CN108554412A - 一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法及其应用 - Google Patents

一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法及其应用 Download PDF

Info

Publication number
CN108554412A
CN108554412A CN201810447613.8A CN201810447613A CN108554412A CN 108554412 A CN108554412 A CN 108554412A CN 201810447613 A CN201810447613 A CN 201810447613A CN 108554412 A CN108554412 A CN 108554412A
Authority
CN
China
Prior art keywords
photocatalyzing
large scale
doping
magnetic porous
high porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810447613.8A
Other languages
English (en)
Other versions
CN108554412B (zh
Inventor
蒋鸿辉
梁彤祥
邓义群
杨辉
漆小鹏
甄卓武
沈文煜
鲁涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ganzhou Zhongao New Porcelain Technology Co ltd
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN201810447613.8A priority Critical patent/CN108554412B/zh
Publication of CN108554412A publication Critical patent/CN108554412A/zh
Priority to US16/395,218 priority patent/US10933406B2/en
Application granted granted Critical
Publication of CN108554412B publication Critical patent/CN108554412B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法及其应用,属于材料制备技术领域。本发明先将可溶性高分子用蒸馏水溶解得到溶液A,然后将光催化剂与溶液A中混合后得到悬浊液B,再将饱和可溶性铁盐溶液与悬浊液B混合,后得到悬浊液C;用合适大小的注射器将悬浊液C逐滴滴加到高浓度碱液中生成微球颗粒,滴加完毕后,陈化、干燥,最后将微球在600~1100℃条件下煅烧,冷却后得到本发明的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球。本发明制得的多孔微球不仅能实现催化剂的高效回收,而且其多孔结构有利于大分子反应物在催化剂表面和体相间的扩散和传质,增强催化剂的降解活性,因此在光催化领域有广泛的应用前景。

Description

一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法 及其应用
技术领域
本发明属于材料制备技术领域,具体涉及一种光催化材料的制备方法及其应用,更具地说,本发明涉及一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法及其应用。
背景技术
作为未来解决环境问题的一种重要手段,光催化技术是当前国内外化学与环境领域的研究热点。利用光催化技术不仅可降解和矿化水与空气中各种难降解的持久有毒有机污染物,还可以抗菌除臭以及处理废水中的Hg2+、Ag+、Cr6+等重金属离子。
多年来,国内外众多学者围绕着先进光催化材料的制备与改性开展了大量研究工作,并取得了较大进展。然而,目前光催化材料距离其商业化应用仍存在诸多障碍。一方面,较低的可见光利用率和较高的光生电子—空穴复合率导致催化剂的活性较差。研究表明,掺杂具有多能级结构的过渡金属元素能在材料中引入缺陷,使之成为光生电子—空穴的浅势捕获阱,降低光生电子—空穴的复合率,从而可以有效改善材料的催化性能。在众多过渡金属掺杂剂中,Fe被认为是掺杂效果最好的元素之一。作为在地壳中含量排名第二位的金属元素,Fe元素不仅廉价易得,其化合物通常无毒、无污染,是环境友好材料。以Fe掺杂TiO2光催化剂为例,由于Fe3+离子半径与Ti4+的离子半径非常接近,因此Fe3+可以较为顺畅的进入到晶格中形成捕获中心,可同时捕获光生电子与空穴。其中,Fe3+/Fe2+的电位位于TiO2导带之下,为被光子激发跃迁到导带的电子提供了传输路径;Fe4+/Fe3+的电位位于TiO2价带之上,易于吸引聚集在价带的空穴,从而有效抑制电子—空穴的复合。此外,Fe掺杂还可引入杂质能级,提高TiO2对可见光的响应能力。另一方面,纳米尺度的光催化剂虽然具有较多的表面活性位点,有助于改善其催化活性,然而,随着光催化材料向纳米尺度发展,传统的分离手段如离心、过滤等很难将其从反应体系中有效分离出来;目前,主要是通过构筑磁核结构并利用外加磁场实现催化剂纳米晶的快速回收。但这种方法的主要问题是磁核尺寸太小,磁性太弱,无法显著改善催化剂的回收效率。
发明内容
本发明针对背景技术中所指出的问题及现有技术存在的不足,目的在于提供一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法及其应用。采用本发明方法制得的大尺寸多孔微球不仅能实现催化剂的高效回收,而且其多孔结构有利于大分子反应物在催化剂表面和体相间的扩散和传质,可以为催化剂提供大的比表面积,使得催化剂拥有更多的反应活性位点,从而有效增强催化剂的降解活性,因此在光催化领域有广泛的应用前景。
为了实现本发明的上述的第一个目的,本发明采用如下技术方案:
本发明的一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法,所述方法包含如下步骤:
首先,将可溶性高分子用蒸馏水溶解得到浓度为0.5wt%~1.5wt%的溶液A,然后将光催化剂加入到所述溶液A中,混合搅拌均匀后得到悬浊液B,再将饱和可溶性铁盐溶液与所述悬浊液B混合,搅拌均匀后得到悬浊液C;采用合适针头大小的注射器将所述悬浊液C逐滴滴加到高浓度碱液中生成微球颗粒,滴加完毕后,陈化、干燥,最后将干燥后的微球在600~1100℃条件下煅烧30~120min,冷却后即得到本发明所述的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球。
进一步地,上述技术方案中所述的可溶性高分子优选为田菁粉、羧甲基纤维素、瓜尔豆胶中的任一种。
进一步地,上述技术方案中所述的光催化剂优选为二氧化钛、镧钛酸钾、钛酸锶或氧化锌中的任一种。
进一步地,上述技术方案中所述悬浊液B的固含量为35wt%~65wt%。
进一步地,上述技术方案中所述的可溶性铁盐优选为氯化铁或硝酸铁中的任一种。
进一步地,上述技术方案所述的铁盐溶液中Fe3+离子与光催化剂的摩尔比优选为15~45:100。
进一步地,上述技术方案中所述的碱液优选为浓氨水、尿素饱和溶液、六次甲基四胺饱和溶液中的任一种。
进一步地,上述技术方案中所述陈化时间优选为30~120min,干燥温度优选为60~80℃。
上述所述的注射器针头大小可根据成球颗粒大小进行选择调整。
本发明的另一目的在于提供采用上述方法制得的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的应用,所述光催化磁性多孔微球可用于催化降解有机染料。
进一步地,上述技术方案中所述的有机染料优选为亚甲基蓝染料。
本发明的原理在于:一方面,基于表面张力原理,悬浊液C中的可溶性高分子使液滴在碱液中形成球状;另一方面,该球状液滴表面的Fe3+与碱液中的OH-迅速发生沉淀反应,从而使球状液滴表面迅速固化,一定时间陈化后完全固化。此外,在高温煅烧过程中,可溶性高分子热分解形成还原性气氛,使部分Fe3+还原成Fe2+获得磁性Fe3O4
与现有技术相比,本发明的制备方法具有如下有益效果:
(1)本发明的制备方法,能够一步法同时实现光催化剂微球的掺杂与磁性制备,其原位生成的Fe3O4不仅可以使催化剂在外磁场的作用下得到高效回收,而且Fe掺杂能进一步改善催化剂的催化性能。该方法工艺简单,无需气氛保护,重现性好,不仅价格低廉、环境友好,且能得到多种粒径范围的磁性微球;
(2)本发明制得的大尺寸多孔微球不仅能实现催化剂的高效回收,而且其多孔结构有利于大分子反应物在催化剂表面和体相间的扩散和传质,可以为催化剂提供大的比表面积,使得催化剂拥有更多的反应活性位点,从而有效增强催化剂的降解活性,因此在光催化领域有广泛的应用前景。
附图说明
图1为本发明所述大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备工艺流程图;
图2为本发明所述大尺寸高孔隙率Fe掺杂光催化磁性多孔微球制备工艺中涉及的具体滴定成球过程示意图;
图3为本发明实施例1制得的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的扫描电镜图片;
图4为本发明实施例1制得的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的XRD图谱;
图5为本发明实施例1制得的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球首次用于催化降解亚甲基蓝染料时的降解率随时间的变化曲线图;
图6为本发明实施例1制得的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球多次重复用于催化降解亚甲基蓝染料的降解率对比图;
具体实施方式
下面对本发明的实施案例作详细说明。本实施案例在本发明技术方案的前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施案例。
根据本申请包含的信息,对于本领域技术人员来说可以轻而易举地对本发明的精确描述进行各种改变,而不会偏离所附权利要求的精神和范围。应该理解,本发明的范围不局限于所限定的过程、性质或组分,因为这些实施方案以及其他的描述仅仅是为了示意性说明本发明的特定方面。实际上,本领域或相关领域的技术人员明显能够对本发明实施方式作出的各种改变都涵盖在所附权利要求的范围内。
为了更好地理解本发明而不是限制本发明的范围,在本申请中所用的表示用量、百分比的所有数字、以及其他数值,在所有情况下都应理解为以词语“大约”所修饰。因此,除非特别说明,否则在说明书和所附权利要求书中所列出的数字参数都是近似值,其可能会根据试图获得的理想性质的不同而加以改变。各个数字参数至少应被看作是根据所报告的有效数字和通过常规的四舍五入方法而获得的。
实施例1
本实施例的一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法,所述方法包含如下步骤:
(1)称取0.5g田菁粉溶于100mL蒸馏水中,得到浓度为0.5wt%的溶液A;
(2)称取35g(0.438mol)二氧化钛(分子式为TiO2,分子量为79.87)光催化剂(简称:P-25)加入到溶液A中,混合搅拌均匀后得到悬浊液B,所述悬浊液B的固含量为35wt%;
(3)取11.5mL的FeCl3饱和溶液(其中:FeCl3饱和溶液浓度为92g/100mL)与步骤(2)所述悬浊液B混合,搅拌均匀后得到悬浊液C,所述Fe3+离子与二氧化钛的摩尔比为15:100;
(4)采用6号针头大小的注射器将悬浊液C逐滴滴入浓氨水中生成微球颗粒,滴加完毕后,陈化60min,再在80℃条件下干燥;
(5)将步骤(4)干燥后的微球在600℃下煅烧120min,制得Fe掺杂二氧化钛光催化磁性多孔微球。
将本实施例上述制得的磁性多孔微球的扫描电镜(SEM)照片如图3所示,所述磁性多孔微球的XRD测试结果如图4所示。由图3可以看出,本实施例上述制得的磁性多孔微球的平均粒径为650μm、孔隙率高达82%。由图4可以看出,样品的晶相主要为光催化剂P-25和磁性Fe3O4
应用实施例1
将实施例1制得的Fe掺杂二氧化钛光催化磁性多孔微球用于催化降解有机染料,有机染料选择亚甲基蓝,光催化性能测试方法如下:取50mg/L的亚甲基蓝溶液100mL置于烧杯中,加入50mg实施例1制得的多孔微球并在未开汞灯的反应仪箱体中搅拌30min以达到吸附-脱附平衡;然后打开汞灯(500W)光源照射溶液,取样测量时间为每10min一次,经离心分离后汲取上层清液;利用紫外-可见光分光光度计测量光催化反应后亚甲基蓝溶液在664nm(最大吸收波长)处的吸光度,最后根据获得的数据计算亚甲基蓝溶液在各个时间点的浓度,将上述使用过的光催化剂重新收集,经烘干后再次进行光催化性能测试,反复进行6次并获取其降解数据。
图5为上述实施例1制得的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球首次用于催化降解亚甲基蓝染料时的降解率随时间的变化曲线图,由图5的光催化性能测试结果可以看出,实施例1制得的磁性多孔微球光催化降解亚甲基蓝40min的降解率可达93.1%。
将本发明实施例1制得的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球用于重复催化降解亚甲基蓝染料,共重复使用6次,每次降解30min时的降解率对比图如图6所示,由图6重复使用后的降解性能测试数据可以看出,经6次循环使用后,磁性多孔微球的催化性能无显著变化。
实施例2
本实施例的一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法,所述方法包含如下步骤:
(1)称取1.5g羧甲基纤维素溶于100mL蒸馏水中,得到浓度为1.5wt%的溶液A;
(2)称取65g(0.1mol)镧钛酸钾(分子式:K2La2Ti3O10,分子量为659.5)光催化剂加入到溶液A中,混合搅拌均匀后得到悬浊液B,所述悬浊液B的固含量为65wt%;
(3)取8mL的FeCl3饱和溶液(其中:FeCl3饱和溶液浓度为92g/100mL)与步骤(2)所述悬浊液B混合,搅拌均匀后得到悬浊液C,所述Fe3+离子与镧钛酸钾的摩尔比为45:100;
(4)采用4号针头大小的注射器将悬浊液C逐滴滴入尿素饱和溶液中生成微球颗粒,滴加完毕后,陈化90min,再在60℃条件下干燥;
(5)将步骤(4)干燥后的微球在1100℃下煅烧90min,制得Fe掺杂镧钛酸钾光催化磁性多孔微球。
将本实施例上述制得的磁性多孔微球进行测试,测试结果表明,本实施例制得的磁性多孔微球的平均粒径为430μm、孔隙率高达75%。
采用应用实施例1相同的测试方法进行光催化性能测试,结果表明,本实施例制得的Fe掺杂镧钛酸钾光催化磁性多孔微球首次用于降解亚甲基蓝时,在降解40min时的降解率可达94.6%。经6次循环使用后,样品的催化性能无显著变化。
实施例3
本实施例的一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法,所述方法包含如下步骤:
(1)称取0.5g瓜尔豆胶溶于100mL蒸馏水中,得到浓度为0.5wt%的溶液A;
(2)称取65g(0.354mol)钛酸锶(分子式:SrTiO3,分子量为183.46)光催化剂加入到溶液A中,混合搅拌均匀后得到悬浊液B,所述悬浊液B的固含量为65wt%;
(3)取9.5mL的Fe(NO3)3饱和溶液(其中:Fe(NO3)3饱和溶液浓度为138g/100mL)与步骤(2)所述悬浊液B混合,搅拌均匀后得到悬浊液C,所述Fe3+离子与钛酸锶的摩尔比为15:100;
(4)采用6号针头大小的注射器将悬浊液C逐滴滴入浓氨水中生成微球颗粒,滴加完毕后,陈化120min,再在60℃条件下干燥;
(5)将步骤(4)干燥后的微球在1000℃下煅烧120min,制得Fe掺杂镧钛酸钾光催化磁性多孔微球。
将本实施例上述制得的磁性多孔微球进行测试,测试结果表明,本实施例制得的磁性多孔微球的平均粒径为680μm、孔隙率高达76%。
采用应用实施例1相同的测试方法进行光催化性能测试,结果表明,将本实施例Fe掺杂钛酸锶光催化磁性多孔微球首次用于降解亚甲基蓝时,在降解40min时的降解率可达92.8%。经6次循环使用后,样品的催化性能无显著变化。
实施例4
本实施例的一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法,所述方法包含如下步骤:
(1)称取1.0g瓜尔豆胶溶于100mL蒸馏水中,得到浓度为1.0wt%的溶液A;
(2)称取50g(0.973mol)氧化锌光催化剂(分子式为ZnO,分子量为81.38)光催化剂加入到溶液A中,混合搅拌均匀后得到悬浊液B,所述悬浊液B的固含量为50wt%;
(3)取34mL的Fe(NO3)3饱和溶液(其中:Fe(NO3)3饱和溶液浓度为138g/100mL)与步骤(2)所述悬浊液B混合,搅拌均匀后得到悬浊液C,所述Fe3+离子与氧化锌的摩尔比为20:100;
(4)采用4号针头大小的注射器将悬浊液C逐滴滴入浓氨水中生成微球颗粒,滴加完毕后,陈化30min,再在80℃条件下干燥;
(5)将步骤(4)干燥后的微球在1050℃下煅烧90min,制得Fe掺杂氧化锌光催化磁性多孔微球。
将本实施例上述制得的磁性多孔微球进行测试,测试结果表明,本实施例制得的磁性多孔微球的平均粒径为480μm、孔隙率高达84%。
采用应用实施例1相同的测试方法进行光催化性能测试,结果表明,将本实施例的Fe掺杂氧化锌光催化磁性多孔微球首次用于降解亚甲基蓝,在降解40min时的降解率可达89.6%。经6次循环使用后,样品的催化性能无显著变化。
实施例5
本实施例的一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法,所述方法包含如下步骤:
(1)称取1.2g田菁粉溶于100ml蒸馏水中,得到浓度为1.2wt%的溶液A;
(2)称取40g(0.5mol)二氧化钛(分子式为TiO2,分子量为79.87)光催化剂(简称:P25)加入到溶液A中,混合搅拌均匀后得到悬浊液B,所述悬浊液B的固含量为40wt%;
(3)取26.5mL的FeCl3饱和溶液(其中:FeCl3饱和溶液浓度为92g/100ml)与步骤(2)所述悬浊液B混合,搅拌均匀后得到悬浊液C,所述Fe3+离子与二氧化钛的摩尔比为30:100;
(4)采用4号针头大小的注射器将悬浊液C逐滴滴入六次甲基四胺饱和溶液中生成微球颗粒,滴加完毕后,陈化60min,再在70℃条件下干燥;
(5)将步骤(4)干燥后的微球在600℃下煅烧120min,制得Fe掺杂二氧化钛光催化磁性多孔微球。
将本实施例上述制得的磁性多孔微球进行测试,测试结果表明,本实施例制得的磁性多孔微球的平均粒径为540μm、孔隙率高达81%。
采用应用实施例1相同的测试方法进行光催化性能测试,结果表明,将本实施例的Fe掺杂二氧化钛光催化磁性多孔微球首次用于降解亚甲基蓝,在降解40min时的降解率可达90.9%。经6次循环使用后,样品的催化性能无显著变化。

Claims (10)

1.一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法,其特征在于:所述方法包含如下步骤:
首先,将可溶性高分子用蒸馏水溶解得到浓度为0.5wt%~1.5wt%的溶液A,然后将光催化剂加入到所述溶液A中,混合搅拌均匀后得到悬浊液B,再将饱和可溶性铁盐溶液与所述悬浊液B混合,搅拌均匀后得到悬浊液C;采用合适针头大小的注射器将所述悬浊液C逐滴滴加到高浓度碱液中生成微球颗粒,滴加完毕后,陈化、干燥,最后将干燥后的微球在600~1100℃条件下煅烧30~120min,冷却后即得到本发明所述的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球。
2.根据权利要求1所述的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法,其特征在于:所述的可溶性高分子为田菁粉、羧甲基纤维素、瓜尔豆胶中的任一种。
3.根据权利要求1或2所述的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法,其特征在于:所述的光催化剂为二氧化钛、镧钛酸钾、钛酸锶或氧化锌中的任一种。
4.根据权利要求1所述的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法,其特征在于:所述悬浊液B的固含量为35wt%~65wt%。
5.根据权利要求1所述的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法,其特征在于:所述的可溶性铁盐为氯化铁或硝酸铁中的任一种。
6.根据权利要求1所述的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法,其特征在于:所述的铁盐溶液中Fe3+离子与光催化剂的摩尔比为15~45:100。
7.根据权利要求1所述的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法,其特征在于:所述的碱液为浓氨水、尿素饱和溶液、六次甲基四胺饱和溶液中的任一种。
8.根据权利要求1所述的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法,其特征在于:所述陈化时间为30~120min,干燥温度为60~80℃。
9.一种根据权利要求1所述方法制得的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的应用,其特征在于:所述光催化磁性多孔微球可用于催化降解有机染料。
10.根据权利要求9所述的大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的应用,其特征在于:所述的有机染料为亚甲基蓝染料。
CN201810447613.8A 2018-05-11 2018-05-11 一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法及其应用 Active CN108554412B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810447613.8A CN108554412B (zh) 2018-05-11 2018-05-11 一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法及其应用
US16/395,218 US10933406B2 (en) 2018-05-11 2019-04-25 Method of preparing large-size high-porosity Fe-doped photocatalytic porous magnetic microspheres and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810447613.8A CN108554412B (zh) 2018-05-11 2018-05-11 一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN108554412A true CN108554412A (zh) 2018-09-21
CN108554412B CN108554412B (zh) 2020-10-30

Family

ID=63538665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810447613.8A Active CN108554412B (zh) 2018-05-11 2018-05-11 一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法及其应用

Country Status (2)

Country Link
US (1) US10933406B2 (zh)
CN (1) CN108554412B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114560960A (zh) * 2022-03-10 2022-05-31 广东省科学院生物与医学工程研究所 一种纤维素催化热解制备左旋葡聚糖的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113045247B (zh) * 2021-03-06 2022-11-18 苏州鱼得水电气科技有限公司 一种可光催化降解的轻质沥青混合料及其制备方法
CN113600164B (zh) * 2021-07-30 2023-07-21 江苏理工学院 一种铁掺杂碳量子点/石墨相氮化碳复合光催化剂的制备方法及应用
CN113980438B (zh) * 2021-09-29 2023-02-28 淮阴工学院 一种可降解回收的3d打印微孔光催化复合材料及制法
CN113751034B (zh) * 2021-09-30 2023-06-23 江苏理工学院 一种用于降解废水污染物的重金属掺杂含氯钙铝石光催化材料及其制备方法
CN114733552B (zh) * 2022-05-09 2022-09-20 西南林业大学 一种整体式轻质双磁性光催化复合材料的制备方法及应用
CN115159560B (zh) * 2022-07-19 2023-12-19 江苏先丰纳米材料科技有限公司 一种中空绣球状氧化锌的制备方法及其产品和应用
CN115463542B (zh) * 2022-10-08 2023-10-27 南京大学 一种利用金属单原子修饰的氧化锌纳米颗粒高效光催化烃类小分子气体或甲醛降解的方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102407116A (zh) * 2011-10-13 2012-04-11 西北工业大学 一种大孔高比表面磁性可见光催化剂Fe3O4/TiO2的制备方法
CN102533716A (zh) * 2012-01-20 2012-07-04 安徽农业大学 一种用于有机氯污染土壤修复的磁性纳米生物微球制备方法
CN102658082A (zh) * 2012-04-25 2012-09-12 武汉理工大学 一种用于吸附净化多金属离子工业废水的无机复合材料及其应用方法
KR101292965B1 (ko) * 2011-03-15 2013-08-02 금오공과대학교 산학협력단 전이금속 도핑 이산화티탄 광촉매의 제조방법
CN103447038A (zh) * 2013-09-18 2013-12-18 天津城建大学 介孔TiO2负载纳米铁催化剂的制备方法
CN103638912A (zh) * 2013-12-06 2014-03-19 中国烟草总公司郑州烟草研究院 一种多孔羧甲基纤维素微球的制备方法及其产品与在卷烟滤嘴中的应用
CN103831093A (zh) * 2014-03-06 2014-06-04 浙江师范大学 一种氧化锌基复合光催化纳米材料及其制备方法
CN106179246A (zh) * 2016-08-04 2016-12-07 东北林业大学 一种纤维素基TiO2/β‑CD双网凝胶笼微球及其制备方法和应用
CN106492761A (zh) * 2016-11-01 2017-03-15 河南工业大学 一种磁性水凝胶微球的制备方法
CN106964352A (zh) * 2017-03-31 2017-07-21 山东师范大学 新型光催化材料TiO2@Fe2O3、SrTiO3@Fe2O3的制备及应用
CN107175089A (zh) * 2017-06-06 2017-09-19 大连民族大学 一种掺杂钴离子的铁镍磁性微球及其应用
CN107376914A (zh) * 2017-08-09 2017-11-24 苏州汉力新材料有限公司 一种四氧化三铁‑二氧化钛复合材料及其制备方法
CN107626315A (zh) * 2017-10-23 2018-01-26 烟台智本知识产权运营管理有限公司 一种Fe掺杂的ZnO光催化剂的制备方法
CN107973367A (zh) * 2017-12-02 2018-05-01 延海平 一种Fe掺杂包裹型TiO2光催化剂降解废水的工艺
CN107983353A (zh) * 2017-12-22 2018-05-04 武汉船用电力推进装置研究所(中国船舶重工集团公司第七二研究所) 一种TiO2-Fe2O3复合粉体的制备方法及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015007230A1 (zh) * 2013-07-18 2015-01-22 中国石油大学(北京) 一种铁基加氢催化剂及其应用
CN105727963B (zh) * 2016-04-18 2018-05-18 盐城工学院 一种Fe、Cu共掺杂纳米ZnO光催化剂及其制备方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292965B1 (ko) * 2011-03-15 2013-08-02 금오공과대학교 산학협력단 전이금속 도핑 이산화티탄 광촉매의 제조방법
CN102407116A (zh) * 2011-10-13 2012-04-11 西北工业大学 一种大孔高比表面磁性可见光催化剂Fe3O4/TiO2的制备方法
CN102533716A (zh) * 2012-01-20 2012-07-04 安徽农业大学 一种用于有机氯污染土壤修复的磁性纳米生物微球制备方法
CN102658082A (zh) * 2012-04-25 2012-09-12 武汉理工大学 一种用于吸附净化多金属离子工业废水的无机复合材料及其应用方法
CN103447038A (zh) * 2013-09-18 2013-12-18 天津城建大学 介孔TiO2负载纳米铁催化剂的制备方法
CN103638912A (zh) * 2013-12-06 2014-03-19 中国烟草总公司郑州烟草研究院 一种多孔羧甲基纤维素微球的制备方法及其产品与在卷烟滤嘴中的应用
CN103831093A (zh) * 2014-03-06 2014-06-04 浙江师范大学 一种氧化锌基复合光催化纳米材料及其制备方法
CN106179246A (zh) * 2016-08-04 2016-12-07 东北林业大学 一种纤维素基TiO2/β‑CD双网凝胶笼微球及其制备方法和应用
CN106492761A (zh) * 2016-11-01 2017-03-15 河南工业大学 一种磁性水凝胶微球的制备方法
CN106964352A (zh) * 2017-03-31 2017-07-21 山东师范大学 新型光催化材料TiO2@Fe2O3、SrTiO3@Fe2O3的制备及应用
CN107175089A (zh) * 2017-06-06 2017-09-19 大连民族大学 一种掺杂钴离子的铁镍磁性微球及其应用
CN107376914A (zh) * 2017-08-09 2017-11-24 苏州汉力新材料有限公司 一种四氧化三铁‑二氧化钛复合材料及其制备方法
CN107626315A (zh) * 2017-10-23 2018-01-26 烟台智本知识产权运营管理有限公司 一种Fe掺杂的ZnO光催化剂的制备方法
CN107973367A (zh) * 2017-12-02 2018-05-01 延海平 一种Fe掺杂包裹型TiO2光催化剂降解废水的工艺
CN107983353A (zh) * 2017-12-22 2018-05-04 武汉船用电力推进装置研究所(中国船舶重工集团公司第七二研究所) 一种TiO2-Fe2O3复合粉体的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
鲁启鹏等: "《基于金属氧化物TiO2和Y2O3纳米材料光电性能的研究》", 31 May 2015, 北京交通大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114560960A (zh) * 2022-03-10 2022-05-31 广东省科学院生物与医学工程研究所 一种纤维素催化热解制备左旋葡聚糖的方法

Also Published As

Publication number Publication date
US20190344245A1 (en) 2019-11-14
US10933406B2 (en) 2021-03-02
CN108554412B (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN108554412A (zh) 一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法及其应用
Cheng et al. One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties
Liang et al. Photocatalytic reduction of uranium (VI) by magnetic ZnFe2O4 under visible light
Shi et al. Enhancement of visible‐light photocatalytic degradation performance over nitrogen‐deficient g‐C3N4/KNbO3 heterojunction photocatalyst
Jiang et al. A novel direct Z-scheme heterojunction BiFeO3/ZnFe2O4 photocatalyst for enhanced photocatalyst degradation activity under visible light irradiation
Muhmood et al. Under vacuum synthesis of type-I heterojunction between red phosphorus and graphene like carbon nitride with enhanced catalytic, electrochemical and charge separation ability for photodegradation of an acute toxicity category-III compound
Tian et al. Cellulose nanofibrils enable flower-like BiOCl for high-performance photocatalysis under visible-light irradiation
Guo et al. Fabrication of a direct Z-scheme heterojunction between MoS2 and B/Eu-g-C3N4 for an enhanced photocatalytic performance toward tetracycline degradation
CN100340489C (zh) 一种以工业偏钛酸为原料制备高活性二氧化钛溶胶的方法
CN107684924A (zh) 新型的银纳米颗粒修饰超薄石墨相氮化碳催化剂的制备方法及应用
CN106669755B (zh) 氮氟掺杂钛酸钡光催化剂及其在可见光下降解有机染料中的应用
Waghchaure et al. Fe3+ modified zinc oxide nanomaterial as an efficient, multifaceted material for photocatalytic degradation of MB dye and ethanol gas sensor as part of environmental rectification
CN108479774A (zh) 一种氧化锌复合光催化剂及其制备方法和应用
CN110465303A (zh) 一种钙掺杂的LaNiO3钙钛矿型光催化剂的制备方法及应用
Din et al. Recent advancements in the architecting schemes of zinc oxide-based photocatalytic assemblies
Khan et al. One-pot fabrication of hierarchical floating Bi–Bi2S3–Bi2WO6/expanded perlite photocatalysts for efficient photocatalysis of organic contaminants utilized sunlike illumination
Almenia et al. Li2MnO3 nanoparticles decorated with Co3O4 as functional visible-light-induced heterojunction photocatalysts for the degradation of tetracycline
Imranullah et al. Stable and highly efficient natural sunlight driven photo-degradation of organic pollutants using hierarchical porous flower-like spinel nickel cobaltite nanoflakes
Zhang et al. Photocatalytic degradation of organic pollutants by 3D flower-like g-C3N4/Ag3PO4/Bi2O2CO3 and its effect on the growth of lettuce seedlings
Cheng et al. Visible-light-driven hierarchical porous CeO2 derived from wood for effective photocatalytic degradation of methylene blue
CN107597093A (zh) 一种纳米颗粒自组装芍药状La3+掺杂ZnO及其制备方法和应用
KM et al. Green-Synthesized Sm 3+-Doped ZnO Nanoparticles for Multifunctional Applications.
CN108160091B (zh) 混合价态锰氧化物/磷酸银光催化剂的制备方法和应用
CN108298632B (zh) 一种纳米TiO2光催化剂降解染料废水的工艺
Xue et al. Construction of Cu 2+-doped CeO 2 nanocrystals hierarchical hollow structure and its enhanced photocatalytic performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211223

Address after: 341000 building 10, zone 2, Jinlong Avenue Industrial Park, QUANNAN County, Ganzhou City, Jiangxi Province

Patentee after: Ganzhou Zhongao new porcelain Technology Co.,Ltd.

Address before: 341000 No. 86 Hongqi Avenue, Jiangxi, Ganzhou

Patentee before: Jiangxi University of Science and Technology

TR01 Transfer of patent right