CN112981364B - 一种快热响应超黑材料及其制备方法 - Google Patents

一种快热响应超黑材料及其制备方法 Download PDF

Info

Publication number
CN112981364B
CN112981364B CN202110159705.8A CN202110159705A CN112981364B CN 112981364 B CN112981364 B CN 112981364B CN 202110159705 A CN202110159705 A CN 202110159705A CN 112981364 B CN112981364 B CN 112981364B
Authority
CN
China
Prior art keywords
vapor deposition
diamond
chemical vapor
substrate
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110159705.8A
Other languages
English (en)
Other versions
CN112981364A (zh
Inventor
魏俊俊
史佳东
涂军磊
李成明
刘金龙
陈良贤
高旭辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202110159705.8A priority Critical patent/CN112981364B/zh
Publication of CN112981364A publication Critical patent/CN112981364A/zh
Application granted granted Critical
Publication of CN112981364B publication Critical patent/CN112981364B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/272Diamond only using DC, AC or RF discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种具备高导热性超黑材料的制备方法,属于功能材料与器件制造领域。采用CVD方式在原始载体上沉积金刚石膜,然后依次完成研磨、抛光等处理工序;随后在CVD金刚石膜表面溅射沉积催化金属层,并通过等离子体刻蚀加热处理工艺实现纳米催化颗粒的制备;最后在金刚石膜成表面进行碳纳米管阵列的制备,获得尺寸及光吸收率符合要求的金刚石/碳纳米管超黑材料。本发明元件基于金刚石为载体,具有化学性质稳定、导热率高、光吸收性强等特点。在中间过程采用物理气相沉积镀膜和表面氢等离子体刻蚀处理,解决了在金刚石衬底上碳纳米管阵列密度低、定向性差等问题,实现了高稳定性、高性能全碳基复合功能材料的制备。保证相对成本较低的同时,保证了产品质量及生产效率。

Description

一种快热响应超黑材料及其制备方法
技术领域
本发明属于功能材料与器件制造领域,特别是涉及一种超黑材料的制造方 法。
背景技术
超黑材料具有极强的消杂光能力,多被用于光学系统中提升光学组件的灵敏 度。例如,在空间红外相机成像、黑体定标、温差发电、精密仪器等领域。甚至 在视觉艺术领域,超黑材料均具有重要的应用前景。而且随着功能器件不断向高 精度、高效能方向发展,一方面要求相应的超黑涂层材料的吸光率需进一步提升, 对光谱响应波段拓展至宽波段,达到具有对紫外、可见至远红外全谱段的理想吸 收;另一方面,对光热转换效率也提出了更高的要求。
垂直碳纳米管阵列具有在250nm-14.5μm宽波段范围内的超高光吸收率(平 均值在99%以上),是目前“最黑”的光吸收材料。此外,碳纳米管具有极佳的轴 向热导率(3000W/m·K),可以将光子吸收能量转化产生的热量沿碳纳米管轴 向方向快速传导至衬底,具有稳定的光吸收性能。因此,垂直碳纳米管阵列可作 为光学仪器、传感器等器件中非常理想的超黑吸光材料。
然而,目前常见的用于制作垂直碳纳米管阵列的衬底大都采用硅、氧化硅、 氧化镁、氧化铝等材料,碳管与衬底之间由于不同材料以及不同结构,难以获得 强的界面结合强度,碳纳米管阵列极易脱落;另一方面,衬底材料热导率普遍不 高,难以完全将定向碳纳米管超黑涂层光热转后的热量有效导出,导致整体超黑 材料的吸光能力有限。因此,探寻在新的高导热衬底材料表面生长定向碳纳米管, 构建具有快热响应的超黑材料,具有重要的意义。
化学气相沉积(CVD)金刚石的热导率高达2000W/m·K,是铜的4到5 倍,其作为衬底可将碳纳米管阵列吸收的能量进行快速高效传递。此外,金刚石 和碳纳米管互为同素异形体,二者在界面处可实现稳定的共价结合,形成的全碳 复合材料具有非常好的结构稳定性。而且,金刚石是一种非常稳定的材料,这使 得它成为极端环境下首选的衬底材料,如在高可靠性需求的空间科学领域、恶劣 使役环境下的军事装备领域等。在国内外已公开发表的文献和专利中,虽有大量 研究定向碳纳米管以及CVD金刚石膜的研究报道,但未见有采用微波等离子体 化学气相沉积方法直接在高导热CVD金刚石膜表面合成定向碳纳米管超黑涂层 材料的技术方案。
发明内容
本发明提出一种在自支撑金刚石膜表面生长定向碳纳米管涂层构成复合结 构的方法。该结构兼具金刚石超高的导热能力及定向纳米碳管宽光谱范围内极高 的吸光率,且由于金刚石与碳纳米管互为碳的同素异构体,易于形成良好的结合 界面,从而提高了碳纳米管涂层的附着性能及界面热传输能力。具有轻质、高导 热、高吸光率、结构稳定等特点,非常适合在空间成像、黑体定标、精密仪器等 领域应用。
一种具备高导热性超黑材料的制备方法,其特征在于采用化学气相沉积法, 制备大尺寸金刚石自支撑膜。对金刚石膜进行研磨、抛光处理后,在衬底金刚石 表面使用磁控溅射、电子束蒸发及原子层沉积等方法,生成一层催化金属层;随 后采用微波等离子体化学气相沉积或热解化学气相沉积在衬底金刚石表面合成 高定向性、高致密度、垂直排列的碳纳米管阵列层,且碳纳米管和衬底金刚石在 界面处形成共价结合,由此获得附着性能良好的全碳基复合超黑材料。
如上所述具备快热响应超黑材料的制备方法,具体制备步骤如下:
1)采用化学气相沉积(CVD)工艺,在石墨衬底上沉积金刚石薄膜;衬底表面 采用金刚石粉打磨处理提高形核密度及膜基附着力;
2)采用机械研磨方式,将金刚石膜进行研磨、抛光处理;
3)采用物理气相沉积技术,在步骤2)后的金刚石表面沉积催化金属层,膜层 厚度5-30nm;
4)在微波等离子体化学气相沉积系统中,在步骤3)后的衬底上通过表面等离 子体处理技术生成金属纳米颗粒;
5)采用化学气相沉积(CVD)工艺,在步骤4)后的衬底上制备碳纳米管阵列; 工作气源为含碳气体与其它辅助气体。
进一步地,步骤1)所述化学气相沉积工艺包括微波化学气相沉积、直流喷 射化学气相沉积以及热丝化学气相沉积等。
进一步地,步骤2)所述机械研磨方式是要将其生长面表面粗糙度Ra减至 20-100nm,同时确保CVD金刚石膜厚度均匀性±10%以内。
进一步地,步骤3)所述物理气相沉积工艺包括磁控溅射、电子束蒸发以及 原子层沉积等。
进一步地,步骤3)所述催化金属层为Fe、Ni、Co等。
进一步地,步骤4)所述表面等离子体处理技术是在微波等离子体化学气相 沉积(MPCVD)系统中进行。使用的等离子体包括氢等离子体、氧等离子体、氮 等离子体、氩等离子体、氟等离子体等。
进一步地,步骤5)所述气相沉积工艺为微波等离子体化学气相沉积和热解 化学气相沉积。
本发明的优点及积极效果:
垂直碳纳米管阵列超黑涂层,具有在宽波段范围内的高吸收率,且碳纳米管 本身的化学稳定性较高,在性能、使用寿命等方面相较于传统的超黑材料有明显 的优势。当前常用超黑材料的衬底存在自身热导率有限、材料重量大且稳定性较 差等问题,难以在复合结构之间形成有效的传热通道,保障持续稳定的光谱吸收 及发射;且衬底与发黑涂层的界面结合弱,结构不稳定。金刚石膜具有极佳的物 理化学惰性,其热导率为自然界最高,在热管理领域具有远高于其它导热材料的 优势,且其与碳纳米管材料互为同素异形体,可以与碳纳米管之间形成C-C共 价键形式的稳定结合,形成的碳纳米管/金刚石复合结构稳定性较其他超黑材料 具有明显优势。
附图说明:
图1A示出在初始衬底表面沉积高导热金刚石膜;
图1B示出将带有硅衬底的金刚石膜进行生长面研磨抛光;
图1C示出在金刚石膜表面沉积催化金属薄膜材料;
图1D示出在上述带有催化金属的衬底表面通过表面等离子体处理生成金属纳米颗粒;
图1E示出通过化学气相沉积(CVD)方法在含纳米催化颗粒的金刚石膜衬底上 生长碳纳米管阵列;
图1F示出金刚石/碳纳米管复合结构超黑材料的结构示意图。
具体实施方式
实施例一
1、选用尺寸为10×10(mm)的抛光单晶Si衬底,采用金刚石粉研磨辅助酒精 清洗的方式处理样品,随后烘干放入化学气相沉积系统;
2、采用微波等离子体CVD系统在上述硅片表面镀制金刚石膜。典型沉积工艺 为:工作气体氢气/甲烷,功率2.8-3.0kW,衬底温度800℃、甲烷浓度3%、沉 积时间100h。实际沉积厚度约为260-280μm;
3、对带衬底金刚石膜进行研磨抛光处理,金刚石膜表面光洁度Ra达到50nm, 膜层厚度大致在200±20μm;
4、将步骤3中“硅/金刚石”结构放到80%HF酸中处理,去除硅片衬底。
5、采用射频磁控溅射技术,在步骤4已完成研磨抛光的金刚石膜表面溅射沉积 生成一层催化金属层。靶材为纯度99.99%Ni靶,背底真空度5×10-4Pa,溅射 采用氩气气氛,溅射气压0.50Pa,镀制Ni厚度约为5nm。此时形成的结构为“金 刚石/Ni”;
6、采用微波等离子体CVD装置,对步骤5已完成溅射的试样进行表面氢等离 子体处理,目的是形成纳米金属催化颗粒;等离子体刻蚀工艺为:工作气体为氢 气,功率1.2kW,温度550℃、时间10min;
7、采用微波等离子体CVD装置,在步骤6已完成处理的试样进行碳纳米管的 生长,目的是形成高定向性、垂直排列的碳纳米管阵列。生长工艺为:工作气体 为氢气/甲烷,功率1.2-1.5kW,衬底温度600-650℃、甲烷浓度为10%、生长时 间为30分钟。
实施例二
1、选用直径φ100mm石墨衬底,采用金刚石粉研磨辅助酒精清洗的方式处理样品,随后烘干放入化学气相沉积系统;
2、采用直流喷射CVD系统在上述衬底表面制备金刚石膜。典型沉积工艺为: 工作气体氢气/甲烷,功率约22kW,衬底温度约900℃、甲烷浓度10%、沉积时 间180h。实际沉积厚度约为1.5mm;
3、对带衬底金刚石膜进行研磨抛光处理,金刚石膜表面光洁度Ra达到20-100nm,膜层厚度在1200±100μm;
4、采用射频磁控溅射技术,在步骤3已完成研磨抛光的金刚石膜表面溅射沉积 生成一层催化金属层。靶材为纯度99.99%Ni靶,背底真空度5×10-4Pa,溅射 采用氩气气氛,溅射气压0.50Pa,镀制Ni厚度约为10nm。此时形成的结构为 “金刚石/Ni”;
5、采用微波等离子体CVD装置,对步骤4已完成溅射的试样进行表面氢等离 子体处理,目的是形成纳米金属催化颗粒;等离子体刻蚀工艺为:工作气体为氢 气,功率1.2kW,温度550℃、时间10min;
6、采用微波等离子体CVD装置,在步骤5已完成处理的试样进行碳纳米管的 生长,目的是形成高定向性、垂直排列的碳纳米管阵列。生长工艺为:工作气体 为氢气/甲烷,功率1.2-1.5kW,衬底温度650℃、甲烷浓度为10%、生长时间为 30分钟。
实施例三
1、选用直径φ100mm石墨衬底,采用金刚石粉研磨辅助酒精清洗的方式处理样品,随后烘干放入化学气相沉积系统;
2、采用直流喷射CVD技术在上述衬底表面制备金刚石膜。典型沉积工艺为: 工作气体氢气/甲烷,功率约22kW,衬底温度约900℃、甲烷浓度10%、沉积时 间180h。实际沉积厚度约为1.5mm;
3、对带衬底金刚石膜进行研磨抛光处理,金刚石膜表面光洁度Ra达到20-100nm,膜层厚度在1200±100μm;
4、采用射频磁控溅射技术,在步骤3已完成研磨抛光的金刚石膜表面溅射沉积 生成一层催化金属层。靶材为纯度99.99%Fe靶,背底真空度5×10-4Pa,溅射 采用氩气气氛,溅射气压0.50Pa,镀制Fe厚度约为10nm。此时形成的结构为 “金刚石/Fe”;
5、采用微波等离子体CVD装置,对步骤4已完成溅射的试样进行表面氩氢等 离子体处理,目的是形成纳米金属催化颗粒;等离子体刻蚀工艺为:工作气体为 氢气氩气混合气体,功率1.3kW,温度600℃、时间15min;
6、采用微波等离子体CVD装置,在步骤5已完成处理的试样进行碳纳米管的 生长,目的是形成高定向性、垂直排列的碳纳米管阵列。生长工艺为:工作气体 为甲烷,功率1.2-1.5kW,衬底温度650℃、甲烷浓度为10%、生长时间为30分 钟。

Claims (5)

1.一种具备高导热性超黑材料的制备方法,其特征在于采用化学气相沉积法,在石墨衬底上制备大尺寸金刚石自支撑膜;对金刚石膜进行研磨、抛光处理后,在衬底金刚石表面使用磁控溅射、电子束蒸发及原子层沉积方法,生成一层催化金属层;随后采用微波等离子体处理方式处理催化金属层,得到纳米催化颗层;随后采用微波等离子体化学气相沉积或热解化学气相沉积在衬底表面合成高定向性、高致密度、垂直排列的碳纳米管阵列层,且碳纳米管和衬底金刚石在界面处形成共价结合,由此获得附着性能良好的全碳基复合超黑材料;
所述催化金属层为Fe、Ni、Co;
制备步骤如下:
1)采用化学气相沉积(CVD)工艺,在石墨衬底上沉积金刚石薄膜;衬底表面采用金刚石粉打磨处理提高形核密度及膜基附着力;
2)采用机械研磨方式,将金刚石膜进行研磨、抛光处理;
3)采用物理气相沉积技术,在步骤2)后的金刚石表面沉积催化金属层,膜层厚度5-30nm;
4)在微波等离子体化学气相沉积系统中,在步骤3)后的衬底上通过表面等离子体处理技术生成金属纳米颗粒;
5)采用化学气相沉积(CVD)工艺,在步骤4)后的衬底上制备碳纳米管阵列;工作气体为含碳气体与辅助气体;
步骤2)所述机械研磨方式是要将其生长面表面粗糙度Ra减至20-100nm,同时确保CVD金刚石膜厚度均匀性±10%以内。
2.如权利要求1所述具备快热响应超黑材料的制备方法,其特征在于步骤1)所述化学气相沉积工艺包括微波化学气相沉积、直流喷射化学气相沉积以及热丝化学气相沉积。
3.如权利要求1所述具备快热响应超黑材料的制备方法,其特征在于步骤3)所述物理气相沉积工艺包括磁控溅射、电子束蒸发以及原子层沉积。
4.如权利要求1所述具备快热响应超黑材料的制备方法,其特征在于步骤4)所述表面等离子体处理技术是在微波等离子体化学气相沉积(MPCVD)系统中进行;使用的等离子体包括氢等离子体、氧等离子体、氮等离子体、氩等离子体、氟等离子体。
5.如权利要求1所述具备快热响应超黑材料的制备方法,其特征在于步骤5)所述气相沉积工艺为微波等离子体化学气相沉积和热解化学气相沉积。
CN202110159705.8A 2021-02-05 2021-02-05 一种快热响应超黑材料及其制备方法 Active CN112981364B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110159705.8A CN112981364B (zh) 2021-02-05 2021-02-05 一种快热响应超黑材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110159705.8A CN112981364B (zh) 2021-02-05 2021-02-05 一种快热响应超黑材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112981364A CN112981364A (zh) 2021-06-18
CN112981364B true CN112981364B (zh) 2022-08-02

Family

ID=76347587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110159705.8A Active CN112981364B (zh) 2021-02-05 2021-02-05 一种快热响应超黑材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112981364B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381696B (zh) * 2021-11-30 2022-10-25 西安交通大学 一种微型多源金属超薄膜电极超高真空蒸镀装置及方法
CN115466954A (zh) * 2022-10-08 2022-12-13 北京科技大学 金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803420A (zh) * 2016-03-21 2016-07-27 中南大学 石墨烯和/或碳纳米管包覆金刚石复合材料及其制备方法及应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101246050B (zh) * 2008-03-18 2011-05-18 中国科学院长春光学精密机械与物理研究所 用于绝对测辐射热计上的金刚石复合膜片及其制备方法
US9643847B2 (en) * 2013-03-15 2017-05-09 Honda Motor Co., Ltd. Method for growth of vertically aligned carbon nanotubes on diamond substrates

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803420A (zh) * 2016-03-21 2016-07-27 中南大学 石墨烯和/或碳纳米管包覆金刚石复合材料及其制备方法及应用

Also Published As

Publication number Publication date
CN112981364A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
CN112981364B (zh) 一种快热响应超黑材料及其制备方法
CN101966987B (zh) 具有负电子亲和势的分形石墨烯材料及其制备方法和应用
CN108203090B (zh) 一种石墨烯的制备方法
CN109722641B (zh) 金刚石/石墨烯复合导热膜及其制备方法和散热系统
CN107190246A (zh) 一种具有优良场发射性能的石墨烯/金刚石复合膜及其制备方法
CN112030133B (zh) 一种金刚石及其制备方法和应用
Shang et al. Fabrication and Field Emission of High‐Density Silicon Cone Arrays
CN111378954A (zh) 一种制备金刚石膜的装置及方法
CN101948105A (zh) 一种制备高纯度单壁碳纳米管垂直阵列的方法
CN108033439A (zh) 一种等离子体辅助溅射固态碳源的石墨烯低温制备方法
CN113564699B (zh) 基于Cu2O介质层生长单层单晶石墨烯的方法
Tzeng et al. Spiral hollow cathode plasma‐assisted diamond deposition
CN115466954A (zh) 金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法
CN106544642A (zh) 一种利用微波法制备碳化硅纳米线薄膜的方法
CN113355650B (zh) AlN-金刚石热沉、制备方法和应用以及半导体激光器封装件
CN111676450B (zh) 基于离子束溅射沉积的六方氮化硼厚膜及制备方法和应用
SUN et al. Effect of copper pretreatment on growth of graphene films by chemical vapor deposition
CN110371956A (zh) 氮掺杂的碳纳米管/石墨烯复合薄膜及其制备方法
CN114751408B (zh) 一种低压下基于石墨制备金刚石的方法
CN115011922B (zh) 一种石墨烯薄膜及由原位非晶碳转为石墨烯薄膜的方法
Behura et al. Chemical vapor deposited few-layer graphene as an electron field emitter
CN1083813C (zh) 晶态α和β相氮化碳薄膜材料的制备方法
Singh et al. Graphene-based high current density electron emitters for THz-VEDs
CN113418904B (zh) 一种表面增强拉曼散射基底及其制备方法和应用
CN114540952B (zh) 一种可重复利用衬底异质外延金刚石材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant