CN113980438B - 一种可降解回收的3d打印微孔光催化复合材料及制法 - Google Patents

一种可降解回收的3d打印微孔光催化复合材料及制法 Download PDF

Info

Publication number
CN113980438B
CN113980438B CN202111150948.1A CN202111150948A CN113980438B CN 113980438 B CN113980438 B CN 113980438B CN 202111150948 A CN202111150948 A CN 202111150948A CN 113980438 B CN113980438 B CN 113980438B
Authority
CN
China
Prior art keywords
photocatalytic
composite material
degradable
powder
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111150948.1A
Other languages
English (en)
Other versions
CN113980438A (zh
Inventor
夏木建
李年莲
姜海林
陈中
张满
朱雨富
刘爱辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN202111150948.1A priority Critical patent/CN113980438B/zh
Publication of CN113980438A publication Critical patent/CN113980438A/zh
Application granted granted Critical
Publication of CN113980438B publication Critical patent/CN113980438B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • B01J35/33
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Abstract

本发明公开了一种可降解回收的3D打印微孔光催化复合材料及制法,该复合材料包括聚乳酸基体以及负载在聚乳酸基体上呈核壳结构的光催化粉体,光催化粉体为Fe3O4@TiO2@La/Ce‑ZnO,制备过程为:以TiO2、ZnO、La和Ce作为靶材,采用共溅射物理气相沉积工艺,在纳米Fe3O4粉体表面依次沉积TiO2中间层和La/Ce‑ZnO催化层,然后加入到溶有聚乳酸的二氯甲烷中,通过3D打印成型得到复合材料。本发明实现具有双重功能光催化粉体的一体化制备,有利于提高光催化粉体的光催化功能与高效回收,该方法能实现工业废水的高效降解与回收利用率,且工艺简单,市场前景广阔。

Description

一种可降解回收的3D打印微孔光催化复合材料及制法
技术领域
本发明属于功能环保材料的增材制造,具体涉及一种可降解回收的3D打印微孔光催化复合材料及方法。
背景技术
工业废水中的污染物不仅有大量有机污染物、无机污染物、重金属离子,还有少量的油脂类化合物、耗氧污染物、富营养化污染物,对水体的危害最大。而传统工业污水的处理方式为分离法和转化法,在实际应用中的处理效果不佳,对于工业废水的难降解污染物需要一种高效快捷的处理方法。光催化是将半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解,是一项高效清洁、环保节能的一项污染处理技术。金属氧化物常常被作为光催化剂,在众多光催化剂中,ZnO凭借其宽禁带、较高的激子结合能和优异的常温发光性能等成为了光催化降解水污染的核心。尤其对于纳米ZnO因其比表面积大,能提高半导体材料的光催化活性,从而提高光催化效率。然而,纳米ZnO半导体光催化剂多以粉体形式存在,存在回收效率低、光催化效率不高、太阳可见光利用率低等问题,且易引起新的环境问题,而限制了其广泛应用。
发明内容
发明目的:本发明的目的在于提供一种基于增材制造工艺的可降解回收高效率光催化复合材料;本发明的第二目的在于提供上述光催化复合材料的制备方法。
技术方案:本发明的一种可降解回收的3D打印微孔光催化复合材料,包括聚乳酸基体以及负载在聚乳酸基体上呈核壳结构的光催化粉体,所述光催化粉体为Fe3O4@TiO2@La/Ce-ZnO,其中,Fe3O4位于核心,Fe3O4外层包裹二氧化钛作为中间层,中间层外部包裹稀土元素镧和铈共掺杂的氧化锌作为催化层。
进一步的,所述催化层中,各组分的重量百分比含量为:ZnO:90~98 wt.%;La:1~5 wt.%;Ce:1~5 wt.%。
进一步的,所述Fe3O4的平均粒径为5~50 nm;所述中间层的厚度为10~50 nm;所述催化层的厚度为20~100 nm。
本发明还保护一种可降解回收的3D打印微孔光催化复合材料的制备方法,包括以下步骤:
(1)将三氯化铁、柠檬酸钠无水醋酸钠搅拌混合后,放置于高温反应釜内反应,经离心、干燥与研磨获得纳米Fe3O4粉体;
(2)以TiO2作为靶材,采用共溅射物理气相沉积工艺,在纳米Fe3O4粉体表面沉积TiO2中间层;
(3)以ZnO、La和Ce作为靶材,采用共溅射物理气相沉积工艺,在TiO2中间层表面沉积La/Ce-ZnO催化层,获得多层包覆的光催化粉体;
(4)将光催化粉体加入到溶有聚乳酸的二氯甲烷中,进行搅拌混合,离心、干燥后获得可降解聚乳酸材料;
(5)将聚乳酸材料装入3D打印机,设计微孔光催化结构模型,对构件进行3D打印成型,得到复合材料。
进一步的,所述步骤(2)中,TiO2靶材的溅射功率为80~120 W。
进一步的,所述步骤(3)中,ZnO靶材的溅射功率为100~150 W;La和Ce靶材的溅射功率为50~100 W。
进一步的,所述步骤(1)中,三氯化铁、柠檬酸钠无水醋酸钠的质量比为5~10:1~2.5:10~15。
进一步的,所述步骤(1)中,反应温度为80~100℃,反应时间为10~15h。
进一步的,所述步骤(4)中,光催化粉体与聚乳酸的质量比为3~20:80~97。
进一步的,所述步骤(5)中,微孔尺寸为400~1000 μm。
本发明的原理为:本发明以ZnO的光催化功能需求及高利用率为出发点,基于磁性材料及稀土元素的性能特点,首先借助共溅射物理气相沉积工艺,在纳米Fe3O4粉体表面沉积具有优异光催化的纳米TiO2作为中间层,将Fe3O4完全包覆,可以避免内部Fe3O4对光催化造成影响;在中间层外部进一步设置La/Ce共掺杂的ZnO作为催化剂层,其中,对ZnO进行稀土La/Ce的原位共掺杂,稀土元素具有未充满的电子轨道便于接收与传递光生电子的特性,可在ZnO中引入杂质能级,减小其晶带间隙,提高可见光的吸收率,进而提高光催化功能;同时TiO2与ZnO具有相似的带隙宽度,沉积后会增加光生载电子的产生率,两者之间具有协同作用,从而可以进一步提高光催化性能。
在此基础上,将共掺杂的光催化粉体加入到溶有可生物降解聚乳酸的二氯甲烷中进行搅拌混合,离心干燥获得可降解功能性聚乳酸材料,再利用3D打印工艺,设计构件表面具有微孔结构,由于3D打印工艺的可操作性,因此可以预先设计微孔的尺寸和分布状态,从而使得光催化粉体负载在微孔中,在实际应用中,通过工业废水在微孔内流动进而增加其与催化剂粉体的接触时间与面积,且聚乳酸具有生物降解特性,聚乳酸降解后通过磁场对催化剂粉体进行回收,以显著提升其光催化效率和回收效率。
有益效果:与现有技术相比,本发明的具有如下显著优点:
(1)本发明基于稀土元素的功能特点及ZnO催化剂粉体的回收利用需求,通过共溅射物理气相沉积工艺,制备纳米TiO2、La/Ce共掺杂ZnO多层包覆的纳米Fe3O4粉体,在粉体表面形成了TiO2含量梯度降低的包覆层,不仅提高了ZnO对可见光的吸收效能,同时赋予光催化粉体磁性功能,且有效提高其光催化功能,实现具有双重功能光催化粉体的一体化制备,有利于提高光催化粉体的光催化功能与高效回收。
(2)本发明基于工业废水组分及ZnO粉体的物性特点,设计了微孔结构件模型,基于3D打印工艺,成形微孔磁性/光催化的可生物降解构件,为ZnO粉体发挥其光催化功能提供了环保的载体;另一方面,微孔结构能显著增加工业废水与ZnO粉体催化媒介的接触时间与面积,进一步提高ZnO粉体的光催化功能,实现了功能/结构的一体化制造。
(3)本发明将磁性纳米Fe3O4位于光催化粉体的中心,在光催化与聚乳酸降解过程中,可通过磁场将光催化粉体进行回收再利用,提高了催化剂的利用率,显著降低工业废水的成本。
附图说明
图1 为实施例1制备的复合材料的组织形貌图;
图2为实施例4制备的不同孔径的复合材料的降解率;
图3 为实施例1-3和对比例1-2制备的复合材料的降解率。
具体实施方式
下面结合附图和实施例对本发明的技术方案做进一步详细说明。
实施例1
(1)将5 g三氯化铁、1 g柠檬酸钠和10 g无水醋酸钠至于1L去离子水中,搅拌混合后放置于80℃高温反应釜内反应10h后经离心、干燥与研磨获得纳米Fe3O4粉体,平均粒径为30nm;
(2)先取TiO2为靶材,采用物理溅射气相沉积工艺,溅射功率为80 W,在步骤(1)的纳米Fe3O4粉体表面沉积厚度为10 nm的TiO2作为中间层;
(3)再取ZnO、La和Ce靶材,采用共溅射物理气相沉积工艺,ZnO、La与Ce靶材的共溅射功率分别为100 W、50 W、50 W,在步骤(2)的中间层表面沉积厚度为50nm的La/Ce-ZnO作为催化层,催化层中ZnO的含量为98 wt.%;La的含量为1 wt.%;Ce的含量为1 wt.%;最终制备得到光催化粉体;
(4)将光催化粉体加入到溶有可生物降解聚乳酸的二氯甲烷中,光催化粉体与聚乳酸的质量比为3:97,然后进行搅拌混合,离心、干燥后获得负载磁性与光催化复合功能的可降解聚乳酸材料;
(5)将步骤(4)中所述聚乳酸材料装入3D打印机,设计孔径为1200 μm的微孔光催化结构模型,对微孔磁性/光催化的可降解构件进行3D打印成型。
参见图1,从图中可发现近球形的Fe3O4@TiO2@ La/Ce-ZnO光催化粉体负载于聚乳酸基体上,其整体的尺寸为90nm左右。
实施例2
(1)将10 g三氯化铁、2.5g柠檬酸钠和15g无水醋酸钠至于1L去离子水中,搅拌混合后放置于100℃高温反应釜内反应15h后经离心、干燥与研磨获得纳米Fe3O4粉体,平均粒径为50nm;
(2)先取TiO2为靶材,采用共溅射物理气相沉积工艺,溅射功率为100 W,在步骤(1)的纳米Fe3O4粉体表面沉积厚度为25 nm的纳米TiO2作为中间层;
(3)再取ZnO、La和Ce靶材,采用共溅射物理气相沉积工艺,,ZnO、La与Ce靶材的共溅射功率分别为120 W、70 W、70W,在步骤(2)的中间层表面沉积厚度为20 nm的La/Ce-ZnO作为催化层,催化层中ZnO的含量为96 wt.%;La的含量为2 wt.%;Ce的含量为2 wt.%,最终得到光催化粉体;
(4)将光催化粉体加入到溶有可生物降解聚乳酸的二氯甲烷中,光催化粉体与聚乳酸的质量比为10:90,然后进行搅拌混合,离心、干燥后获得负载磁性与光催化复合功能的可降解聚乳酸材料;
(5)将步骤(4)中所述聚乳酸材料装入3D打印机,设计孔径为800 μm的微孔光催化结构模型,对微孔磁性/光催化的可降解构件进行3D打印成型。
实施例3
(1)将7.5 g三氯化铁、1.5g柠檬酸钠和12.5g无水醋酸钠至于1L去离子水中,搅拌混合后放置于90℃高温反应釜内反应12h后经离心、干燥与研磨获得纳米Fe3O4粉体,平均粒径为10nm;
(2)先取TiO2为靶材,采用物理溅射气相沉积工艺,溅射功率为120 W,在步骤(1)的纳米Fe3O4粉体表面沉积为50 nm的TiO2作为中间层;
(3)再取ZnO、La和Ce靶材,采用共溅射物理气相沉积工艺,ZnO、La与Ce靶材的共溅射功率分别为150 W、100 W、100 W,在步骤(2)的中间层表面沉积厚度为90nm的La/Ce-ZnO作为催化层,催化层中ZnO的含量为90 wt.%;La的含量为5 wt.%;Ce的含量为5 wt.%,最终得到光催化粉体;
(4)将光催化粉体加入到溶有可生物降解聚乳酸的二氯甲烷中,光催化粉体与聚乳酸的质量比为20:80,然后进行搅拌混合,离心、干燥后获得负载磁性与光催化复合功能的可降解聚乳酸材料;
(5)将步骤(4)中所述聚乳酸材料装入3D打印机,设计孔径为400 μm的微孔光催化结构模型,对微孔磁性/光催化的可降解构件进行3D打印成型。
实施例4
设计4组平行试验,具体制备过程同实施例1,不同之处在于,步骤(5)中,孔径的尺寸不同,分别为300μm、400μm、1000μm和1200μm。
将最终制备的复合材料利用可见光对含氯三嗪基活性红废水照射1h,降解率结果参见图2,由图可知,微孔尺寸直接影响复合材料的降解率,微孔尺寸过大或过小,其降解率都不佳,主要是因为较小的孔径虽一定程度上增加了废水与复合材料接触面积,但成形表面粗糙,降低了降解功能,因此说明了孔径的较佳范围在400~1000 μm。
对比例1
具体制备工艺同实施例1,不同之处在于,不包括步骤(2),直接在Fe3O4粉体表面包裹催化层,得到Fe3O4@ La/Ce-ZnO光催化粉体。
对比例2
具体制备工艺同实施例1,不同之处在于,步骤(3)中不采用稀土元素掺杂,得到Fe3O4@TiO2@ ZnO光催化粉体。
将对比例1-2得到的光催化粉体按照与实施例1相同的方法制备得到复合材料,并进行光催化性能对比。利用可见光对含氯三嗪基活性红废水照射1h,参见图3,不含有TiO2中间层的复合材料,不利于光生载流子迁移,阻碍电子跃迁,导致电子/空穴发生复合,降低载流子的寿命,致使其降解率低于实施例1-3,对于不采用稀土元素掺杂的复合材料,光生载流子的分离效率降低,致使复合材料的降解率较低,因此可以说明本发明中TiO2、La/Ce共掺杂ZnO多层包覆的纳米Fe3O4粉体能显著提高光催化功能。

Claims (9)

1.一种可降解回收的3D打印微孔光催化复合材料,其特征在于:包括聚乳酸基体以及负载在聚乳酸基体上呈核壳结构的光催化粉体,所述光催化粉体为Fe3O4@TiO2@La/Ce-ZnO,其中,Fe3O4位于核心,Fe3O4外层包裹二氧化钛作为中间层,中间层外部包裹稀土元素镧和铈共掺杂的氧化锌作为催化层,所述的可降解回收的3D打印微孔光催化复合材料的制备方法包括以下步骤:
(1)将三氯化铁、柠檬酸钠无水醋酸钠搅拌混合后,放置于高温反应釜内反应,经离心、干燥与研磨获得纳米Fe3O4粉体;
(2)以TiO2作为靶材,采用共溅射物理气相沉积工艺,在纳米Fe3O4粉体表面沉积TiO2中间层;
(3)以ZnO、La和Ce作为靶材,采用共溅射物理气相沉积工艺,在TiO2中间层表面沉积La/Ce-ZnO催化层,获得多层包覆的光催化粉体;
(4)将光催化粉体加入到溶有聚乳酸的二氯甲烷中,进行搅拌混合,离心、干燥后获得可降解聚乳酸材料;
(5)将聚乳酸材料装入3D打印机,设计微孔光催化结构模型,对构件进行3D打印成型,得到复合材料。
2.根据权利要求1所述的可降解回收的3D打印微孔光催化复合材料,其特征在于:所述催化层中,各组分的重量百分比含量为:ZnO:90~98 wt.%;La:1~5 wt.%;Ce:1~5 wt.%。
3.根据权利要求1所述的可降解回收的3D打印微孔光催化复合材料,其特征在于:所述Fe3O4的平均粒径为5~50 nm;所述中间层的厚度为10~50 nm;所述催化层的厚度为20~100nm。
4.根据权利要求1所述的可降解回收的3D打印微孔光催化复合材料,其特征在于:所述步骤(2)中,TiO2靶材的溅射功率为80~120 W。
5.根据权利要求1所述的可降解回收的3D打印微孔光催化复合材料,其特征在于:所述步骤(3)中,ZnO靶材的溅射功率为100~150 W;La和Ce靶材的溅射功率为50~100 W。
6.根据权利要求1所述的可降解回收的3D打印微孔光催化复合材料,其特征在于:所述步骤(1)中,三氯化铁、柠檬酸钠无水醋酸钠的质量比为5~10:1~2.5:10~15。
7.根据权利要求1所述的可降解回收的3D打印微孔光催化复合材料,其特征在于:所述步骤(1)中,反应温度为80~100℃,反应时间为10~15h。
8.根据权利要求1所述的可降解回收的3D打印微孔光催化复合材料,其特征在于:所述步骤(4)中,光催化粉体与聚乳酸的质量比为3~20:80~97。
9.根据权利要求1所述的可降解回收的3D打印微孔光催化复合材料,其特征在于:所述步骤(5)中,微孔尺寸为400~1000 μm。
CN202111150948.1A 2021-09-29 2021-09-29 一种可降解回收的3d打印微孔光催化复合材料及制法 Active CN113980438B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111150948.1A CN113980438B (zh) 2021-09-29 2021-09-29 一种可降解回收的3d打印微孔光催化复合材料及制法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111150948.1A CN113980438B (zh) 2021-09-29 2021-09-29 一种可降解回收的3d打印微孔光催化复合材料及制法

Publications (2)

Publication Number Publication Date
CN113980438A CN113980438A (zh) 2022-01-28
CN113980438B true CN113980438B (zh) 2023-02-28

Family

ID=79737202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111150948.1A Active CN113980438B (zh) 2021-09-29 2021-09-29 一种可降解回收的3d打印微孔光催化复合材料及制法

Country Status (1)

Country Link
CN (1) CN113980438B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115715983B (zh) * 2022-10-27 2024-01-16 北京化工大学 一种三元异质结光催化剂及其制备方法和在催化转化pla塑料中的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108554412B (zh) * 2018-05-11 2020-10-30 江西理工大学 一种大尺寸高孔隙率Fe掺杂光催化磁性多孔微球的制备方法及其应用
CN109174203B (zh) * 2018-07-09 2021-09-28 福建师范大学 一种具有光催化功能的皮芯结构3d打印线材及其制备方法

Also Published As

Publication number Publication date
CN113980438A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
Reddy et al. Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: synthesis methods, properties and photocatalytic applications
CN106902812B (zh) 一种用于非均相催化臭氧化的负载型催化剂的制备方法
CN103586026A (zh) 一种用于臭氧氧化的炭载催化剂及其制备方法与它的用途
CN101185887A (zh) 用于湿式氧化工艺的催化剂及其制备方法
CN112844484B (zh) 一种氮化硼量子点/多孔金属有机框架复合光催化材料及其制备方法和应用
CN111437884A (zh) 一种复合光催化剂及其制备方法
CN106607063A (zh) 漂浮型可见光光催化剂及制备方法和应用
CN109012731A (zh) 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用
CN108855078A (zh) 一种Ag-(010)晶面BiVO4@RGO光催化剂及其制备方法
CN109046450B (zh) 一种BiOCl/(BiO)2CO3负载的醋酸纤维素/丝素杂化膜的制备方法和应用
CN111632614A (zh) 三维花瓣状NiAl-LDH/Ti3C2复合光催化剂及其制备方法和应用
CN113980438B (zh) 一种可降解回收的3d打印微孔光催化复合材料及制法
CN111203256A (zh) 一种SnS2/Au/g-C3N4复合光催化剂的制备方法及其应用
CN102527423A (zh) 一种钼氮共掺杂TiO2颗粒的制备方法及用途
CN110586137B (zh) 一种含有Mn0.5Cd0.5S和Au负载型光催化剂的制备方法
CN111495412A (zh) 一种铁基非晶合金/g-C3N4复合光催化剂及其制备方法和应用
CN108745405B (zh) 氮化碳/氮掺中空介孔碳/三氧化二铋三元z型光催化剂及其制备方法
CN113578212B (zh) 氧化锌/石墨烯/氧化石墨烯/碳纳米管气凝胶及方法
CN111807336B (zh) 一种兼具光催化和光热转换性能的非晶氧化钼纳米点/二维氮化碳纳米片及其制备方法
CN114904534A (zh) 钼酸铋/钒酸铁复合纳米材料及其制备方法和在声光催化降解水中污染物的应用
CN111359633B (zh) 一种z型磁性复合可见光催化剂及其制备与应用
CN103301825B (zh) 一种氧化钛纳米页包裹粉煤灰微球的光催化剂
CN114405530A (zh) 一种制备复合光催化剂的方法
CN113941341A (zh) 一种用于光催化降解染料的二硫化锡复合物
CN111569927A (zh) 一种Ag2CO3/g-C3N4纳米复合材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20220128

Assignee: Kunshan lifeimin Precision Machinery Co.,Ltd.

Assignor: HUAIYIN INSTITUTE OF TECHNOLOGY

Contract record no.: X2023980048439

Denomination of invention: A degradable and recyclable 3D printed microporous photocatalytic composite material and its preparation method

Granted publication date: 20230228

License type: Common License

Record date: 20231129

EE01 Entry into force of recordation of patent licensing contract