCO3,0.5≤x≤0.9,混合后润湿,研磨得到混合物;
(3)将步骤(2)得到的混和物烧结,冷却后得到LaxSr1-xCoO3-δ复合氧化物。
2.根据权利要求1所述的制备方法,其特征在于:步骤(1)中,所述沉淀剂为氨水;
和/或,步骤(1)中,烘干温度为80-120℃。
3.根据权利要求1所述的制备方法,其特征在于:步骤(2)中,采用水、乙醇或水和乙醇的混合物润湿混合物;
和/或,步骤(2)中,在玛瑙研钵中研磨混合物;
和/或,步骤(2)中,研磨时间为4-8小时,优选为6小时。
4.根据权利要求1所述的制备方法,其特征在于:步骤(3)中,混合物在惰性或氧化气氛下进行烧结;
和/或,步骤(3)中,烧结时间为4-8小时。
5.根据权利要求1所述的制备方法,其特征在于:步骤(3)中,烧结温度不低于步骤(1)得到的沉淀的分解温度,不高于复合氧化物的熔点温度。
6.根据权利要求5所述的制备方法,其特征在于:步骤(3)中,烧结温度为800-1000℃。
7.根据权利要求6所述的制备方法,其特征在于:步骤(3)中,烧结时逐步升温至800-1000℃。
8.根据权利要求1所述的制备方法,其特征在于:步骤(3)中,先将混合物在通风条件下干燥后,再进行烧结。
9.根据权利要求8所述的制备方法,其特征在于:步骤(3)中,混合物在40-60℃通风条件下干燥。
10.根据权利要求1-9任一项所述的制备方法制得的LaxSr1-xCoO3-δ复合氧化物。
CN202010428603.7A 2020-05-20 2020-05-20 一种制备LaxSr1-xCoO3-δ复合氧化物的方法 Pending CN111454059A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010428603.7A CN111454059A (zh) 2020-05-20 2020-05-20 一种制备LaxSr1-xCoO3-δ复合氧化物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010428603.7A CN111454059A (zh) 2020-05-20 2020-05-20 一种制备LaxSr1-xCoO3-δ复合氧化物的方法

Publications (1)

Publication Number Publication Date
CN111454059A true CN111454059A (zh) 2020-07-28

Family

ID=71675111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010428603.7A Pending CN111454059A (zh) 2020-05-20 2020-05-20 一种制备LaxSr1-xCoO3-δ复合氧化物的方法

Country Status (1)

Country Link
CN (1) CN111454059A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090413A1 (ja) * 2021-11-18 2023-05-25 Dowaエレクトロニクス株式会社 複合酸化物粉末およびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143251A (ja) * 1998-11-06 2000-05-23 Mitsubishi Materials Corp 酸化物薄膜形成用溶液
CN101884930A (zh) * 2010-07-07 2010-11-17 昆明理工大学 钙钛矿型LaxCa1-xCoO3/Ag复合粉体氧还原催化剂及制备方法
CN102354741A (zh) * 2011-09-09 2012-02-15 中国科学院宁波材料技术与工程研究所 一种高容量层状富锂锰基氧化物的制备方法
CN106167276A (zh) * 2016-07-06 2016-11-30 南昌航空大学 一种层状钙钛矿型纳米材料的制备方法
CN108786828A (zh) * 2017-05-02 2018-11-13 中国科学院物理研究所 具有钙钛矿结构的氧化还原反应催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143251A (ja) * 1998-11-06 2000-05-23 Mitsubishi Materials Corp 酸化物薄膜形成用溶液
CN101884930A (zh) * 2010-07-07 2010-11-17 昆明理工大学 钙钛矿型LaxCa1-xCoO3/Ag复合粉体氧还原催化剂及制备方法
CN102354741A (zh) * 2011-09-09 2012-02-15 中国科学院宁波材料技术与工程研究所 一种高容量层状富锂锰基氧化物的制备方法
CN106167276A (zh) * 2016-07-06 2016-11-30 南昌航空大学 一种层状钙钛矿型纳米材料的制备方法
CN108786828A (zh) * 2017-05-02 2018-11-13 中国科学院物理研究所 具有钙钛矿结构的氧化还原反应催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨海涛等: "液相法制取Y2(WO4)3的工艺探讨及其负热膨胀性能比较", 《中国稀土学报》 *
沈春英等: "浸渍型钡钨阴极用高性能铝酸盐研究", 《稀有金属材料与工程》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090413A1 (ja) * 2021-11-18 2023-05-25 Dowaエレクトロニクス株式会社 複合酸化物粉末およびその製造方法

Similar Documents

Publication Publication Date Title
CN110467227A (zh) B位五元高熵的新型钙钛矿型高熵氧化物材料及制备方法
CN111333415A (zh) 一种尖晶石型铁钴铬锰镍系高熵氧化物粉体的制备方法
CN107597138B (zh) 应用于低浓度丙烷燃烧反应的钴锰复合氧化物的氧化还原方法及其产品和应用
CN110818405A (zh) 一种微波介质陶瓷及其制备方法、5g基站
Omari et al. Oxygen evolution reaction over copper and zinc co-doped LaFeO3 perovskite oxides
CN111848153A (zh) 一种微波介质陶瓷、微波介质陶瓷的制备方法及通信器件
CN1228272C (zh) 掺杂铁氧体磁性材料的制备方法
Wang et al. Direct Formation of Crystalline Gadolinium‐Doped Ceria Powder via Polymerized Precursor Solution
CN101723661A (zh) 一种掺杂的钙钛矿结构材料制备方法
CN111454059A (zh) 一种制备LaxSr1-xCoO3-δ复合氧化物的方法
Moharil et al. Nanostructured MIEC Ba0. 5Sr0. 5Co0. 6Fe0. 4O3− δ (BSCF5564) cathode for IT-SOFC by nitric acid aided EDTA–citric acid complexing process (NECC)
CN109179478B (zh) 一种制备多孔钙钛矿型金属氧化物的方法
CN104311003B (zh) 共沉淀原位制备纳米钛酸锶钡/氧化镁复相粉体
CN108558401B (zh) 一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法
CN107903072B (zh) 两步共沉淀法制备铌酸锶钡纳米粉体的方法
CN111484329B (zh) 一种液相合成LaxSr1-xCoO3-δ复合氧化物的方法
CN115947387A (zh) 一种b位五元高熵双钙钛矿结构氧化物电极材料及其制备方法
Ikuhara et al. Synthesis, electrochemical, and microstructural study of precursor-derived LiMn2O4 powders
CN112755992A (zh) 火焰法高比表面积的钙钛矿型陶瓷氧化物及其制备方法和应用
CN1295188C (zh) 高温快速合成钛酸盐陶瓷粉体的方法
CN100537083C (zh) Ag复合(Ca0.95Bi0.05)3Co4O9基氧化物热电材料的制备方法
CN117144305A (zh) 一种钙掺杂铁酸铋薄膜体系材料的制备方法
Jena et al. An exploratory study on solution assisted synthetic routes to prepare nano-crystalline La1− xMxGa1− yNyO3±δ (M= Sr,□; N= Mn, Mg) for IT-SOFC applications
CN113996310B (zh) 一种多孔型多重掺杂钙钛矿催化剂及其制备方法
CN107935590B (zh) 微波烧结制备Aurivillius相SrBiFeCoTiO材料的方法及制备的产品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200728