CN112993282A - 一种联吡啶钴/石墨烯复合材料及其制备方法 - Google Patents

一种联吡啶钴/石墨烯复合材料及其制备方法 Download PDF

Info

Publication number
CN112993282A
CN112993282A CN201911271523.9A CN201911271523A CN112993282A CN 112993282 A CN112993282 A CN 112993282A CN 201911271523 A CN201911271523 A CN 201911271523A CN 112993282 A CN112993282 A CN 112993282A
Authority
CN
China
Prior art keywords
cobalt
bipyridyl
graphene
composite material
graphene composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911271523.9A
Other languages
English (en)
Inventor
刘大军
马鹏飞
王琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN201911271523.9A priority Critical patent/CN112993282A/zh
Publication of CN112993282A publication Critical patent/CN112993282A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明的联吡啶钴/石墨烯复合材料及其制备方法,属于甲醇燃料电池阴极催化剂应用技术领域。联吡啶钴/石墨烯复合材料由联吡啶钴与石墨烯按质量比1:8~12组成,联吡啶钴在石墨烯表面形成了颗粒状纳米结构。制备方法是联吡啶的乙醇溶液和四水合乙酸钴水溶液混合,通过配位反应制得联吡啶钴,然后通过调节联吡啶钴和石墨烯的配比,经水热反应制得不同质量比的联吡啶钴/石墨烯复合材料。本发明提供的联吡啶钴/石墨烯复合材料对燃料电池阴极催化氧气还原具有优异的催化活性、稳定性和良好的耐甲醇性能。本发明合成方法简单易行,操作步骤便捷方便。

Description

一种联吡啶钴/石墨烯复合材料及其制备方法
技术领域
本发明涉及甲醇燃料电池阴极催化剂应用技术领域,具体涉及一种联吡啶钴/石墨烯复合材料及其制备方法。
背景技术
直接甲醇燃料电池(Direct Methanol Fuel Cell,DMFC)属于质子交换膜燃料电池中的一类,是一种直接使用甲醇来作为燃料的来源(Kulikovsky A A,A model forcarbon and Ru corrosion due to methanol depletion in DMFC[J],ElectrochimicaActa,2011,56(27):9846-9850)。甲醇为液体可再生能源,不存在像气态燃料那样的储存和运输等的技术性问题,并且DMFC更加清洁、高效,对环境友好。DMFC的应用能够有效地减少碳氧化物,氮化物等污染空气的气体的排放。但是DMFC还存在几个关键的技术问题,首先,电极采用贵金属纳米催化剂,不但造成电池成本增加,而且对甲醇的稳定性也达不到理想要求;其次,质子交换膜对甲醇有一定的透过性,电极上容易发生甲醇交叉渗透产生混合电位,导致电池性能衰减加快,这些缺陷严重制约着DMFC应用的商业化。
为了克服DMFC的上述缺点,各国研究者都在致力于寻找可以代替贵金属催化剂的阴极催化材料。现在研究较多的阴极催化剂是过渡金属大环化合物、金属氧化物、金属硫化物、硼碳氮掺杂的碳材料和Chevrel相催化剂。导电聚合物、杂多酸化合物等也受到广泛的研究。过渡金属大环化合物它有特有的平面大环共辄体系,内环的共辄体达到18个电子,因为其本身具有离域的共辄π电子能使氧气的还原更容易进行(Xu Zhanwei,Li Hejun,CaoGaoxiang,et al.Electrochemical performance of carbon nanotube-supportedcobalt phthalocyanine and its nitrogen-rich derivatives for oxygen reduction[J].Journal of Molecular Catalysis A:Chemical,2011,335(1-2):89-96)。大环化合物被应用在传感,光催化和电催化等领域。
2,2′-联吡啶是一种很好的螯合双齿配体,拥有12电子的芳香体系,具有共轭芳香性,易于形成π-π堆积作用。当与过渡金属配位后,形成的配合物存在金属到配体电荷转移,配体内电荷转移和配体到配体的电荷转移等性质,拥有较好的光电功能(Pap J S,ElBakkali-Taheri N,Fadel A,et al.Oxidative degradation of amino acids andaminophosphonic acids by2,2'-bipyridine complexes of coppe(Ⅱ)[J].EuropeanJournal of Inorganic Chemistry,2014:2829-2838)。石墨稀自从2004年被发现以来由于其具有出色的导电性能、较大的比表面积、较高的杨氏模量和较高的载流子迁移率而得到广泛的关注,石墨稀的复合材料也受到了人们极大的关注,并且这类复合材料己在能量储存、液晶器件、电子器件、生物材料、传感材料、催化剂载体等领域展示出了优越的性能和潜在的应用。
制备金属联吡啶配合物的原料来源非常广泛且廉价易得,制备方法已经相当成熟,制备的金属联吡啶配合物非常稳定。本发明把金属联吡啶配合物与石墨烯进行复合来提高催化剂的活性;复合时所用分散剂为水,对环境无污染;制备温度低,对设备要求低,适合大规模生产。
发明内容
本发明要解决的技术问题是,贵金属纳米催化剂(主要是Pt)制作成本高、活性低及稳定性差的缺陷。为解决上述问题,本发明提供一种联吡啶钴/石墨烯复合材料及其制备方法。
本发明采用的具体技术方案是,一种新型的联吡啶钴/石墨烯复合材料,由联吡啶钴与石墨烯通过水热π-π*组装而成;联吡啶钴和石墨烯的质量比为1:8~12;所述的联吡啶钴/石墨烯复合材料对氧气还原具有较高的催化活性。
所述联吡啶钴/石墨烯复合材料,联吡啶钴在石墨烯片表面形成了颗粒状纳米结构。
所述联吡啶和石墨烯的质量比,优选为1:10。选择1:10的联吡啶钴/石墨烯复合材料为最佳催化剂。
联吡啶钴/石墨烯复合材料制备方法的技术方案如下:
一种联吡啶钴/石墨烯复合材料及其制备方法,其制备过程是,将2,2’-联吡啶溶于无水乙醇中,将四水合乙酸钴溶于去离子水中;将2,2’-联吡啶无水乙醇溶液缓慢加入到四水合乙酸钴去离子水溶液中,搅拌反应2h;反应结束后用石油醚萃取,蒸馏后于40~50℃真空干燥12h,得到联吡啶钴。联吡啶、四水合乙酸钴的质量比为1:0.8;
将石墨烯分散在去离子水中,加入所述联吡啶钴,于120℃水热反应12h,得到联吡啶钴/石墨烯复合材料;联吡啶钴、石墨烯和去离子水的质量比为1:8~12:100。
参照文献(Hummers W.S.,Offeman R.E.,Journal of the American ChemicalSociety,80(1958),1339)方法制备氧化石墨;参照文献(Cui L.L.,Lv G.J.,Dou Z.Y.,HeX.Q.,Electrochimica Acta,2013,106,272)方法制备石墨烯。
本发明提供的联吡啶钴/石墨烯复合材料对氧气具有优异的催化活性,在碱性条件下对氧气还原为一个4e的反应过程。
本发明采用水热法制备了一种新型的联吡啶钴/石墨烯复合材料[BipyCo/PGr]。联吡啶钴通过三维的空间网状结构在石墨烯表面组装成颗粒状的纳米结构,石墨烯具有较高电导率和较大比表面积,他们之间充分发挥了协同作用,显著提高了对氧气的催化活性。
本发明以水为溶剂,联吡啶钴和石墨烯为反应物,通过调节反应物的质量比可以制备出不同的复合材料,从而得到具有不同催化活性的复合物。测试结果表明,该材料对氧气具有优异的催化活性、催化稳定性和良好的耐甲醇性能。本发明的合成方法简单易行,操作方便。
附图说明
图1是实施例3产物联吡啶钴/石墨烯复合材料[BipyCo/Gr]的结构示意图;
图2是实施例3产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]的扫描电镜图;
图3是实施例1~3联吡啶钴、石墨烯、联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]的红外光谱图;
图4是实施例1~3联吡啶钴、石墨烯、联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]在氧饱和条件下、0.1mol/L KOH溶液中的循环伏安曲线,扫描速度为100mV s-1
图5是实施例3~7产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:12,1:11,1:10,1:9,1:8]分别在O2饱和下的0.1mol/L KOH溶液中的循环伏安曲线,扫描速度为100mV s-1
图6是实施例3产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]和Pt/C在1600rpm下的线性扫描伏安曲线,扫描速度为10mV s-1
图7是实施例3产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]在不同转速下的线性扫描伏安曲线,扫描速度为10mV s-1
图8是实施例3产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]在圆盘电极测试下的K-L点;
图9是实施例3产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]由圆盘电极和环盘电极测试数据计算的转移电子数;
图10是实施例3产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]的环盘电极测试曲线;
图11是实施例3产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]的环盘电极测试数据计算的转移电子数和过氧化氢产生率;
图12是实施例3产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]的耐甲醇性能测试;
图13是实施例3产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]和Pt/C稳定性测试的i-t曲线。
具体实施方式
下面通过具体实施方案来说明本发明,但并不仅限于此。
实施例1
(1)将0.5g石墨和0.5g硝酸钠分散于42.32g浓硫酸中,0℃时在机械搅拌下缓慢加入3g高锰酸钾;于水浴锅中35℃下搅拌1h;加入40g水,于90℃搅拌30min后加入100g水和4.44g 30%的双氧水(H2O2)后进行抽滤,用水洗涤后离心,至离心出来的水为中性,于45℃真空干燥12h,得到氧化石墨;
(2)将0.1g所述氧化石墨分散在100g水中,配成氧化石墨水溶液;所述氧化石墨水溶液超声振荡4h后加入聚苯乙烯磺酸钠0.5g继续超声1h,加入1.03g水合肼后于100℃反应24h,冷却至室温,离心分离,分别用水和乙醇洗涤后得到石墨烯。
实施例2
将1.5618g的2,2’-联吡啶溶于无水乙醇中,将1.2494g的四水合乙酸钴溶于去离子水中;将上述的2,2’-联吡啶无水乙醇溶液缓慢加入到四水合乙酸钴去离子水溶液中,搅拌反应2h;反应结束后用石油醚萃取,蒸馏后于40~50℃真空干燥12h,得到联吡啶钴。
实施例3
将10mg石墨烯分散在去10g去离子水中,加入所述1mg联吡啶钴,于120℃水热反应12h,得到质量比为1:10的联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]。
实施例4
将所述石墨烯的用量改为8mg,重复实施例3,得到质量比为1:8的联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:8]。
实施例5
将所述石墨烯的用量改为9mg,重复实施例3,得到质量比为1:9的联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:9]。
实施例6
将所述石墨烯的用量改为11mg,重复实施例3,得到质量比为1:11的联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:11]。
实施例7
将所述石墨烯的用量改为12mg,重复实施例3,得到质量比为1:12的联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:12]。
实施例8
通过红外光谱(IR)、扫描电镜(SEM)等方法表征实施例3产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]的结构和形貌。
通过对比实施例3~7产物的循环伏安(CV)曲线(如图5所示)可以看出,实施例3产物具有较好的催化活性,因此选择对实施例3产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]的氧化还原催化性能进行研究。研究氧气还原催化性能时,采用三电极测试系统,以滴涂法修饰后的玻碳电极为工作电极,饱和甘汞电极为参比电极,铂丝电极为对电极,测试溶液为O2饱和的0.1mol/L KOH水溶液,扫描速度为100mV s-1,用循环伏安(CV)、线性扫描伏安(LSV)和时间-电流曲线(i-t)进行测试。
图1为实施例3~7产物联吡啶钴/石墨烯复合材料[BipyCo/Gr]的结构示意图,从图中可以看出联吡啶钴与石墨烯π-π*自组装的反应过程。
图2为实施例3产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]的扫描电镜照片,进一步表明联吡啶钴在石墨烯片表面形成了颗粒状纳米结构。
图3为实施例1产物石墨烯(a),实施例2产物联吡啶钴(c)和实施例3产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10](b)的红外光谱图。图3谱线a中2927cm-1、2853cm-1为石墨烯的C-H伸缩振动区,1623cm-1处的吸收峰为石墨烯C=C的伸缩振动和-OH的弯曲振动吸收峰;1403cm-1为石墨烯C=C的伸缩振动(共轭),1060cm-1为C-C单键骨架振动指纹区。谱线c中3068cm-1处是吡啶类C-H伸缩振动吸收峰,2361cm-1处为联吡啶与金属配位后出现的类似累积双键的伸缩振动,C=N、C=C的伸缩振动出现在1596cm-1处,1400cm-1为C-H键的面内弯曲振动,在1175-1000cm-1为吡啶类C-H振动指纹区,767cm-1为2,2'-联吡啶的邻位取代特征吸收,665cm-1处为C-H键的面外弯曲振动峰。谱线b中同时存在石墨烯的C-H伸缩振动区、2,2'-联吡啶的邻位取代特征吸收以及联吡啶与金属配位后出现的类似累积双键的伸缩振动,以上结果表明,本发明成功合成出联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]。
将联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]分散在乙醇中,配制成浓度为lmg/mL的分散液,超声分散均匀后,将15μL的分散液滴涂到打磨好的玻碳电极上,室温干燥30min。其它材料,如Pt/C,采用类似的方法修饰电极。
图4为实施例1~3产物石墨烯、联吡啶钴、联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]在O2饱和下0.lmol/L KOH溶液中的循环伏安曲线。结果表明,本发明成功合成出联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]。
图5为实施例3~7产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:8(a),1:9(b),1:10(c),1:11(d),1:12(e)]分别在O2饱和下0.lmol/L KOH溶液中的循环伏安曲线,由图5可以看到,当联吡啶钴与石墨烯的质量比为1:10时,联吡啶钴/石墨烯复合材料的催化活性达到最大,所以本发明选择1:10的联吡啶钴/石墨烯复合材料为最佳催化剂。
图6为实施例3产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10(a)]和Pt/C(b)分别在O2饱和的0.lmol/L KOH溶液中1600r/min转速下的LSV曲线。
图7为实施例3产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]在不同转速下的LSV曲线,由于高转速下扩散距离变短,所以极限电流密度随着转速逐渐增大。
图8为实施例3产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]在不同电位下的K-L曲线,K-L曲线的线性度和平行性说明联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]对氧气的催化是一个一级动力学反应过程,同时在所选择的电位下具有相似的电子转移数目。根据K-L方程,在碱性条件下对氧气的电子转移数目为3.90-4.29左右,如图9所示。用环盘电极对转移电子数目进行了测试,经过计算得出转移电子数目为4左右,并且过氧化氢产生率不足0.01%如图10和11所示。以上结果说明联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]对氧气的还原为一个4电子的反应过程。
交叉效应对于甲醇燃料电池来说是一个很严重的问题,理想的电催化剂还必需具有良好的耐甲醇能力和优异的稳定性能,众所周知,Pt/C对甲醇的交叉效应严重,甲醇的渗透极大地降低了直接甲醇燃料电池的利用效率。图12为实施例3产物联吡啶钴/石墨烯复合材料与铂碳[(a)BipyCo/Gr(1:10),(b)Pt/C]在600秒内耐甲醇性测试的对比,由图12可见,联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]对甲醇并不敏感,具有优异的耐甲醇能力。图13为实施例3产物联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]和Pt/C在10000秒内的稳定性测试曲线,由图13可见联吡啶钴/石墨烯复合材料[BipyCo/Gr,1:10]在经过10000秒的测试后,电流密度仍然能达到初始电流密度的93.48%,然而Pt/C仅为原来电流密度的63.14%。
本发明通过水热法制备了几组不同质量比的联吡啶钴/石墨烯复合材料,当复合材料的质量比为1:10时,该材料对氧气还原具有最高的催化性能。通过线性扫描伏安法测试数据计算出:在碱性条件下,该催化剂对氧气还原为一个4e的还原过程,具有较高的催化效率。并且该催化剂具有良好的催化稳定性和优异的耐甲醇性能。本发明的制备方法工艺简单,可操控性强,制备的复合材料对氧气还原具有较优异的催化性能。此发明具有很高的科学价值和实用价值,具有广阔的应用前景。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本领域的普通技术人员来说,可以根据本发明的技术方案和发明构思,做出相应改变和替代,而且性能或用途相同,都应当视为本发明的保护范围。

Claims (4)

1.一种联吡啶钴/石墨烯复合材料,其特征是,所述联吡啶钴/石墨烯复合材料由联吡啶钴与石墨烯通过水热π-π*自组装而成;联吡啶钴与石墨烯的质量比为1:8~12。
2.按照权利要求1所述的联吡啶钴/石墨烯复合材料,其特征是,所述联吡啶钴/石墨烯复合材料,是联吡啶钴在石墨烯片表面形成了颗粒状纳米结构。
3.按照权利要求1所述的联吡啶钴/石墨烯复合材料,其特征是,所述联吡啶钴和石墨烯的优选质量比为1:10。
4.一种权利要求1的联吡啶钴/石墨烯复合材料的制备方法,其制备过程是:
(1)将2,2’-联吡啶溶于无水乙醇中,将四水合乙酸钴溶于去离子水中;将2,2’-联吡啶无水乙醇溶液缓慢加入到四水合乙酸钴去离子水溶液中,搅拌反应2h;反应结束后用石油醚萃取,蒸馏后于40~50℃真空干燥12h,得到联吡啶钴。联吡啶、四水合乙酸钴的质量比为1:0.8;
(2)将石墨烯分散在去离子水中,加入所述联吡啶钴,于120℃水热反应12h,得到联吡啶钴/石墨烯复合材料;联吡啶钴、石墨烯和去离子水的质量比为1:8~12:100。
CN201911271523.9A 2019-12-13 2019-12-13 一种联吡啶钴/石墨烯复合材料及其制备方法 Pending CN112993282A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911271523.9A CN112993282A (zh) 2019-12-13 2019-12-13 一种联吡啶钴/石墨烯复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911271523.9A CN112993282A (zh) 2019-12-13 2019-12-13 一种联吡啶钴/石墨烯复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112993282A true CN112993282A (zh) 2021-06-18

Family

ID=76331521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911271523.9A Pending CN112993282A (zh) 2019-12-13 2019-12-13 一种联吡啶钴/石墨烯复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112993282A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034463A (en) * 1986-09-22 1991-07-23 Shell Oil Corporation Conductive polymer compositions
JP2007273371A (ja) * 2006-03-31 2007-10-18 Nittetsu Gijutsu Joho Center:Kk 酸素還元複合触媒及びその製造方法並びにこれを用いた燃料電池
US20100048380A1 (en) * 2008-08-21 2010-02-25 Board Of Trustees Of Michigan State University Novel catalyst for oxygen reduction reaction in fuel cells
CN103985885A (zh) * 2014-05-30 2014-08-13 长春理工大学 一种吡啶基钴酞菁-钴复合物/石墨烯复合材料及其制备方法
CN104091959A (zh) * 2014-07-18 2014-10-08 长春理工大学 一种硝基亚铁酞菁/石墨烯复合材料及其制备方法
CN104624190A (zh) * 2013-11-12 2015-05-20 华中科技大学 一种钴基过渡金属氧还原催化剂及其制备方法和应用
WO2017025177A1 (de) * 2015-08-07 2017-02-16 Jenabatteries GmbH Redox-flow-zelle zur speicherung elektrischer energie und deren verwendung
JP2018034152A (ja) * 2016-08-23 2018-03-08 公立大学法人首都大学東京 多電子酸化還元触媒

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034463A (en) * 1986-09-22 1991-07-23 Shell Oil Corporation Conductive polymer compositions
JP2007273371A (ja) * 2006-03-31 2007-10-18 Nittetsu Gijutsu Joho Center:Kk 酸素還元複合触媒及びその製造方法並びにこれを用いた燃料電池
US20100048380A1 (en) * 2008-08-21 2010-02-25 Board Of Trustees Of Michigan State University Novel catalyst for oxygen reduction reaction in fuel cells
CN104624190A (zh) * 2013-11-12 2015-05-20 华中科技大学 一种钴基过渡金属氧还原催化剂及其制备方法和应用
CN103985885A (zh) * 2014-05-30 2014-08-13 长春理工大学 一种吡啶基钴酞菁-钴复合物/石墨烯复合材料及其制备方法
CN104091959A (zh) * 2014-07-18 2014-10-08 长春理工大学 一种硝基亚铁酞菁/石墨烯复合材料及其制备方法
WO2017025177A1 (de) * 2015-08-07 2017-02-16 Jenabatteries GmbH Redox-flow-zelle zur speicherung elektrischer energie und deren verwendung
JP2018034152A (ja) * 2016-08-23 2018-03-08 公立大学法人首都大学東京 多電子酸化還元触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUOJUN LV等: "A novel cobalt tetranitrophthalocyanine/graphene composite assembled by an in situ solvothermal synthesis method as a highly efficient electrocatalyst for the oxygen reduction reaction in alkaline medium", 《PHYSICAL CHEMISTRY CHEMICAL PHYSICS》 *

Similar Documents

Publication Publication Date Title
Iqbal et al. Prospects and challenges of graphene based fuel cells
CN110739463B (zh) 一种双金属有机框架复合材料的制备方法及其应用
Iqbal et al. Recent developments in graphene based novel structures for efficient and durable fuel cells
CN112941669B (zh) 一种金属-氮共掺杂的碳纳米纤维材料及其制备方法和应用
CN108754531B (zh) 一种含Co和Ru双金属碳纳米复合电催化材料的制备方法
CN108067278A (zh) 一种非贵金属多孔氮掺杂碳电催化剂的制备方法
CN111261883B (zh) 一种离子液体功能化氧化石墨烯负载纳米四氧化三钴复合材料的制备方法及应用
Sun et al. 1D/3D rambutan-like Mott–Schottky porous carbon polyhedrons for efficient tri-iodide reduction and hydrogen evolution reaction
CN103394350A (zh) 一种钛钨氧化物包覆碳纳米管载铂电催化剂的制备方法
CN114016068B (zh) 一种作为析氢催化剂的共价有机框架材料及其制备方法与应用
CN111129524A (zh) 一种Ce-Zr双金属团簇MOF基氧还原电催化剂及其制备方法和应用
CN113117709A (zh) 基于MXene和海藻酸钠制备高效锌空气电池催化剂
CN112366325A (zh) 一种可调官能团碳纳米管负载酞菁铁复合材料的制备方法及应用
CN113105645A (zh) 一种镍基金属有机框架化合物制备方法、产品和应用
Zhang et al. Hybridization of Mn/Ta bimetallic oxide and mesh-like porous bio-carbon for boosting copper reduction for D35/Y123-sensitized solar cells and hydrogen evolution
CN102916201A (zh) 一种炭载钯纳米催化剂及其制备方法
CN104815649A (zh) 二甘醇还原法制备高活性炭载Pd纳米催化剂的方法
Wang et al. Se–Se bonds induced highly metallic 1T’MoSe2. 3 nanosheets cocatalysts towards boosted H2O2 photosynthesis over NH2-MIL-125 derived TiO2 nanotablets
CN108484415B (zh) 一种镉金属有机配合物的制备方法及其产品和衍生物
CN109926086A (zh) 氮掺杂碳泡沫@ws2纳米片三维网络复合结构的制备方法
CN112397734B (zh) 一种高密度Fe-N4活性位点氧还原电催化剂的制备方法及应用
CN112853377A (zh) 一种双功能无金属氮掺杂碳催化剂的制备方法及其应用
CN108285143A (zh) 一种生物质基氮掺杂薄层石墨化碳材料的制备方法
CN107565139A (zh) 一种燃料电池氧还原电催化剂磷、氮、镍共掺杂碳材料的制备方法
CN113555569B (zh) 一种催化剂前驱体、金属碳基催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210618

WD01 Invention patent application deemed withdrawn after publication