CN115466954A - 金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法 - Google Patents

金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法 Download PDF

Info

Publication number
CN115466954A
CN115466954A CN202211222879.5A CN202211222879A CN115466954A CN 115466954 A CN115466954 A CN 115466954A CN 202211222879 A CN202211222879 A CN 202211222879A CN 115466954 A CN115466954 A CN 115466954A
Authority
CN
China
Prior art keywords
diamond
graphene
carbon
composite material
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211222879.5A
Other languages
English (en)
Inventor
李成明
任飞桐
郑宇亭
原晓芦
刘宇晨
杨志亮
魏俊俊
刘金龙
陈良贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202211222879.5A priority Critical patent/CN115466954A/zh
Publication of CN115466954A publication Critical patent/CN115466954A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法,属于复合材料制备领域。首先对金刚石基底进行预处理,之后在金刚石表面镀覆催化层,接着采用直流喷射等离子体电弧炉对镀有催化层的金刚石进行快速热处理得到金刚石/石墨烯材料,然后镀覆或涂覆生长碳纳米管的催化剂,最后采用化学气相沉积法在石墨烯表面生长垂直碳纳米管,最终获得金刚石/石墨烯/碳纳米管全碳基复合材料。本发明复合材料制备方法工艺成熟,通过石墨烯作为中间过渡层以共价键分别连接金刚石和垂直阵列碳纳米管,具有稳定的键合方式,兼具优异的热学性能和独特的电学性能,实现了高稳定性、高性能全碳基复合功能材料的制备,有望满足未来功率电子器件的设计和应用。

Description

金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法
技术领域
本发明涉及复合材料制备技术领域,尤其涉及一种金刚石、石墨烯和碳纳米管组成的全碳基复合材料的制备方法。
背景技术
碳具有石墨、金刚石、富勒烯、碳纳米管、石墨烯等多种同素异形体。金刚石是自然界中导热性能最好的材料,常温下的热导率能达到2200W·m-1·K-1,是铜的5倍,同时金刚石的电学特性包括大的禁带宽度(5.5eV)、高的载流子迁移率(空穴:3800cm2·V-1·s-1,电子:4500cm2·V-1·s-1),在半导体功率器件中有着巨大的潜能。碳纳米管可以看做是石墨烯片层卷曲而成,因此碳纳米管和石墨烯分别作为一维、二维碳材料,在热导率和电子迁移率方面都可具有极高的数值。石墨烯在室温下的载流子迁移率约为15000cm2·V-1·s-1,单层石墨烯的导热系数可高达5300W·m-1·K-1,而碳纳米管基于其特殊卷曲结构,沿着长度方向的热交换性能很高,因此合适取向的碳纳米管可以结合良好导热性能的材料如金刚石,通过调控载流子运输行为实现全碳基复合材料制备并应用于功率电子器件。
但金刚石中碳原子为sp3杂化,垂直于金刚石表面生成碳纳米管阵列相当于将sp3键合直接转化为sp2键合,理论上难以实现,所以一般在金刚石上生成垂直排布的碳纳米管都需要在金刚石表面添加催化剂作为碳纳米管的形核位点。但上述方法存在一定的问题,比如催化剂的种类、大小和用量都对碳纳米管的直径、结晶度有显著影响,不易调控碳纳米管形貌,并且不同催化剂可能会影响金刚石基底与碳纳米管之间的结合强度。已知石墨烯与碳纳米管都为碳原子sp2杂化纳米结构,并且以石墨烯和垂直碳纳米管构建共价键合稳定三维结构技术成熟。而金刚石表面原位催化生成的石墨烯与金刚石具有良好的晶体结构匹配性,快速热处理后得到的金刚石/石墨烯结构质量高、稳定性好且电学性能优异。因此通过石墨烯在金刚石和垂直碳纳米管之间作为过渡层,由共价键连接三种材料进而制备出结构稳定、具有良好导热性能和独特电学性能的金刚石/石墨烯/碳纳米管全碳基复合材料。
发明内容
本发明提供一种金刚石、石墨烯和碳纳米管全碳基复合材料的制备方法。该材料结合金刚石、石墨烯和碳纳米管在导热传输和电学上的优异性能,以石墨烯作为过渡层以共价键连接金刚石和垂直取向碳纳米管,实现金刚石、石墨烯和碳纳米管三种材料结构上的稳定键合,在功率电子器件领域具有良好的应用前景。
如上所述金刚石、石墨烯和碳纳米管全碳基复合材料的制备方法,具体实施步骤为:
(1)对金刚石基底进行抛光、酸洗和超声清洗;
(2)对步骤(1)得到的金刚石表面镀覆厚度为10-50nm的催化层;
(3)通过直流喷射等离子体电弧炉将步骤(2)中得到的表面含有催化层的金刚石在等离子体气氛下进行快速热处理生成石墨烯;
(4)将步骤(3)热处理后表面含有金属或合金催化层的金刚石放置于稀酸溶液直至催化层完全溶解,清洗后得到金刚石/石墨烯材料;
(5)在步骤(4)得到的金刚石/石墨烯材料上镀覆或涂覆生长碳纳米管的催化剂;
(6)采用化学气相沉积方法在步骤(5)得到的金刚石/石墨烯材料中石墨烯表面生长垂直碳纳米管,得到所述金刚石/石墨烯/碳纳米管复合材料。
进一步地,步骤(1)所述金刚石基底可为人造或天然单晶、多晶金刚石中的一种。
进一步地,步骤(1)所述抛光过程为机械抛光,表面粗糙度小于1nm。
进一步地,步骤(1)所述酸洗和超声清洗过程为将抛光后的金刚石置于HNO3:H2SO4=1:3混合酸溶液进行酸煮,冷却后使用丙酮、酒精、去离子水依次超声清洗,随后在氮气的氛围下烘干。
进一步地,步骤(2)所述催化层可为铁、钴、镍、铜、铬等过渡金属或含上述过渡金属一种及以上组分合金中的一种。
进一步地,步骤(2)所述催化层镀覆方法可为磁控溅射、电子束蒸发、离子束辅助沉积和原子层沉积中的一种。
进一步地,步骤(3)所述热处理等离子体气氛中氩气和氢气体积比为2:1,保温温度为700-900℃,热处理保温时长为0.5-2.5min,热处理升温速率大于50℃/s。
进一步地,步骤(4)所述稀酸溶液可为稀盐酸、稀硝酸中的一种。
进一步地,步骤(5)所述催化剂优先为铁、钴、镍、铜、铬等过渡金属中的一种或它们不同组分的合金中1种或2种以上混合物中的一种,对应的镀覆方法为磁控溅射、电子束蒸发、离子束辅助沉积和原子层沉积中的一种;也可为氯化铁、硝酸铁、氯化亚铁、二茂铁等含有一种或多种金属的盐类或有机化合物中的一种,对应的涂覆方法为旋涂,镀覆方法为气态输入。
进一步地,步骤(6)所述化学气相沉积法可为热解化学气相沉积、等离子体增强化学气相沉积中的一种。
本发明实施过程的关键在于:
1.本发明中为了满足生长石墨烯的金刚石样品足够平整,要求金刚石表面粗糙度小于1nm。
2.本发明中为得到缺陷少的高质量石墨烯,要求使用直流喷射等离子体电弧炉设备,保证含有催化层的金刚石的热处理过程中升降温速度足够快,保证金刚石和石墨烯共价键合的同时避免升降温过程对石墨烯结构产生损伤。
3.本发明在制备碳纳米管生长催化剂前需保证制备石墨烯的残余催化层去除干净,避免残余催化层对后续碳纳米管的生长造成影响。
本发明的优点在于:
本发明涉及一种金刚石、石墨烯和碳纳米管全碳基复合材料制备方法,通过石墨烯作为中间层通过共价键连接金刚石和碳纳米管,得到稳定且拥有良好热学性能和独特电学性能的复合材料。
本发明突出优势在于:
1.本发明采用的制备方法周期短,工艺技术成熟,采用的催化剂等为常见原料,成本低廉,可大规模生产应用。
2.本发明通过石墨烯作为过渡层以共价键连接金刚石和垂直碳纳米管两种碳基材料,得到键合稳定的全碳基复合结构。
3.金刚石、石墨烯、碳纳米管都具有良好的热导率和载流子迁移率,本发明得到的复合材料结合三种材料特性具有良好导热性能和独特电学性能,以满足功率电子器件的设计和应用。
具体实施方式
下面结合具体实施例对本发明的技术方案做进一步说明。
实施例1
1、对化学气相沉积(100)单晶金刚石进行抛光酸洗。首先将化学气相沉积(100)单晶金刚石进行机械抛光,其表面粗糙度值达到0.72nm,然后将抛光后的单晶金刚石在浓硝酸、浓硫酸比例为1:3的混合酸液中煮沸3h,冷却后使用丙酮、酒精、去离子水依次超声清洗15min。
2、采用磁控溅射法在步骤1得到的单晶金刚石表面镀一层厚度为40nm的Cu催化层。其中背底真空度为10-4Pa,射频功率为200W,镀制时间为20min。
3、使用直流喷射等离子体电弧炉将步骤2)中得到的表面镀Cu的单晶金刚石在氩气和氢气混合等离子体气氛下进行快速热处理。其中,氩气流量为6slm,氢气流量为3slm,磁场电流为3.5A,电弧电流为70A。热处理最高保温温度达800℃,热处理时间为1.5min,升降温速率达55℃/s,灭弧后样品在氩气氛围下随炉冷却至室温取出。
4、将步骤3快速热处理后得到的镀Cu单晶金刚石放置于体积分数为2%的稀硝酸中浸泡约3.5h,取出后放置于去离子水中将表面残余盐酸清洗干净,得到金刚石/石墨烯复合材料。
5、采用磁控溅射技术在步骤4得到的金刚石/石墨烯材料表面镀一层厚度为30nm的Fe催化层。其中背底真空度为5×10-4Pa,射频功率为200W,镀制时间为15min。
6、采用等离子体增强化学气相沉积技术,在步骤5所得含Fe催化层的金刚石/石墨烯材料石墨烯表面制备碳纳米管。首先将含Fe催化层的金刚石/石墨烯材料放入反应系统中,并抽真空至10-5Pa,然后加热基底到550℃,通入H2刻蚀,保持10min,开启系统的等离子源,功率选定在1200W,再调整基底到生长温度650℃,通入H2和CH4,CH4浓度为10%,生长时间30min。生长结束后将系统降温,取出样品,最终得到(100)单晶金刚石/石墨烯/碳纳米管全碳基复合材料。
实施例2
1、对高温高压(111)单晶金刚石进行抛光酸洗。首先将Ib型高温高压(111)单晶金刚石进行机械抛光,其表面粗糙度值达到0.69nm,然后将抛光后的单晶金刚石在浓硝酸、浓硫酸比例为1:3的混合酸液中煮沸3h,冷却后使用丙酮、酒精、去离子水依次超声清洗15min。
2、采用磁控溅射法在步骤1得到的单晶金刚石表面镀一层厚度为30nm的Ni催化层。其中背底真空度为10-4Pa,射频功率为200W,镀制时间为15min。
3、使用直流喷射等离子体电弧炉将步骤2中得到的表面镀Ni的单晶金刚石在氩气和氢气混合等离子体气氛下进行快速热处理。其中,氩气流量为6slm,氢气流量为3slm,磁场电流为3.5A,电弧电流为70A。热处理最高保温温度达750℃,热处理时间为2min,升降温速率达60℃/s,灭弧后样品在氩气氛围下随炉冷却至室温取出。
4、将步骤3快速热处理后得到的镀Ni单晶金刚石放置于体积分数为2%的稀盐酸中浸泡约4h,取出后放置于去离子水中将表面残余盐酸清洗干净,得到金刚石/石墨烯复合材料。
5、通过温和的超声处理将二茂铁(10wt.%)溶解在二甲苯中,在化学气相沉积过程生长碳纳米管过程中二茂铁与二甲苯混合物作为气源一起通入系统。
6、采用等离子体增强化学气相沉积技术,在步骤4所得的金刚石/石墨烯材料石墨烯表面制备碳纳米管。首先将金刚石/石墨烯材料放入反应系统中,并抽真空至10-4Pa,然后加热基底到600℃,通入H2刻蚀,保持15min,开启系统的等离子源,功率选定在1500W,再调整基底到生长温度700℃,通入二茂铁/二甲苯混合物,设定生长时间为45min。生长结束后将系统降温,取出样品,最终得到(111)单晶金刚石/石墨烯/碳纳米管全碳基复合材料。
实施例3
1、对化学气相沉积(111)多晶金刚石进行抛光酸洗。首先将化学气相沉积(111)多晶金刚石进行机械抛光,其表面粗糙度值达到0.82nm,然后将抛光后的多晶金刚石在浓硝酸、浓硫酸比例为1:3的混合酸液中煮沸3h,冷却后使用丙酮、酒精、去离子水依次超声清洗15min。
2、采用磁控溅射法在步骤1得到的多晶金刚石表面镀一层厚度为50nm的Ni催化层。其中背底真空度为5×10-4Pa,射频功率为200W,镀制时间为25min。
3、使用直流喷射等离子体电弧炉将步骤2中得到的表面镀Ni的多晶金刚石在氩气和氢气混合等离子体气氛下进行快速热处理。其中,氩气流量为6slm,氢气流量为3slm,磁场电流为3.5A,电弧电流为70A。热处理最高保温温度达850℃,热处理时间为2min,升降温速率达55℃/s,灭弧后样品在氩气氛围下随炉冷却至室温取出。
4、将步骤3快速热处理后得到的镀Ni多晶金刚石放置于体积分数为2%的稀硝酸中浸泡约4h,取出后放置于去离子水中将表面残余盐酸清洗干净,得到金刚石/石墨烯复合材料。
5、采用磁控溅射技术在步骤4得到的金刚石/石墨烯材料表面镀一层厚度为40nm的Fe催化层。其中背底真空度为5×10-4Pa,射频功率为200W,镀制时间为20min。
6、采用热解化学气相沉积技术,在步骤5所得含Fe催化层的金刚石/石墨烯材料制备碳纳米管。首先将含Fe催化层的金刚石/石墨烯材料放入反应系统中,并抽真空至10-5Pa,然后加热基底到700℃,通入H2刻蚀,保持20min,再调整基底到生长温度950℃,通入H2和C2H2,C2H2浓度为10%,生长时间25min。生长结束后将系统降温,取出样品,最终得到多晶金刚石/石墨烯/碳纳米管全碳基复合材料。

Claims (8)

1.一种金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法,其特征在于在金刚石表面镀覆催化层;随后采用直流喷射等离子体电弧炉对镀有催化层的金刚石进行快速热处理后去除催化层,得到共价键合的金刚石/石墨烯材料;然后镀覆或涂覆生长碳纳米管的催化剂;最后采用化学气相沉积法在石墨烯表面生长共价结合的垂直碳纳米管,得到结构稳定、性能良好的金刚石/石墨烯/碳纳米管全碳基复合材料;
具体制备步骤如下:
(1)对金刚石基底进行抛光、酸洗和超声清洗;
(2)对步骤(1)得到的金刚石表面镀覆厚度为10-50nm的催化层;
(3)通过直流喷射等离子体电弧炉将步骤(2)中得到的表面含有催化层的金刚石在等离子体气氛下进行快速热处理生成石墨烯;
(4)将步骤(3)热处理后表面含有金属或合金催化层的金刚石放置于稀酸溶液直至催化层完全溶解,清洗后得到金刚石/石墨烯材料;
(5)在步骤(4)得到的金刚石/石墨烯材料上镀覆或涂覆生长碳纳米管的催化剂;
(6)采用化学气相沉积方法在步骤(5)得到的金刚石/石墨烯材料中石墨烯表面生长垂直碳纳米管,得到所述金刚石/石墨烯/碳纳米管复合材料;
步骤(1)所述抛光过程为机械抛光,表面粗糙度小于1nm;
步骤(2)所述催化层为铁、钴、镍、铜、铬过渡金属或含上述过渡金属一种及以上组分合金中的一种。
2.如权利要求1所述金刚石/石墨烯/碳纳米管全碳基复合材料制备方法,其特征在于步骤(1)所述金刚石基底为人造或天然单晶、多晶金刚石中的一种。
3.如权利要求1所述金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法,其特征在于步骤(1)所述酸洗和超声清洗过程为将抛光后的金刚石置于HNO3:H2SO4=1:3混合酸溶液进行酸煮,冷却后使用丙酮、酒精、去离子水依次超声清洗,随后在氮气的氛围下烘干。
4.如权利要求1所述金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法,其特征在于步骤(2)所述催化层镀覆方法为磁控溅射、电子束蒸发、离子束辅助沉积和原子层沉积中的一种。
5.如权利要求1所述金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法,其特征在于步骤(3)所述热处理等离子体气氛中氩气和氢气体积比为2:1,保温温度为700-900℃,热处理保温时长为0.5-2.5min,热处理升温速率大于50℃/s。
6.如权利要求1所述金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法,其特征在于步骤(4)所述稀酸溶液为稀盐酸、稀硝酸中的一种。
7.如权利要求1所述金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法,其特征在于步骤(5)所述催化剂为铁、钴、镍、铜、铬过渡金属中的一种或它们不同组分的合金中1种或2种以上混合物,对应的镀覆方法为磁控溅射、电子束蒸发、离子束辅助沉积和原子层沉积中的一种;或为氯化铁、硝酸铁、氯化亚铁、二茂铁含有一种或多种金属的盐类或有机化合物,对应的涂覆方法为旋涂,镀覆方法为气态输入。
8.如权利要求1所述金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法,其特征在于步骤(6)所述化学气相沉积法为热解化学气相沉积、等离子体增强化学气相沉积中的一种。
CN202211222879.5A 2022-10-08 2022-10-08 金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法 Pending CN115466954A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211222879.5A CN115466954A (zh) 2022-10-08 2022-10-08 金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211222879.5A CN115466954A (zh) 2022-10-08 2022-10-08 金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN115466954A true CN115466954A (zh) 2022-12-13

Family

ID=84337809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211222879.5A Pending CN115466954A (zh) 2022-10-08 2022-10-08 金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN115466954A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116969454A (zh) * 2023-08-31 2023-10-31 上海交通大学 石墨烯-金刚石共价异质结构颗粒的批量制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105036106A (zh) * 2015-07-10 2015-11-11 北京科技大学 一种超高定向导热碳基复合材料的制备方法
CN105803420A (zh) * 2016-03-21 2016-07-27 中南大学 石墨烯和/或碳纳米管包覆金刚石复合材料及其制备方法及应用
CN105803241A (zh) * 2016-03-21 2016-07-27 中南大学 一种螺旋体增强金属基或聚合物基复合材料及制备方法
US20180100232A1 (en) * 2015-11-20 2018-04-12 Fourte' International, Sdn. Bhd. Thin metal coating methods for high conductivity graphene and stanene metal composites and methods of manufacture
WO2018072367A1 (zh) * 2016-10-21 2018-04-26 中南大学 一种硼掺杂金刚石电极及其制备方法与应用
CN111517305A (zh) * 2020-04-08 2020-08-11 北京科技大学 一种高载流子浓度的石墨烯/金刚石复合结构制备方法
CN112981364A (zh) * 2021-02-05 2021-06-18 北京科技大学 一种快热响应超黑材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105036106A (zh) * 2015-07-10 2015-11-11 北京科技大学 一种超高定向导热碳基复合材料的制备方法
US20180100232A1 (en) * 2015-11-20 2018-04-12 Fourte' International, Sdn. Bhd. Thin metal coating methods for high conductivity graphene and stanene metal composites and methods of manufacture
CN105803420A (zh) * 2016-03-21 2016-07-27 中南大学 石墨烯和/或碳纳米管包覆金刚石复合材料及其制备方法及应用
CN105803241A (zh) * 2016-03-21 2016-07-27 中南大学 一种螺旋体增强金属基或聚合物基复合材料及制备方法
WO2018072367A1 (zh) * 2016-10-21 2018-04-26 中南大学 一种硼掺杂金刚石电极及其制备方法与应用
CN111517305A (zh) * 2020-04-08 2020-08-11 北京科技大学 一种高载流子浓度的石墨烯/金刚石复合结构制备方法
CN112981364A (zh) * 2021-02-05 2021-06-18 北京科技大学 一种快热响应超黑材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
于泽沛等: "三维石墨烯-碳纳米管复合结构热导率的分子动力学模拟", 《化工学报》, vol. 71, no. 4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116969454A (zh) * 2023-08-31 2023-10-31 上海交通大学 石墨烯-金刚石共价异质结构颗粒的批量制备方法
CN116969454B (zh) * 2023-08-31 2024-04-12 上海交通大学 石墨烯-金刚石共价异质结构颗粒的批量制备方法

Similar Documents

Publication Publication Date Title
Wu et al. A review of graphene synthesis by indirect and direct deposition methods
CN109437157B (zh) 一种单壁碳纳米管的浮动催化剂化学气相沉积方法
JP3484441B2 (ja) 炭素ナノチューブの製造方法
CN106587030B (zh) 一种常压低温化学气相沉积制备石墨烯薄膜的方法
CN109722641B (zh) 金刚石/石墨烯复合导热膜及其制备方法和散热系统
CN107190246A (zh) 一种具有优良场发射性能的石墨烯/金刚石复合膜及其制备方法
CN108033439B (zh) 一种等离子体辅助溅射固态碳源的石墨烯低温制备方法
CN112981364B (zh) 一种快热响应超黑材料及其制备方法
CN102936010A (zh) 一种在基材上气相沉积生长直立式石墨烯的方法
CN107673332B (zh) 一种利用复合金属模板制备大面积3d石墨烯的方法
CN110666158A (zh) 一种石墨烯包覆纳米铜的方法
CN113564699B (zh) 基于Cu2O介质层生长单层单晶石墨烯的方法
CN115466954A (zh) 金刚石/石墨烯/碳纳米管全碳基复合材料的制备方法
CN108070891B (zh) 一种石墨烯碳纳米管复合薄膜及其制备方法与应用
CN113912043A (zh) 一种石墨烯/碳纳米管复合阵列材料的制备方法
CN111943171B (zh) 一种高密度单壁碳纳米管水平阵列的可控制备方法
CN111717911B (zh) 一种石墨烯薄膜的制备方法
CN109136842B (zh) 石墨烯薄膜及其制备方法
CN113307252B (zh) 一种制备可纺丝超顺排碳纳米管阵列的方法
CN108408791B (zh) 一种MPCVD法制备石墨烯包覆Co3O4粉体的方法
CN112919823A (zh) 一种快速均匀制备大面积石墨烯玻璃的方法
CN114751408B (zh) 一种低压下基于石墨制备金刚石的方法
CN107244666B (zh) 一种以六方氮化硼为点籽晶生长大晶畴石墨烯的方法
CN111943172A (zh) 一种金属丝辅助化学气相沉积制备碳纳米管阵列的方法
CN115011922B (zh) 一种石墨烯薄膜及由原位非晶碳转为石墨烯薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20221213

RJ01 Rejection of invention patent application after publication