CN113019354B - 一种硝酸表面改性La掺杂TiO2光催化剂的制备方法 - Google Patents

一种硝酸表面改性La掺杂TiO2光催化剂的制备方法 Download PDF

Info

Publication number
CN113019354B
CN113019354B CN202110312633.6A CN202110312633A CN113019354B CN 113019354 B CN113019354 B CN 113019354B CN 202110312633 A CN202110312633 A CN 202110312633A CN 113019354 B CN113019354 B CN 113019354B
Authority
CN
China
Prior art keywords
nitric acid
solution
photocatalyst
tio
light yellow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110312633.6A
Other languages
English (en)
Other versions
CN113019354A (zh
Inventor
陈熙
黄宇
范广建
李海波
徐新阳
张冉
张铭川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN202110312633.6A priority Critical patent/CN113019354B/zh
Publication of CN113019354A publication Critical patent/CN113019354A/zh
Application granted granted Critical
Publication of CN113019354B publication Critical patent/CN113019354B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明的一种硝酸表面改性La掺杂TiO2光催化剂的制备方法,步骤为:按比例,将钛酸四丁酯溶解于无水乙醇a中,得到淡黄色混合溶液A;按比例,称取六水合硝酸镧晶体置于烧杯中,依序加入无水乙醇b、蒸馏水和硝酸溶液,搅拌混合均匀得澄清透明溶液B;将溶液B滴入溶液A,并调节混合溶液pH=1.00~3.00,完成溶液A加入,得到淡黄色溶胶C,经陈化后得到透明淡黄色凝胶D;干燥后360℃‑500℃条件下焙烧1.5‑2h,得到La掺杂TiO2;研磨过筛后,浸渍在0.1mol/L~1mol/L硝酸溶液中4~12h;干燥后制得酸表面改性La掺杂TiO2光催化剂。该方法制备的光催化剂比表面积增加显著,对CO2的捕集能力增强;光子利用率大幅提高。

Description

一种硝酸表面改性La掺杂TiO2光催化剂的制备方法
技术领域:
本发明属于光催化技术领域,具体涉及一种硝酸表面改性La掺杂TiO2光催化剂的制备方法。
背景技术:
随着科技的发展,密闭空间条件下工作的需求量越来越大,每年都有数百万名工人在涉及密闭空间气体中毒的事件中丧生,其中CO2中毒引起的事故占比较大。当工人长时间在密闭空间内聚集时,其呼吸产生的CO2无法与外界气体进行自主交换,CO2浓度过高会刺激人的呼吸系统,进而引起头痛、咳嗽等症状甚至直接导致死亡。
在CO2去除领域,光催化技术受到了广泛的重视,在众多光催化材料中,TiO2因其成本低、光活性强、对环境友好以及理化性质稳定而成为最有前途的光催化基础材料之一。但是 TiO2存在以下三点缺陷:一是其带隙较大,太阳光响应波长范围窄;二是其光生-电子空穴容易复合,光量子利用率低;三是其对CO2的吸附性能差,不能有效地捕集CO2。由此可见,如何实现光生-电子空穴复合速度慢、对CO2的吸附和捕集性能好的TiO2制备方法尤为重要。
本发明描述的是一种在太阳光照射下具有高CO2光催化转化效率的硝酸表面改性结合La 掺杂的新型TiO2光催化剂。首先采用溶胶-凝胶法制备La/TiO2基底,然后采用低浓度硝酸浸渍对La/TiO2基底进行酸化改性。迄今为止,暂无文献及专利报道此类硝酸表面改性稀土元素La掺杂TiO2光催化剂的制备方法。
发明内容:
本发明的目的是为克服上述现有技术存在的TiO2光催化剂光生-电子空穴的复合速度快、对CO2的吸附和捕集性能差的问题,提供一种硝酸表面改性La掺杂TiO2光催化剂的制备方法。
为实现上述目的,本发明采用以下技术方案:
一种硝酸表面改性La掺杂TiO2光催化剂的制备方法,按照以下步骤进行:
步骤1:按体积比,钛酸四丁酯:无水乙醇a=1:(2-6),量取钛酸四丁酯,在15~25℃恒温磁力搅拌条件下,将钛酸四丁酯缓慢加入到无水乙醇a中,磁力搅拌持续20-30min,得到淡黄色混合溶液A;
步骤2:按体积比蒸馏水:无水乙醇b:硝酸溶液=1.5:(5-20):(0.5-0.7),按质量比六水合硝酸镧晶体中La:钛酸四丁酯中Ti=1:(20-100),通过电子天平称取六水合硝酸镧晶体置于烧杯中,按顺序加入无水乙醇b、蒸馏水和硝酸溶液,搅拌混合均匀得到澄清透明溶液B;
步骤3:在25℃恒温条件下,通过蠕动泵将溶液B以20-30滴/min的速度缓慢滴入溶液 A,在滴加的过程中保证溶液A处于剧烈搅拌状态,反应过程中加入硝酸溶液,调节保证混合溶液pH=1.00~3.00,完成溶液A加入,得到淡黄色溶胶C,所述的溶液A搅拌速度为800-1000 rpm;
步骤4:淡黄色溶胶C在25℃恒温条件下静置陈化6h~24h,得到透明淡黄色凝胶D;
步骤5:将凝胶D置于82-95℃真空恒温干燥箱干燥10-12h,得到干凝胶,干凝胶置于真空马弗炉内于360℃-500℃条件下焙烧1.5-2h,得到La掺杂TiO2
步骤6:利用玛瑙研钵将La掺杂TiO2研磨,过200目筛网;
步骤7:将过筛网后的淡黄色粉末于25℃下,浸渍在0.1mol/L~1mol/L低浓度硝酸溶液中4~12h;
步骤8:将浸渍后的La掺杂TiO2置于82-95℃真空恒温干燥箱干燥2h~4h,得到硝酸表面改性La掺杂TiO2光催化剂,避光保存。
所述的步骤2中,硝酸溶液浓度为14-15mol/L。
所述的步骤3中,硝酸溶液浓度为2.5-3.5mol/L。
所述的步骤5中,焙烧温度优选为450℃。
所述的步骤8中,制备的硝酸表面改性La掺杂TiO2光催化剂比表面积102.7-116.9m2/g,平均孔径4.2-5.0nm,N2吸附量52.2-59.5cm3/g标况,晶粒尺寸10.27-13.29nm。所述的硝酸表面改性La掺杂TiO2光催化剂还原CO2产物CH4的产率为3.14-3.84μmol g-1h-1,对CO2的光催化还原效率为76.36%-94.27%。
所述的步骤8中,硝酸表面改性La掺杂TiO2光催化剂中的TiO2为锐钛矿型TiO2
所述的步骤8中,制备的硝酸表面改性La掺杂TiO2光催化剂对CO2的光催化还原效率优选为80.44%-94.27%。
本发明的有益效果:
(1)硝酸表面改性La掺杂TiO2光催化剂氧空位数量增加,光催化反应活性位点增加;
(2)硝酸改性后的光催化剂比表面积增加显著,对CO2的捕集能力增强;
(3)硝酸浸渍稳定La对TiO2的掺杂改性能力,能够减小TiO2的带隙并抑制光生电子-空穴的复合,提高光子利用率。
附图说明:
图1a为本发明实施例3-1制得0.5M HNO3-La/TiO2光催化剂的扫描电镜图像;
图1b为本发明实施例3-1制得0.5M HNO3-La/TiO2光催化剂的高分辨率透射电镜分析图像;
图2为本发明实施例3-1制得0.5M HNO3-La/TiO2光催化剂的X射线光电子能谱分析图;
图3a为本发明实施例1、2、3-1、3-2、3-3制得的光催化剂还原CO2产物的产量对比图;
图3b为本发明实施例1、2、3-1、3-2、3-3制得的光催化剂对CO2的光催化还原效率对比图;
图4为本发明实施例3-1、5-1、5-2制得光催化剂的X射线衍射分析图。
具体实施方式:
下面将结合附图和实施例对本发明作详细说明。
以下实施例与对比例中,用于调节混合溶液pH的硝酸溶液浓度为3mol/L。
实施例1
(1)将5ml钛酸四丁酯与30ml无水乙醇在25℃恒温条件下缓慢混合,对淡黄色混合溶液 (A溶液)持续搅拌30min;
(2)量取1.5ml蒸馏水和0.7ml 14.4mol/L浓硝酸依次加入到20ml无水乙醇中,对澄清透明溶液(B溶液)持续搅拌30min;
(3)通过蠕动泵将B液以30滴/min的速度匀速滴入A液,在滴加的过程中保证A液处于剧烈搅拌状态,通过加入硝酸溶液调节混合溶液pH=2.00,滴加结束后再持续搅拌30min;
(4)淡黄色溶胶C在25℃恒温下静置陈化12h得到透明淡黄色凝胶;
(5)将透明淡黄色凝胶置于82℃真空干燥箱中干燥2h;
(6)将处理后的干凝胶置于真空马弗炉中,以3℃/min的升温速率升至450℃煅烧2h;
(7)利用玛瑙研钵研磨煅烧后的材料,过200目筛网得到未改性的TiO2光催化剂。
表1为实施例与对比例制备的光催化剂比表面积及部分结构参数;本实施例制得催化剂的部分理化性质参数:比表面积为28.3m2/g,平均晶粒尺寸14.32nm。图3a提供了本实施例光催化剂还原CO2产物的产率,本实施例在可见光条件下其光催化还原CO2产物仅为CH4,图3b提供了本实施例反应4h后光催化还原CO2效率为36.66%。
实施例2
(1)将5ml钛酸四丁酯与30ml无水乙醇在25℃恒温条件下缓慢混合,对淡黄色混合溶液 (A溶液)持续搅拌30min;
(2)称取0.0432g六水合硝酸镧晶体,量取1.5ml蒸馏水和0.7ml 14.4mol/L浓硝酸依次加入到20ml无水乙醇中,对澄清透明溶液(B溶液)持续搅拌30min;
(3)通过蠕动泵将B液以30滴/min的速度匀速滴入A液,在滴加的过程中保证A液处于剧烈搅拌状态,通过硝酸调节混合溶液pH=2.00,滴加结束后再持续搅拌30min;
(4)淡黄色溶胶C在25℃恒温下静置陈化12h得到透明淡黄色凝胶;
(5)将透明淡黄色凝胶置于82℃真空干燥箱中干燥2h;
(6)将处理后的干凝胶置于真空马弗炉中,以3℃/min的升温速率升至450℃煅烧2h;
(7)利用玛瑙研钵研磨煅烧后的材料,过200目筛网得到La/TiO2光催化剂。
表1提供了本实施例的部分理化性质参数:比表面积为42.5m2/g,平均晶粒尺寸12.75nm。图3a提供了本实施例光催化剂还原CO2产物的产率,本实施例在可见光条件下其光催化还原 CO2产物为CH4和CO,图3b提供了本实施例反应4h后光催化还原CO2效率为55.73%。
实施例3-1
(1)将5ml钛酸四丁酯与30ml无水乙醇在25℃恒温条件下缓慢混合,对淡黄色混合溶液 (A溶液)持续搅拌30min;
(2)称取0.0432g六水合硝酸镧晶体,六水合硝酸镧晶体中La与钛酸四丁酯中Ti质量比为1:100,量取1.5ml蒸馏水和0.7ml 14.4mol/L硝酸依次加入到20ml无水乙醇中,对澄清透明溶液(B溶液)持续搅拌30min;
(3)通过蠕动泵将B液以30滴/min的速度匀速滴入A液,在滴加的过程中保证A液处于剧烈搅拌状态,通过硝酸调节混合溶液pH=2.00,滴加结束后再持续搅拌30min;
(4)淡黄色溶胶C在25℃恒温下静置陈化12h得到透明淡黄色凝胶;
(5)将透明淡黄色凝胶置于82℃真空干燥箱中干燥2h;
(6)将处理后的干凝胶置于真空马弗炉中,以3℃/min的升温速率升至450℃煅烧2h;
(7)利用玛瑙研钵研磨煅烧后的材料,过200目筛网;
(8)将过筛网后的淡黄色粉末于25℃下浸渍在20ml 0.5mol/L硝酸中12h;
(9)将浸渍后的La掺杂TiO2置于82℃真空恒温干燥箱干燥2.5h得到0.5M HNO3-La/TiO2光催化剂。
表1提供了本实施例的部分理化性质参数:比表面积为116.9m2/g,平均晶粒尺寸10.27nm。图1a提供了本实施例制备的0.5M HNO3-La/TiO2光催化剂的扫描电镜图像:光催化剂表面有明显的酸蚀坑。图1b提供了本实施例制备的0.5M HNO3-La/TiO2光催化剂的高分辨率透射电镜分析图像。图2为本实施例制得0.5M HNO3-La/TiO2光催化剂的X射线光电子能谱分析图。图3a提供了本实施例光催化剂还原CO2产物的产率,本实施例在可见光条件下其光催化还原CO2产物CH4的产量可达15.363μmol/g,图3b提供了本实施例反应4h后光催化还原CO2效率可达94.27%,较实施例1和实施例2有明显的提升。图4提供了本实施例制得0.5MHNO3-La/TiO2光催化剂的X射线衍射图,2θ=25.5°衍射峰是明显的锐钛矿相特征衍射峰(101),锐钛矿相TiO2的存在更有利于提高光催化剂还原CO2的效率。
对比例3-1
同实施例3-1,区别在于,将步骤(8)中的硝酸替换为等浓度的醋酸,表1提供了本实施例的部分理化性质参数:比表面积为52.8m2/g,平均晶粒尺寸12.60nm。经检测,本实施例在可见光条件下其光催化还原CO2产物CH4的产量约为11.243μmol/g,较实施例3-1有显著下降,其反应4h后光催化还原CO2效率为68.29%。
实施例3-2
(1)将5ml钛酸四丁酯与30ml无水乙醇在25℃恒温条件下缓慢混合,对淡黄色混合溶液 (A溶液)持续搅拌30min;
(2)称取0.0432g六水合硝酸镧晶体,量取1.5ml蒸馏水和0.7ml 14.4mol/L浓硝酸依次加入到20ml无水乙醇中,对澄清透明溶液(B溶液)持续搅拌30min;
(3)通过蠕动泵将B液以30滴/min的速度匀速滴入A液,在滴加的过程中保证A液处于剧烈搅拌状态,通过硝酸调节混合溶液pH=2.00,滴加结束后再持续搅拌30min;
(4)淡黄色溶胶C在25℃恒温下静置陈化12h得到透明淡黄色凝胶;
(5)将透明淡黄色凝胶置于82℃真空干燥箱中干燥2h;
(6)将处理后的干凝胶置于真空马弗炉中,以3℃/min的升温速率升至450℃煅烧2h;
(7)利用玛瑙研钵研磨煅烧后的材料,过200目筛网;
(8)将过筛网后的淡黄色粉末于25℃下浸渍在20ml 1.0mol/L硝酸中12h;
(9)将浸渍后的La掺杂TiO2置于82℃真空恒温干燥箱干燥2.5h得到1.0M HNO3-La/TiO2光催化剂,经X射线衍射可见TiO2为锐钛矿型TiO2
表1提供了本实施例的部分理化性质参数:比表面积为102.7m2/g,平均晶粒尺寸13.29nm。图3a提供了本实施例光催化剂还原CO2产物的产率,本实施例在可见光条件下其光催化还原CO2产物CH4的产量为14.747μmol/g,图3b提供了本实施例反应4h后光催化还原CO2效率为80.44%,较实施例3-1有所下降。
实施例3-3
(1)将5ml钛酸四丁酯与30ml无水乙醇在25℃恒温条件下缓慢混合,对淡黄色混合溶液 (A溶液)持续搅拌30min;
(2)称取0.0432g六水合硝酸镧晶体,量取1.5ml蒸馏水和0.7ml 14.4mol/L浓硝酸依次加入到20ml无水乙醇中,对澄清透明溶液(B溶液)持续搅拌30min;
(3)通过蠕动泵将B液以30滴/min的速度匀速滴入A液,在滴加的过程中保证A液处于剧烈搅拌状态,通过硝酸调节混合溶液pH=2.00,滴加结束后再持续搅拌30min;
(4)淡黄色溶胶C在25℃恒温下静置陈化12h得到透明淡黄色凝胶;
(5)将透明淡黄色凝胶置于82℃真空干燥箱中干燥2h;
(6)将处理后的干凝胶置于真空马弗炉中,以3℃/min的升温速率升至450℃煅烧2h;
(7)利用玛瑙研钵研磨煅烧后的材料,过200目筛网;
(8)将过筛网后的淡黄色粉末于25℃下浸渍在20ml 0.1mol/L浓硝酸中12h;
(9)将浸渍后的La掺杂TiO2置于82℃真空恒温干燥箱干燥2.5h得到0.1M HNO3-La/TiO2光催化剂光催化剂,经X射线衍射可见TiO2为锐钛矿型TiO2
表1提供了本实施例的部分理化性质参数:比表面积为109.2m2/g,平均晶粒尺寸10.44nm。图3a提供了本实施例光催化剂还原CO2产物的产率,本实施例在可见光条件下其光催化还原CO2产物CH4的产量为13.351μmol/g,图3b提供了本实施例反应4h后光催化还原CO2效率为85.29%,较实施例3-2略有提高,但较实施例3-1有所下降。
实施例4-1
同实施例3-1,区别在于:
按体积比,钛酸四丁酯:无水乙醇=1:2;按体积比蒸馏水:无水乙醇b:硝酸溶液=1.5:5:0.5,按质量比六水合硝酸镧晶体中La:钛酸四丁酯中Ti=1:20;
表1提供了本实施例的部分理化性质参数:比表面积为112.0m2/g,平均晶粒尺寸10.13nm。经检测,本实施例在可见光条件下其光催化还原CO2产物CH4的产量约为14.217μmol/g,结果较实施例3-1有所下降,其反应4h后光催化还原CO2效率仅为87.35%。
实施例4-2
同实施例3-1,区别在于:
按体积比,钛酸四丁酯:无水乙醇=1:4;按体积比蒸馏水:无水乙醇b:硝酸溶液=1.5:10:0.6,按质量比六水合硝酸镧晶体中La:钛酸四丁酯中Ti=1:50;
表1提供了本实施例的部分理化性质参数:比表面积为113.5m2/g,平均晶粒尺寸10.21nm。经检测,本实施例在可见光条件下其光催化还原CO2产物CH4的产量约为14.749μmol/g,结果较实施例3-1有所下降,其反应4h后光催化还原CO2效率仅为89.77%。
实施例5-1
同实施例3-1,区别在于:
干凝胶置于真空马弗炉内于360℃条件下焙烧1.5h;表1提供了本实施例的部分理化性质参数:比表面积为106.9m2/g,平均晶粒尺寸10.32nm。经检测,本实施例在可见光条件下其光催化还原CO2产物CH4的产量约为13.538μmol/g,结果较实施例3-1有所下降,其反应 4h后光催化还原CO2效率仅为82.23%。图4提供了本实施例在360℃煅烧温度下制得的光催化剂的X射线衍射图,2θ=25.5°衍射峰是明显的锐钛矿相特征衍射峰(101),但其峰强明显低于实施例3-1,因此其光催化效率较实施例3-1有所降低。
实施例5-2
同实施例3-1,区别在于:
干凝胶置于真空马弗炉内于500℃条件下焙烧2h;表1提供了本实施例的部分理化性质参数:比表面积为104.5m2/g,平均晶粒尺寸10.43nm。经检测,本实施例在可见光条件下其光催化还原CO2产物CH4的产量约为12.572μmol/g,结果较实施例3-1有明显下降,其反应 4h后光催化还原CO2效率仅为76.36%。图4提供了本实施例在500℃煅烧温度下制得的光催化剂的X射线衍射图,2θ=27.6°衍射峰是明显的金红石相特征衍射峰(101),金红石相TiO2性质稳定但光催化活性低,催化剂表面活性位点数量少,因此即使其具有较大的比表面积,但光催化效率较实施例3-1有明显下降。
表1
Figure BDA0002989955260000071

Claims (5)

1.一种硝酸表面改性La掺杂TiO2光催化剂的制备方法,其特征在于,按照以下步骤进行:
步骤1:按体积比,钛酸四丁酯:无水乙醇a=1:(2-6),量取钛酸四丁酯,在15~25℃恒温磁力搅拌条件下,将钛酸四丁酯加入到无水乙醇a中,磁力搅拌持续20-30 min,得到淡黄色混合溶液A;
步骤2:按体积比 蒸馏水:无水乙醇b:硝酸溶液=1.5:(5-20):(0.5-0.7),按质量比 六水合硝酸镧晶体中La:钛酸四丁酯中Ti=1:(20-100),称取六水合硝酸镧晶体置于烧杯中,按顺序加入无水乙醇b、蒸馏水和硝酸溶液,搅拌混合均匀得到澄清透明溶液B;
步骤3:在25℃恒温条件下,将溶液B以20-30滴/min的速度滴入溶液A,在滴加的过程中保证溶液A处于搅拌状态,反应过程中加入硝酸溶液,调节保证混合溶液pH=1.00~3.00,完成溶液A加入,得到淡黄色溶胶C,所述的溶液A搅拌速度为800-1000 rpm;
步骤4:淡黄色溶胶C在25℃恒温条件下静置陈化6h ~ 24h,得到透明淡黄色凝胶D;
步骤5:将凝胶D置于82-95℃真空恒温干燥箱干燥10-12h,得到干凝胶,干凝胶置于真空马弗炉内于360℃-500℃条件下焙烧1.5-2h,得到La掺杂TiO2
步骤6:将La掺杂TiO2研磨,过200目筛网;
步骤7:将过筛网后的淡黄色粉末于25℃下,浸渍在0.1mol/L ~ 1mol/L硝酸溶液中,浸渍时间为4~12 h;
步骤8:将浸渍后的La掺杂TiO2置于82-95℃真空恒温干燥箱干燥2h~4h,得到硝酸表面改性La掺杂TiO2光催化剂,比表面积102.7-116.9m2/g,平均孔径4.2-5.0nm,N2吸附量52.2-59.5 cm3/g 标况,晶粒尺寸10.27-13.29nm;所述的硝酸表面改性La掺杂TiO2光催化剂还原CO2产物CH4的产率为3.14-3.84μmol g-1 h-1,对CO2的光催化还原效率为76.36%-94.27%。
2.根据权利要求1所述的硝酸表面改性La掺杂TiO2光催化剂的制备方法,其特征在于,所述的步骤2中,硝酸溶液浓度为14-15mol/L。
3.根据权利要求1所述的硝酸表面改性La掺杂TiO2光催化剂的制备方法,其特征在于,所述的步骤3中,硝酸溶液浓度为2.5-3.5 mol/L。
4.根据权利要求1所述的硝酸表面改性La掺杂TiO2光催化剂的制备方法,其特征在于,所述的步骤5中,焙烧温度为450℃。
5.根据权利要求1所述的硝酸表面改性La掺杂TiO2光催化剂的制备方法,其特征在于,所述的步骤8中,硝酸表面改性La掺杂TiO2光催化剂中的TiO2为锐钛矿型TiO2
CN202110312633.6A 2021-03-24 2021-03-24 一种硝酸表面改性La掺杂TiO2光催化剂的制备方法 Active CN113019354B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110312633.6A CN113019354B (zh) 2021-03-24 2021-03-24 一种硝酸表面改性La掺杂TiO2光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110312633.6A CN113019354B (zh) 2021-03-24 2021-03-24 一种硝酸表面改性La掺杂TiO2光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN113019354A CN113019354A (zh) 2021-06-25
CN113019354B true CN113019354B (zh) 2022-05-03

Family

ID=76473199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110312633.6A Active CN113019354B (zh) 2021-03-24 2021-03-24 一种硝酸表面改性La掺杂TiO2光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN113019354B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804914A (zh) * 2022-05-18 2022-07-29 广州大学 一种高效绿色低成本的复合光催化剂制备方法
CN115025802A (zh) * 2022-06-24 2022-09-09 昆明理工大学 一种多效耦合有机硫宽温水解催化剂的制备方法
CN116425418A (zh) * 2023-06-05 2023-07-14 佛山市陶莹新型材料有限公司 一种抗菌卫生陶瓷

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001070631A1 (de) * 2000-03-21 2001-09-27 Studiengesellschaft Kohle Mbh Poröse dotierte titanoxide als selektive oxidations- und dehydrierkatalysatoren
CN101721990A (zh) * 2009-12-04 2010-06-09 天津大学 一种双稀土元素La和Y掺杂TiO2光催化剂的制备方法
CN108212139A (zh) * 2016-12-15 2018-06-29 天津发洋环保科技有限公司 一种负载型TiO2光催化剂的制备方法
CN109529805A (zh) * 2018-12-07 2019-03-29 五邑大学 一种可降解有机磷农药的稀土掺杂改性纳米氧化钛光催化剂制备方法
CN110586057A (zh) * 2019-09-30 2019-12-20 华东理工大学 杂化改性TiO2复合光催化剂、其制备及用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001070631A1 (de) * 2000-03-21 2001-09-27 Studiengesellschaft Kohle Mbh Poröse dotierte titanoxide als selektive oxidations- und dehydrierkatalysatoren
CN101721990A (zh) * 2009-12-04 2010-06-09 天津大学 一种双稀土元素La和Y掺杂TiO2光催化剂的制备方法
CN108212139A (zh) * 2016-12-15 2018-06-29 天津发洋环保科技有限公司 一种负载型TiO2光催化剂的制备方法
CN109529805A (zh) * 2018-12-07 2019-03-29 五邑大学 一种可降解有机磷农药的稀土掺杂改性纳米氧化钛光催化剂制备方法
CN110586057A (zh) * 2019-09-30 2019-12-20 华东理工大学 杂化改性TiO2复合光催化剂、其制备及用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TiO2光催化还原 CO2技术的研究进展;侯鑫等;《上海电力学院学报》;20190228;第35卷(第1期);第67-71页 *
共掺杂 TiO2/ACF 复合材料吸附-光催化降解室内甲醛的实验研究;张荣;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》;20120415(第04期);第10-11页,第37页,第51-52页 *

Also Published As

Publication number Publication date
CN113019354A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
CN113019354B (zh) 一种硝酸表面改性La掺杂TiO2光催化剂的制备方法
CN100340489C (zh) 一种以工业偏钛酸为原料制备高活性二氧化钛溶胶的方法
Zeng et al. Hydrothermal synthesis and photocatalytic properties of pyrochlore La2Sn2O7 nanocubes
Tang et al. DFT and experimental study on visible-light driven photocatalysis of rare-earth-doped TiO2
CN108671954A (zh) 一种rGO/Fe3+/g-C3N4三元复合光催化剂及其制备方法
CN110090652A (zh) 一种制备氯四氧化三铋/锶铁氧体复合磁性光催化材料的方法
CN108554412A (zh) 一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法及其应用
Sun et al. Crystallinity and photocatalytic properties of BiVO4/halloysite nanotubes hybrid catalysts for sunlight-driven decomposition of dyes from aqueous solution
Xu et al. Structure, luminescence properties and photocatalytic activity of europium doped-TiO2 nanoparticles
Hong et al. Maximizing the visible light photoelectrochemical activity of B/N-doped anatase TiO2 microspheres with exposed dominant {001} facets
Gao et al. Metal-organic framework MIL-68 (In)-NH2-derived carbon-covered cobalt-doped bi-crystalline In2O3 tubular structures for efficient photocatalytic degradation of tetracycline hydrochloride
Giordani et al. Photocatalytic degradation of propranolol hydrochloride using Nd–TiO2 nanoparticles under UV and visible light
CN115624976A (zh) 镶嵌型氧化锆/氧化钴复合纳米颗粒的制备方法及应用
CN109745992B (zh) 一种高光催化活性单相铁电纳米材料及其制备方法
CN109174014B (zh) 纳米钛酸铁基磁性吸附材料及其制备方法和应用
CN108837840B (zh) 一种Ag/g-C3N4修饰钨酸铋混晶复合材料及其制备方法和应用
CN108525662B (zh) 一种截边立方体Ag2O修饰TiO2中空纳米纤维光催化剂的制备及其应用
Shi et al. High photocatalytic activity of oxychloride CaBiO 2 Cl under visible light irradiation
Ravi et al. Synthesis of Y 2 Ti 2 O 7-x N y with visible light responsive photocatalytic activity
Xie et al. Enhanced photocatalytic activity of mesoporous SN-codoped TiO2 loaded with Ag nanoparticles
CN105727922A (zh) 一种Li掺杂SrTiO3十八面体纳米颗粒的制备方法及产物
CN1792816A (zh) 金属氧化物纳米粉的制备方法
Verma et al. La-doped TiO2 nanoparticles for photocatalysis: synthesis, activity in terms of degradation of methylene blue dye and regeneration of used nanoparticles
CN110394175B (zh) 一种模板法制备铜掺杂介孔二氧化钛的方法及应用
CN108607549B (zh) 一种可见光催化剂Ag-H2Ti4O9及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant