CN113070056B - 一种三维有序网状结构五氧二钽光催化材料的通用合成方法 - Google Patents

一种三维有序网状结构五氧二钽光催化材料的通用合成方法 Download PDF

Info

Publication number
CN113070056B
CN113070056B CN202110304732.XA CN202110304732A CN113070056B CN 113070056 B CN113070056 B CN 113070056B CN 202110304732 A CN202110304732 A CN 202110304732A CN 113070056 B CN113070056 B CN 113070056B
Authority
CN
China
Prior art keywords
pmma
dimensional ordered
template agent
tacl
tantalum pentoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110304732.XA
Other languages
English (en)
Other versions
CN113070056A (zh
Inventor
王学文
甘蕾
张荣斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN202110304732.XA priority Critical patent/CN113070056B/zh
Publication of CN113070056A publication Critical patent/CN113070056A/zh
Application granted granted Critical
Publication of CN113070056B publication Critical patent/CN113070056B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及光催化分解水产氢领域,此发明提供了一种三维网状五氧化二钽(Ta2O5)的通用合成方法。通过对光催化剂的形貌进行修饰从而提高催化剂的比表面积,缩短载流子迁移距离进而提高产生氢气的效率,解决了Ta2O5光催化半导体载流子复合率高、反应活性位点少的问题,大大提高了光催化产氢效率。具体制备方法如下:将TaCl5溶于无水乙醇溶液,搅拌加速溶解,过滤掉杂质,之后加入适量聚甲基丙烯酸甲酯(PMMA)小球模板剂,浸置抽滤,得到缝隙含有乙醇钽的PMMA。再将其放置在管式炉中,氮气氛下固化结构,再放入马弗炉中二次煅烧除去模板剂。使用该方法制备的Ta2O5具有高度有序网站结构,能够高效分解水产氢。

Description

一种三维有序网状结构五氧二钽光催化材料的通用合成方法
技术领域
本发明涉及光催化剂领域,具体为一种三维有序网状结构(Ta2O5)光催化材料的通用合成方法。
背景技术
随着经济的快速发展对能源的消耗越来越大。一方面化石资源匮乏的问题越来越严重,另一方面由于化石能源的使用造成的污染日益严重,所以迫切需要寻找清洁绿色可再生的能源替代品。氢能源就很好的符合这些要求,且比化石能源更具高效性。利用太阳能将水转化为氢气具有非常可观的前景。因此,如何高效的将水分解产生氢气成为亟待解决的问题。然而,光催化作为一种新兴的方法,在分解水产生氢气方面有着高效、绿色极具发展前景的并有望实现能源替代和环境净化的技术。然而,半导体光催化材料的载流子复合率高且对太阳能的利用率低的问题一直是制约着光催化从基础研究走向工业化应用的关键。
Ta2O5具有良好的光催化性能和光热稳定性。另外,Ta2O5的导带位置(-0.17eV)低于H+/H2的氧化还原电位(0eV)。根据热力学计算,Ta2O5具有光催化水分解的巨大潜力。然而,其粒状结构固有的表面缺陷使得反应活性位点减少和增加的载流子复合率,从而导致光催化性能低下。而将Ta2O5构建成三维有序大孔结构将有望改善这些缺陷。虽然已经有用聚乙二烯小球制成Ta2O5三维有序大孔结构的报道,但是伴随着多晶结构的形成也增加了载流子迁移时的阻碍,降低了载流子的利用率。而我们发现通过合成Ta2O5单晶三维有序网状结构,可以有效的改善这些问题。并且可以可控的调节三维有序网状结构孔径大小。同时探究了三维有序网状结构孔径大小对光催化制氢性能的影响。
发明内容
本发明目的在于提供了一种三维有序网状结构Ta2O5光催化材料的通用合成方法。解决了Ta2O5半导体催化剂在光催化分解水低的比表面积,载流子复合率高的问题,使得光催化产氢效率大幅提高。
本发明的技术方案是:
一种三维有序网状结构Ta2O5的通用合成方法,控制合适温度和时间来获得90nm至360nm的PMMA小球,TaCl5溶于无水乙醇溶液形成乙醇钽前聚体,前聚体均匀分布在PMMA小球缝隙中,在煅烧时,缝隙间的前聚体被固化,并且结晶,随着模板剂的去除,三维有序网状结构Ta2O5形成。通过构建三维有序网状结构Ta2O5结构提高光催化材料的比表面积,缩短载流子迁移距离,从而提高Ta2O5的分解水产氢效率。
本发明具体采用如下技术方案:
S1:取甲基丙烯酸甲脂加入去离子水中,过硫酸钾为引发剂,在惰性气氛下,加热搅拌聚合,离心蒸干得到PMMA模板剂。
S2:取TaCl5加入无水乙醇溶液中搅拌溶解1-3h。
S3:将S2得到溶液自然过滤,留下清液。
S4:将PMMA模板剂加入上述清液中,在室温下浸置2-8h。
S5:将静置后的溶液真空抽滤,得到缝隙含有乙醇钽的PMMA模板剂。
S6:将S5得到的样品放置在管式炉中,通入氮气,升温至573K,并且保持2-6h,降至室温后取出。
S7:将S6得到的样品放置在马弗炉中,升温至973K,并且保持2-6h。冷却至室温后,收集样品。
优选的,S1中甲基丙烯酸甲脂用量为40mL-80mL,去离子水为650mL。
优选的,S1中使用PMMA模板剂的大小为90-360nm。
优选的,原料的TaCl5纯度为分析纯。
优选的,TaCl5的用量为0.3-2.2g,无水乙醇用量为10-30mL。
优选的,缝隙间含有乙醇钽的PMMA模板剂需要二次煅烧。
优选的,三维有序网状结构Ta2O5主要为单晶结构。
本发明在室温条件下,以PMMA为模板剂构建三维有序网状结构Ta2O5。在此过程中,TaCl5溶于无水乙醇溶液中形成乙醇钽的乙醇溶液,再通过浸置的方法将前聚体溶液填充到PMMA模板缝隙中。随着煅烧的进行,乙醇钽前聚体在PMMA模板缝隙中固化而形成三维有序网状Ta2O5骨架。温度升至973K后PMMA模板剂完全除去,最后得到三维有序网状结构Ta2O5。三维有序网状结构的形成大大提高了材料的比表面积,增加了反应活性位点,缩短了载流子迁移距离从而大幅提高了光催化分解水的效率。因而通过以PMMA为模板剂构建三维有序大孔网状对催化剂进行形貌调控的方法有望广泛应用于各种光催化剂。
本发明的优点及有益效果是:
1、本发明以PMMA为模板剂构建三维有序网状结构后的催化剂,光催化剂的比表面积明显增大,反应活性位点增加,与商用的Ta2O5相比,产生氢气能力大幅提升。
2、本发明以PMMA为模板剂构建三维有序网状结构后的催化剂,载流子迁移距离缩短,光生载流子寿命明显延长,迁移到催化剂表面的反应的载流子增加,从而提高催化剂的分解水产生氢气的效率。
3、本发明以PMMA为模板剂构建三维有序网状结构后的催化剂,形成单晶结构,大大减少了载流子迁移的壁垒,提高载流子迁移率,从而大幅提升光催化分解水产生氢气的效率。
4、本发明以PMMA为模板剂构建三维有序网状结构后的催化剂,催化剂结构获得了高孔隙率,提高了光利用率,进而有利于光催化反应的进行。
附图说明
图1.不同直径PMMA为模板得到的不同孔径的三维有序网状结构Ta2O5和商用Ta2O5(c-Ta2O5)的XRD图谱。
图2.不同直径PMMA为模板得到的不同孔径的三维有序网状结构Ta2O5和不同直径大小PMMA的SEM图。
图3.三维有序网状结构Ta2O5的TEM图。
图4.甲醇为牺牲剂的情况下,不同孔径的三维有序网状结构Ta2O5和商用Ta2O5的产氢性能。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
实施例1
首先,取TaCl5(1.7g)加入无水乙醇(22mL)溶液中搅拌溶解,过滤掉杂质,之后将4g PMMA小球模板加入过滤液中,静置8h,真空抽滤,得到缝隙含有乙醇钽的PMMA。再将其放置在管式炉中,通入氮气,升温至573K,并且保持2h,降至室温后取出。下一步将其放置在马弗炉中,升温至973K,并且保持2h。得到三维有序网状结构Ta2O5
实施例2
首先,取TaCl5(1.8g)加入无水乙醇(20mL)溶液中搅拌溶解,过滤掉杂质,之后将7g PMMA小球模板加入过滤液中,静置8h,真空抽滤,得到缝隙含有乙醇钽的PMMA。再将其放置在管式炉中,通入氮气,升温至573K,并且保持2h,降至室温后取出。下一步将其放置在马弗炉中,升温至973K,并且保持1h。得到三维有序网状结构Ta2O5
实施例3
首先,取TaCl5(2g)加入无水乙醇(25mL)溶液中搅拌溶解,过滤掉杂质,之后将4gPMMA小球模板加入过滤液中,静置8h,真空抽滤,得到缝隙含有乙醇钽的PMMA。再将其放置在管式炉中,通入氮气,升温至573K,并且保持2h,降至室温后取出。下一步将其放置在马弗炉中,升温至973K,并且保持2h。得到三维有序网状结构Ta2O5
实施例4
首先,取TaCl5(1.8g)加入无水乙醇(20mL)溶液中搅拌溶解,过滤掉杂质,之后将4g PMMA小球模板加入过滤液中,静置8h,真空抽滤,得到缝隙含有乙醇钽的PMMA。再将其放置在管式炉中,通入氮气,升温至573K,并且保持2h,降至室温后取出。下一步将其放置在马弗炉中,升温至973K,并且保持2.5h。得到三维有序网状结构Ta2O5
实施例5
首先,取TaCl5(2g)加入无水乙醇(25mL)溶液中搅拌溶解,过滤掉杂质,之后将4gPMMA小球模板加入过滤液中,静置8h,真空抽滤,得到缝隙含有乙醇钽的PMMA。再将其放置在管式炉中,通入氮气,升温至573K,并且保持4h,降至室温后取出。下一步将其放置在马弗炉中,升温至973K,并且保持2h。得到三维有序网状结构Ta2O5
对比实施例得到的产品,其形貌和结构,以及性能如图1-4所示。
由图1可以看出,使用不同直径PMMA为模板得到的不同孔径的三维有序网状结构Ta2O5和商用Ta2O5的相比,峰型一致,皆为纯相Ta2O5
由图2可以看出,不同直径PMMA小球保持高度有序排列,三为有序网状结构成功构建,不同孔径的三维有序网状结构Ta2O5保持高孔隙率和完整性。
由图3可以看出,三维有序网状结构Ta2O5具有清晰的点阵衍射斑点和清晰的晶格条纹,结构为单晶结构。
由图4可以看出,不同孔径的三维有序网状结构Ta2O5的产生氢气性能都优于商用Ta2O5。说明三维有序网状结构的引入大大改善了Ta2O5的性能。
实施例结果表明,本发明制备的三维有序网状结构Ta2O5具有优异的光分解水性能。
以上所述仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形、改进及替代,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (3)

1.一种三维有序网状结构五氧化二钽的通用合成方法,其特征在于:
控制合适温度和时间来获得直径90nm至360nm的PMMA小球,
TaCl5溶于无水乙醇溶液形成乙醇钽前聚体,前聚体均匀分布在PMMA小球缝隙中,在煅烧时,缝隙间的前聚体被固化,并且结晶,随着模板剂的去除,形成三维有序网状结构Ta2O5
具体包括以下步骤:
S1:取甲基丙烯酸甲脂加入去离子水中,过硫酸钾为引发剂,在惰性气氛下,加热搅拌聚合,离心蒸干得到PMMA模板剂,PMMA直径大小为90-360nm;
S2:取TaCl5加入无水乙醇溶液中搅拌溶解1-3h;
S3:将S2得到溶液自然过滤,留下清液;
S4:将PMMA模板剂加入上述清液中,在室温下浸置2-8h;
S5:将浸置后的溶液真空抽滤;
S6:将S5得到的样品放置在管式炉中,通入氮气,升温至573K,并且保持2-6h,降至室温后取出;
S7:将S6得到的样品放置在马弗炉中,升温至973K,并且保持2-6h;冷却至室温后,收集样品。
2.根据权利要求1所述的一种三维有序网状结构五氧化二钽的通用合成方法,其特征在于:所述S1中甲基丙烯酸甲脂用量为40mL-80mL,去离子水为650mL。
3.根据权利要求1所述的一种三维有序网状结构五氧化二钽的通用合成方法,其特征在于:所述S2中的TaCl5的用量为0.3-2.2g,无水乙醇用量为10-30mL。
CN202110304732.XA 2021-03-22 2021-03-22 一种三维有序网状结构五氧二钽光催化材料的通用合成方法 Active CN113070056B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110304732.XA CN113070056B (zh) 2021-03-22 2021-03-22 一种三维有序网状结构五氧二钽光催化材料的通用合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110304732.XA CN113070056B (zh) 2021-03-22 2021-03-22 一种三维有序网状结构五氧二钽光催化材料的通用合成方法

Publications (2)

Publication Number Publication Date
CN113070056A CN113070056A (zh) 2021-07-06
CN113070056B true CN113070056B (zh) 2022-11-08

Family

ID=76613942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110304732.XA Active CN113070056B (zh) 2021-03-22 2021-03-22 一种三维有序网状结构五氧二钽光催化材料的通用合成方法

Country Status (1)

Country Link
CN (1) CN113070056B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113649026A (zh) * 2021-07-27 2021-11-16 南昌大学 一种三维有序大孔硫化镉光催化材料的通用合成方法
CN113600175A (zh) * 2021-08-02 2021-11-05 南昌大学 三维有序大孔结构钽酸钠光催化制氢材料的通用合成方法
CN115043431A (zh) * 2022-07-25 2022-09-13 东华理工大学 三维有序大孔结构烧绿石型钽酸钾光催化材料的通用合成方法
CN115043432A (zh) * 2022-07-29 2022-09-13 东华理工大学 一种三维有序大孔钙钛矿钽酸锂光催化产氢材料的通用合成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101580244A (zh) * 2008-05-15 2009-11-18 中国科学院化学研究所 一种制备具有可控形貌的介观材料的方法
CN102872853A (zh) * 2012-09-26 2013-01-16 北京工业大学 一种三维有序大孔InVO4可见光响应型光催化剂、制备及应用
WO2013106776A2 (en) * 2012-01-12 2013-07-18 Nitto Denko Corporation Transparent photocatalyst coating
CN103274468A (zh) * 2013-05-29 2013-09-04 复旦大学 一种球形五氧化二钽的制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336434B (zh) * 2011-09-05 2013-06-12 西南科技大学 一种二氧化钛反蛋白石结构有序大孔材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101580244A (zh) * 2008-05-15 2009-11-18 中国科学院化学研究所 一种制备具有可控形貌的介观材料的方法
WO2013106776A2 (en) * 2012-01-12 2013-07-18 Nitto Denko Corporation Transparent photocatalyst coating
CN102872853A (zh) * 2012-09-26 2013-01-16 北京工业大学 一种三维有序大孔InVO4可见光响应型光催化剂、制备及应用
CN103274468A (zh) * 2013-05-29 2013-09-04 复旦大学 一种球形五氧化二钽的制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Preparation and nitrogen-doping of three-dimensionally ordered macroporous TiO2 with enhanced photocatalytic activity;Yan Dong;《Ceramics International》;20140403;第40卷;11214 *
The synthesis and catalytic performances of three-dimensionally ordered macroporous perovskite-type LaMn1-xFexO3 complex oxide catalysts with different pore diameters for diesel soot combustion;Jianxiong Zheng;《Catalysis Today》;20120121;第191卷;全文 *

Also Published As

Publication number Publication date
CN113070056A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
CN113070056B (zh) 一种三维有序网状结构五氧二钽光催化材料的通用合成方法
CN108341404B (zh) 一种三维多孔硼碳氮材料及其制备方法和应用
CN105233702B (zh) 一种利用钴纳米阵列层转化形成金属有机骨架zif‑67膜的制备方法
CN111151275B (zh) MoS2/Mo2C复合物、MoS2/Mo2C/CdS复合材料及其制备方法和应用
CN107282070B (zh) 一种三维花片状硫铟锌微-纳米线阵列及其制备方法和应用
CN105905908A (zh) 一种基于埃洛石原料制备纳米硅的方法
CN113649026A (zh) 一种三维有序大孔硫化镉光催化材料的通用合成方法
CN104588040A (zh) 一种光催化剂及其制备方法
CN113600175A (zh) 三维有序大孔结构钽酸钠光催化制氢材料的通用合成方法
CN104108709A (zh) 一种多孔石墨烯及其制备方法
CN112663088A (zh) 一种纳米花瓣状结构的二硒化钴/羟基氧化铁复合材料的制备方法
CN110639585A (zh) 一种共聚合改性的层状石墨相氮化碳光催化剂及其制备方法和应用
CN109837590B (zh) 一种26面体钽酸钠晶体及其制备方法
CN110026223B (zh) 一种介孔氮化碳纳米材料的制备方法
CN112221503A (zh) 一种多层级纳米阵列页硅酸镍催化剂及其制备方法
CN109908884B (zh) 完整型蜂窝状锌基复合材料((ZnO@C)/C)及其制备方法和应用
CN115212882B (zh) 一种多孔硅化铜金属间化合物材料及其制备和应用
CN113877556B (zh) 羟基氧化铟/改性凹凸棒石光催化复合材料及其制备方法和应用
CN110523421B (zh) 一种光催化剂及其制备方法与应用
CN114351239A (zh) 一种多孔金属化合物阵列薄膜的制备方法
CN116422344B (zh) 一种周期性有序大孔硫化锌-氧化铟异质结构材料及其合成方法
CN113751078A (zh) 一种MOF限域下的TiO2纳米复合光催化剂的制备方法
CN108927202B (zh) 一种g-C3N4纳米带及其制备方法与应用
CN115043431A (zh) 三维有序大孔结构烧绿石型钽酸钾光催化材料的通用合成方法
CN115043432A (zh) 一种三维有序大孔钙钛矿钽酸锂光催化产氢材料的通用合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant