CN113036068A - 一种适用于12v启停电源正极浆料的制备方法 - Google Patents

一种适用于12v启停电源正极浆料的制备方法 Download PDF

Info

Publication number
CN113036068A
CN113036068A CN202011441054.3A CN202011441054A CN113036068A CN 113036068 A CN113036068 A CN 113036068A CN 202011441054 A CN202011441054 A CN 202011441054A CN 113036068 A CN113036068 A CN 113036068A
Authority
CN
China
Prior art keywords
preparation
rpm
power supply
slurry
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011441054.3A
Other languages
English (en)
Inventor
刘长来
夏诗忠
廖崇静
孙光忠
朱彩兵
刘勇
张宝华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Camel Group New Energy Battery Co Ltd
Original Assignee
Camel Group New Energy Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Camel Group New Energy Battery Co Ltd filed Critical Camel Group New Energy Battery Co Ltd
Priority to CN202011441054.3A priority Critical patent/CN113036068A/zh
Publication of CN113036068A publication Critical patent/CN113036068A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明的名称为一种适用于12V启停电源正极浆料的制备方法。属于汽车启停电池系统技术领域。它主要是解决目前制备纳米级磷酸铁锂正极浆料时存在小粒径颗粒分散困难和分散时间长的问题。它的主要特征在于包括以下步骤:使用三轴搅拌机对正极活性物质、导电剂、粘结剂进行预混;加入部分溶剂进行润湿;加入部分溶剂进行预捏合;在三轴搅拌机中进行捏合;加入剩余溶剂,稀释至合适的粘度;抽真空脱泡得到适宜涂布的磷酸铁锂浆料。本发明使用高粘度捏合工艺,将溶剂逐步加入固态粉末中,利用高固含量下物料不断被挤压、拉伸、折叠、剪切等作用力提高分散效果,主要用于12V启停电源正极浆料的制备。

Description

一种适用于12V启停电源正极浆料的制备方法
技术领域
本发明属于汽车启停电池系统技术领域,具体涉及一种适用于12V锂离子启停电池正极材料浆料的制备方法。
背景技术
随着国家新能源汽车补贴的逐渐降低以及双积分政策逐步推行,国家提出了2020年汽车要达到的5L/100km的油耗指标。为满足油耗限值的目标要求,汽车行业必须采取各种技术方案来提升节能效果。
在总成方面,单纯依靠提升内燃机燃烧效率来满足节能效果的空间越来越小,汽车混动化、纯电动化是最佳技术路线。电动化虽然是汽车的终极目标,但是由于高成本以及续航问题,无法在短期内大量普及。
目前,48V微混系统已在多种车型上搭载使用,但由于车上大多电气元件采用12V电压,该系统仍需要DC转换和搭载一个12V电池,短期内12V电池无法被取代,成本较高。12V启停系统可以直接取代铅酸启停,实现电池减重,提高低温功率,降低发动机低速运转燃油值。
根据USABC12V系统的要求,-30℃下6~10KW放电0.5S后再4.5KW放电4S(3次)冷启动工作电压>8V。随着材料合成技术的进步,纳米级磷酸铁锂材料在启停电池中逐渐应用。纳米化的磷酸铁锂材料能够提高离子和电子的传输率,提高其导电性能,从而改善电池的低温放电性能和大功率放电性能。但是纳米级磷酸铁锂在制备锂离子启停电池正极材料浆料时,表面积大容易发生团聚难以分散,存在小粒径颗粒分散困难,分散时间长,搅拌速度需求更高,产热量更大的缺陷。
发明内容
本发明是为了克服纳米级的正极材料在制作浆料时不易分散、搅拌速度需求高和产热量大的不足之处,提供一种分散性能好的锂离子启动电池正极材料浆料的制备方法。
为了实现上述目的,本发明采用以下技术方案:一种适用于12V启停电源正极浆料的制备方法,其特征在于正极浆料由纳米级正极活性物质、粘结剂、导电剂和溶剂组成;正极浆料制备包括以下步骤:
步骤一,使用三轴搅拌机对纳米级正极活性物质、导电剂、粘结剂进行预混;
步骤二,在三轴搅拌机中加入部分溶剂进行润湿;
步骤三,在三轴搅拌机中加入部分溶剂进行预捏合,加强粉料的浸润;
步骤四,在三轴搅拌机中进行捏合,捏合的过程中物料不断被挤压、拉伸、折叠、剪切;经过一段时间的捏合,物料最终呈均匀的面团状;
步骤五,在三轴搅拌机中加入剩余溶剂,完成浆料稀释;
步骤六,在三轴搅拌机中抽真空脱泡,得到适宜涂布的正极浆料。
作为优选,纳米级正极活性物质为纳米磷酸铁锂。
作为优选,导电剂为导电炭黑、气相生长碳纤维、碳纳米管导电液中的至少两种。
作为优选,粘结剂为聚偏氟乙烯。
作为优选,溶剂为N-甲基吡咯烷酮。
作为优选,正极浆料中,以纳米级正极活性物质重量为基准,溶剂用量占纳米级正极活性物质重量百分比的70%~100%,导电剂用量占纳米级正极活性物质重量百分比的2%~3.5%,粘结剂用量占纳米级正极活性物质重量百分比的2%~5%。
作为优选,步骤一中,公转10~20rpm,搅拌时间10~20分钟;步骤二中,公转20~30rpm,自转200~500rpm,搅拌时间10~20分钟;步骤三中,公转20~30rpm,自转200~1000rpm,搅拌时间30~60分钟;步骤四中,公转20~30rpm,自转500~2000rpm,搅拌时间60~180分钟;步骤五中,公转20~30rpm,自转5000~6000rpm,搅拌时间60~180分钟;步骤六中,反转公转10~20rpm,压力为≤-90kpa,搅拌时间30~60分钟。
作为优选,步骤二中浆料的固含量为75%~80%,此种配比下,粉料浸润成球形小颗粒。
作为优选,步骤三中浆料的固含量为65%~70%,此种配比下,经步骤四捏合后物料最终呈均匀的面团状。
作为优选,步骤五中浆料的固含量为45%~50%,搅拌时设置搅拌温度55℃~70℃。
传统正极材料浆料制备时,将导电剂粉末加入胶液中,进行分散。此阶段作用是将导电剂分散开,需要强力的剪切作用,便于导电剂颗粒的解聚。导电剂分散完成后,加入活性物质。由于活性物质需要与溶剂相互浸润,也需要较强的剪切作用。采用较高的公转和自转,产热量大,分散盘易磨损,对分散盘材质要求高。本发明关键点在于在干粉中加入少量溶剂或粘接剂溶液,通过机械作用来实现高固含量高粘度物料的压缩、剪切、置换或者拉伸、折叠、拉伸的过程,通过不断重复上述步骤使各个组分达到均匀。
有益效果:本发明使用高粘度捏合工艺,将溶剂逐步加入粉料中,利用体系高固含量提高分散效果;取消了传统工艺中粘结剂的溶剂,节省了浆料制备时间;同时,高固含体系中单位体积内的有机物含量增加,粉料单体之间距离缩短斥力增加,能提高浆料稳定性,避免浆料沉淀。
附图说明
图1为本发明各实施例及对比例制备的浆料稳定性测试图。
图2为本发明各实施例及对比例制备电池在-30℃ 50%SOC 4.5S三次放电的冷启动测试图。
图3为本发明各实施例及对比例制备电池在-29℃ 50%SOC 10C 30S三次放电的冷启动测试图。
图4为本发明各实施例及对比例制备电池在45℃下 1C充放电循环的测试图。
具体实施方式
下面将结合具体实施例和对比例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
在30L三轴搅拌机中,将100重量份的纳米级磷酸铁锂(一次颗粒粒径为50nm,比表面积12.5m2/g),1重量份的导电炭黑,36重量份的碳纳米管导电液(固含量5%),以及2重量份的聚偏氟乙烯放入三轴搅拌机内,预混搅拌15分钟(公转15rpm);然后加入5重量份的溶剂N-甲基吡咯烷酮,搅拌15分钟(公转25rpm,自转300rpm),浆料的固含量为78%,粉料浸润成球形小颗粒;继续加入11重量份的溶剂N-甲基吡咯烷酮,搅拌30分钟(公转25rpm,自转500rpm),完成预捏合;预捏合后继续搅拌120分钟(公转25rpm,自转1000rpm),浆料的固含量为68%,物料呈均匀的面团状;加入55重量份的溶剂N-甲基吡咯烷酮,搅拌90分钟(公转25rpm,自转5500rpm,搅拌温度60℃),浆料的固含量为48%,稀释至合适的粘度,完成浆料稀释;反转搅拌30分钟(公转15rpm,压力为-95kpa),进行脱泡,得到适宜涂布的磷酸铁锂浆料。
实施例2:
在30L三轴搅拌机中,将100重量份的纳米级磷酸铁锂(一次颗粒粒径为50nm,比表面积12.5m2/g),2重量份的导电炭黑,30重量份的碳纳米管导电液(固含量5%),以及3重量份的聚偏氟乙烯放入三轴搅拌机内,预混搅拌10分钟(公转15rpm);然后加入6重量份的溶剂N-甲基吡咯烷酮,搅拌10分钟(公转25rpm,自转300rpm),浆料的固含量为75%,粉料浸润成球形小颗粒;继续加入12重量份的溶剂N-甲基吡咯烷酮,搅拌30分钟(公转25rpm,自转500rpm),完成预捏合;预捏合后继续搅拌90分钟(公转25rpm,自转1000rpm),浆料的固含量为66%,物料呈均匀的面团状;加入60重量份的溶剂N-甲基吡咯烷酮,搅拌60分钟(公转25rpm,自转5500rpm,搅拌温度60℃),浆料的固含量为48.5%,稀释至合适的粘度,完成浆料稀释;反转搅拌30分钟(公转15rpm,压力为-95kpa),进行脱泡,得到适宜涂布的磷酸铁锂浆料。
实施例3:
在30L三轴搅拌机中,将100重量份的纳米级磷酸铁锂正极材料(一次颗粒粒径为50nm,比表面积12.5m2/g),2重量份的导电炭黑,36重量份的碳纳米管导电液(固含量5%),以及3重量份的聚偏氟乙烯放入三轴搅拌机内,预混搅拌20分钟(公转15rpm);然后加入5重量份的溶剂N-甲基吡咯烷酮,搅拌20分钟(公转25rpm,自转300rpm)浆料的固含量为80%,粉料浸润成球形小颗粒;继续加入12重量份的溶剂N-甲基吡咯烷酮,搅拌60分钟(公转25rpm,自转500rpm),完成预捏合;预捏合后继续搅拌180分钟(公转25rpm,自转1000rpm),浆料的固含量为69%,物料呈均匀的面团状;加入58重量份的溶剂N-甲基吡咯烷酮,搅拌120分钟(公转25rpm,自转5500rpm,搅拌温度60℃),浆料的固含量为50%,稀释至合适的粘度,完成浆料稀释;反转搅拌30分钟(公转15rpm,压力为-95kpa),进行脱泡,得到适宜涂布的磷酸铁锂浆料。
对比例1:
在30L三轴搅拌机中,将1.8重量份的聚偏氟乙烯粉料投入26重量份的N一甲基毗咯烷酮溶剂中,搅拌润湿10min(公转15rpm,自转1000rpm),再搅拌分散180min(公转45rpm,自转5000rpm,压力为-95kpa),制得固含量为6.5%的胶液;加入3重量份的导电炭黑,搅拌10分钟(公转15rpm,自转500rpm);加入36重量份的碳纳米管导电液(固含量5%),搅拌10分钟(公转15rpm,自转500rpm),继续搅拌40分钟(公转45rpm,自转5500rpm,压力为-95kpa);加入100重量份的纳米级磷酸铁锂,搅拌10分钟(公转15rpm,自转500rpm),继续搅拌180分钟(公转45rpm,自转5500rpm,压力为-95kpa)。反转搅拌30分钟(公转15rpm,压力为-95kpa),进行脱泡,得到适宜涂布的磷酸铁锂浆料。
本发明的各实施例和对比实施例均采用叠片软包装电池工艺进行制作,正极采用磷酸铁锂体系,通过配料涂布冷压制作成正极片,制作工艺相同;负极采用人造石墨比,通过配料涂布冷压制作成负极片,制作工艺相同。将正极极片和负极极片与隔膜进行叠片、封装,然后在75℃下真空烘烤至水分含量<300ppm,在烘烤合格的电池中注入电解液,并经过室温陈化、高温热压化成、高温老化和抽真空二封得到成品电池。对各实施例和对比例制备的正极浆料进行稳定性测试,对上述成品电池进行DCR测试、低温冷启动测试和高温循环测试。
1、正极浆料稳定性测试
在常温下,对各实施例与比例制备的正极浆料进行粘度测试,测试时间间隔为1小时,测试结果见图1。
2、室温DCR测试
将各实施例与对比例制备的成品电池在常温下以1C电流调整至50%SOC,搁置60分钟后,以10C恒流放电10秒钟,搁置60分钟后,再以10C恒流充电10秒钟,记录电池以10C电流充放电前后的电压,并根据电压和电流计算电池的充放电DCR,测试结果见表1。
表1 各实施例与对比例制备电池的室温DCR测试结果
Figure 312145DEST_PATH_IMAGE001
3、-30℃ 50%SOC 4.5S三次放电测试
将各实施例与对比例制备的成品电池在常温下以1C电流调整至50%SOC,电池在-30℃下搁置16小时后,以500W恒功率放电0.5秒后再以333W恒功率放电4秒钟,静置10秒钟,然后再重复此放电操作2次,记录电池在放电过程中的电压,测试结果见图2。
4、-29℃ 50%SOC 10C 30S放电测试
将各实施例与对比例制备的成品电池在常温下以1C电流调整至50%SOC,将电池在-29℃下搁置16小时后,以10C恒流放电30秒,静置10分钟,再以10C恒流放电30秒,静置30秒,再以10C恒流放电30秒,搁置1小时后,结束测试,记录电池在放电过程中的电压,测试结果见图3。
5、45℃ 1C充放电循环测试
将各实施例与对比例制备的成品电池在45℃下进行 1C充放电循环测试,充放电电压范围为2.5~3.65V,测试结果见图4。
从表1及图1-4的测试结果可看出,本发明中采用各实施例制备的正极浆料稳定性高于对比例制备的浆料,采用各实施例制备的电池的低温放电性能及高温循环性能均高于采用对比例制备的电池的性能。

Claims (10)

1.一种适用于12V启停电源正极浆料的制备方法,其特征在于正极浆料由纳米级正极活性物质、粘结剂、导电剂和溶剂组成;正极浆料制备包括以下步骤:
步骤一,使用三轴搅拌机对纳米级正极活性物质、导电剂、粘结剂进行预混;
步骤二,在三轴搅拌机中加入部分溶剂进行润湿;
步骤三,在三轴搅拌机中加入部分溶剂进行预捏合,加强粉料的浸润;
步骤四,在三轴搅拌机中进行捏合,捏合的过程中物料不断被挤压、拉伸、折叠、剪切;经过一段时间的捏合,物料最终呈均匀的面团状;
步骤五,在三轴搅拌机中加入剩余溶剂,完成浆料稀释;
步骤六,在三轴搅拌机中抽真空脱泡,得到适宜涂布的正极浆料。
2.根据权利要求1所述的一种适用于12V启停电源正极浆料的制备方法,其特征在于:所述的纳米级正极活性物质为纳米磷酸铁锂。
3.根据权利要求1所述的一种适用于12V启停电源正极浆料的制备方法,其特征在于:所述的导电剂为导电炭黑、气相生长碳纤维、碳纳米管导电液中的至少两种。
4.根据权利要求1所述的一种适用于12V启停电源正极浆料的制备方法,其特征在于:所述的粘结剂为聚偏氟乙烯。
5.根据权利要求1所述的一种适用于12V启停电源正极浆料的制备方法,其特征在于:所述的溶剂为N-甲基吡咯烷酮。
6.根据权利要求1-5中任一项所述的一种适用于12V启停电源正极浆料的制备方法,其特征在于:所述的正极浆料中,以纳米级正极活性物质重量为基准,溶剂用量占纳米级正极活性物质重量百分比的70%~100%,导电剂用量占纳米级正极活性物质重量百分比的2%~3.5%,粘结剂用量占纳米级正极活性物质重量百分比的2%~5%。
7.根据权利要求6所述的一种适用于12V启停电源正极浆料的制备方法,其特征在于:所述的步骤一中,公转10~20rpm,搅拌时间10~20分钟;步骤二中,公转20~30rpm,自转200~500rpm,搅拌时间10~20分钟;步骤三中,公转20~30rpm,自转200~1000rpm,搅拌时间30~60分钟;步骤四中,公转20~30rpm,自转500~2000rpm,搅拌时间60~180分钟;步骤五中,步骤一中,公转20~30rpm,自转5000~6000rpm,搅拌时间60~180分钟;步骤六中,公转10~20rpm(反转),压力为≤-90kpa,搅拌时间30~60分钟。
8.根据权利要求7所述的一种适用于12V启停电源正极浆料的制备方法,其特征在于:所述的步骤二中浆料的固含量为75%~80%,此种配比下,粉料浸润成球形小颗粒。
9.根据权利要求7所述的一种适用于12V启停电源正极浆料的制备方法,其特征在于:所述的步骤三中浆料的固含量为65%~70%,此种配比下,经步骤四捏合后物料最终呈均匀的面团状。
10.根据权利要求7所述的一种适用于12V启停电源正极浆料的制备方法,其特征在于:所述的步骤五中浆料的固含量为45%~50%,搅拌时设置搅拌温度55℃~70℃。
CN202011441054.3A 2020-12-11 2020-12-11 一种适用于12v启停电源正极浆料的制备方法 Pending CN113036068A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011441054.3A CN113036068A (zh) 2020-12-11 2020-12-11 一种适用于12v启停电源正极浆料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011441054.3A CN113036068A (zh) 2020-12-11 2020-12-11 一种适用于12v启停电源正极浆料的制备方法

Publications (1)

Publication Number Publication Date
CN113036068A true CN113036068A (zh) 2021-06-25

Family

ID=76459200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011441054.3A Pending CN113036068A (zh) 2020-12-11 2020-12-11 一种适用于12v启停电源正极浆料的制备方法

Country Status (1)

Country Link
CN (1) CN113036068A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114220970A (zh) * 2021-12-14 2022-03-22 芜湖天弋能源科技有限公司 锂离子电池正极浆料及其制备方法
CN117276651A (zh) * 2023-01-16 2023-12-22 江苏大学 一种碳基固态锂电池固态电解质膜、制备方法及电芯

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110017596A (ko) * 2009-08-14 2011-02-22 충주대학교 산학협력단 리튬이차전지의 양극극판 제조방법 및 이를 이용하여 제조된 리튬이차전지
CN106784679A (zh) * 2016-12-12 2017-05-31 江西安驰新能源科技有限公司 一种磷酸铁锂正极浆料及其制备方法
CN107086292A (zh) * 2017-03-27 2017-08-22 湖北猛狮新能源科技有限公司 一种高粘度锂离子电池合浆工艺
CN109888174A (zh) * 2019-03-05 2019-06-14 桑顿新能源科技有限公司 正极浆料及其制备方法、正极片和锂离子电池
CN110064330A (zh) * 2019-04-03 2019-07-30 深圳鸿鹏新能源科技有限公司 正极浆料及其制备方法和应用
CN110854386A (zh) * 2019-11-21 2020-02-28 骆驼集团武汉光谷研发中心有限公司 功率型锂电池正极浆料的制备方法及正极片、锂电池
CN111883738A (zh) * 2020-08-02 2020-11-03 江西安驰新能源科技有限公司 一种高温、低能耗正极合浆工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110017596A (ko) * 2009-08-14 2011-02-22 충주대학교 산학협력단 리튬이차전지의 양극극판 제조방법 및 이를 이용하여 제조된 리튬이차전지
CN106784679A (zh) * 2016-12-12 2017-05-31 江西安驰新能源科技有限公司 一种磷酸铁锂正极浆料及其制备方法
CN107086292A (zh) * 2017-03-27 2017-08-22 湖北猛狮新能源科技有限公司 一种高粘度锂离子电池合浆工艺
CN109888174A (zh) * 2019-03-05 2019-06-14 桑顿新能源科技有限公司 正极浆料及其制备方法、正极片和锂离子电池
CN110064330A (zh) * 2019-04-03 2019-07-30 深圳鸿鹏新能源科技有限公司 正极浆料及其制备方法和应用
CN110854386A (zh) * 2019-11-21 2020-02-28 骆驼集团武汉光谷研发中心有限公司 功率型锂电池正极浆料的制备方法及正极片、锂电池
CN111883738A (zh) * 2020-08-02 2020-11-03 江西安驰新能源科技有限公司 一种高温、低能耗正极合浆工艺

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114220970A (zh) * 2021-12-14 2022-03-22 芜湖天弋能源科技有限公司 锂离子电池正极浆料及其制备方法
CN117276651A (zh) * 2023-01-16 2023-12-22 江苏大学 一种碳基固态锂电池固态电解质膜、制备方法及电芯
CN117276651B (zh) * 2023-01-16 2024-06-11 江苏宏鑫达新能源科技有限公司 碳基固态锂电池固态电解质膜、制备方法及电芯

Similar Documents

Publication Publication Date Title
CN108232318B (zh) 一种全固态动力锂离子电池的制作方法
CN111403705A (zh) 一种高功率锂电池的负极材料、制备方法及锂电池
CN107204446B (zh) 锂离子电池正极材料及其制备方法
CN107104227B (zh) 锂离子电池正极材料及其制备方法
CN110752354A (zh) 普适性的3d打印纳米电极浆料及其制备方法
CN112018428A (zh) 一种锂离子电池及其制备方法和用途
EP4116355A1 (en) Composite polymer, and preparation method therefor and application thereof
CN111293312A (zh) 一种柔性多功能的交联粘接剂及其制备方法和应用
CN113036068A (zh) 一种适用于12v启停电源正极浆料的制备方法
CN112054201A (zh) 负极浆料、负极片及其制备方法和应用
CN113036120A (zh) 一种12v启停电源用负极材料及锂离子电池和其制备方法
CN113113682A (zh) 补锂集流体及其制备方法、补锂极片及锂电池
CN113036085A (zh) 一种正极极片及其制备方法和应用
CN116387509A (zh) 一种锂金属电池用复合正极及其制备方法
WO2021184222A1 (zh) 一种基于石墨烯量子点及其衍生物的导电涂层材料及其应用
CN113258037B (zh) 一种防过充低温倍率型负极极片及其制造方法和基于其的锂离子电池
CN113299918B (zh) 一种负极极片及包括该负极极片的锂离子电池
CN113299919B (zh) 一种正极极片及包括该正极极片的锂离子电池
CN115172680A (zh) 一种高容量大倍率锂离子电池及其制备方法
CN109524623B (zh) 一种锂电池抗弯折负极片的制备方法
CN111009424B (zh) 一种锂离子电容器用电极复合材料及其制作方法与电极制备
CN112038642A (zh) 锂离子电池正极浆料及其制备方法和应用
WO2021184220A1 (zh) 一种可预锂化的锂离子启停电源及其制备方法
CN113422049A (zh) 一种磷酸铁锂正极极片及其制备方法和应用
CN113013393A (zh) 一种正极材料及制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210625