CN112978811A - 一种富硫空位中空硫化物微球及其制备方法和用途 - Google Patents

一种富硫空位中空硫化物微球及其制备方法和用途 Download PDF

Info

Publication number
CN112978811A
CN112978811A CN202110154262.3A CN202110154262A CN112978811A CN 112978811 A CN112978811 A CN 112978811A CN 202110154262 A CN202110154262 A CN 202110154262A CN 112978811 A CN112978811 A CN 112978811A
Authority
CN
China
Prior art keywords
hollow
sulfide
microspheres
rich
microsphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110154262.3A
Other languages
English (en)
Inventor
邵自强
贾帅
魏洁
黄珍
龚白雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202110154262.3A priority Critical patent/CN112978811A/zh
Publication of CN112978811A publication Critical patent/CN112978811A/zh
Priority to US17/584,732 priority patent/US11967716B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/11Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种富硫空位中空硫化物微球的制备方法,具体方法如下:将硝酸钴和硝酸镍溶解于等体积的N,N‑二甲基甲酰胺和丙酮中,并添加螯合剂,经溶剂热反应得到含有镍钴离子的配位聚合物微球;其次,将得到的配位聚合物微球和硫化剂分散到有机溶剂中,反应得到中空硫化物微球;制备的中空硫化物经硼氢化钠还原处理,离心、洗涤和干燥后,得到富硫空位的中空硫化物微球。其粒径为1‑2.5μm,壳层厚度为15‑30nm,材料的比容量可达763.4C g‑1(电流密度为1A g‑1)。

Description

一种富硫空位中空硫化物微球及其制备方法和用途
技术领域
本发明涉及化学材料领域,特别涉及一种富硫空位中空硫化物微球及其制备方法和用途。
背景技术
超级电容器以其高功率密度和长循环使用寿命的特点,受到广泛关注。但是其能量密度介于二次电池和传统电容器之间,如何不牺牲超级电容器本身的优点前提下,尽可能地提高其性能是现在的研究主流。构建混合电容器,及负极材料利用具有双电层电容的活性材料,正极利用具有氧化还原行为的电池级电极材料,能够保证高功率密度的前提下,实现高能量密度。因此,超级电容器的性能改善主要集中在电极材料的设计和改进。
过渡金属硫化物其具有较高的理论容量、储量大且成本低等优点;同时可以实现多电子参与电化学反应,其可视为一种电极材料不错的选择。但是,过渡金属硫化物的电导率仍然较低,且在电化学测试过程中,会出现晶格结构的体系膨胀等问题,导致其具有较差的倍率性和稳定性。
因此,如何利用过渡金属硫化物制备高稳定、高电导率、高电化学性能的电极材料,是本领域技术人员亟待解决的问题。
发明内容
本发明的目的是针对现有技术的不足,提供一种富硫空位中空硫化物微球,其制备过程简单、反应条件温和,制备得到的富硫空位中空硫化物微球比容量可达763.4C g-1,是一种高性能的电极材料。
本发明的技术方案是:一种富硫空位中空硫化物微球,包括以下步骤制备:
1)取硝酸钴和硝酸镍,溶于N,N-二甲基甲酰胺和丙酮的混合溶液中,得到溶液A;
2)取带有羧酸根的螯合剂,溶于溶剂A中,得到溶剂B;
3)将溶剂B于140-160℃条件下反应1-5h,冷却、离心,经洗涤后干燥,得到配位聚合物微球;
4)取配位聚合物微球、硫化剂,分散于有机溶剂中,于120-160℃条件下反应0.5-6h,冷却、离心,经洗涤后干燥,得到中空硫化物微球;
5)取中空硫化物微球,分散于硼氢化钠水溶液中,搅拌0.5-2h,离心,经洗涤后干燥,得到目标产品。
步骤1)N,N-二甲基甲酰胺和丙酮的体积比为1:1,所述硝酸钴和硝酸镍的摩尔比为2-4:1-2。
步骤2)所述螯合剂为间苯二甲酸、均苯三甲酸、对苯二甲酸、3,5-二甲酸吡啶的任一种或几种混合,螯合剂溶于溶剂A中,搅拌6h,螯合剂的摩尔量与硝酸钴、硝酸镍的摩尔量之和的比例为1-2:2-4。
步骤3)采用无水乙醇洗涤,所述干燥为真空干燥。
步骤4)所述硫化剂为硫代乙酰胺、硫脲、L-半膀氨酸、硫化钠的任一种或几种混合,配位聚合物微球和硫化剂的质量比为2-4:1-8。
步骤4)所述有机溶剂为无水乙醇,所述分散为超声分散15min。
步骤4)采用无水乙醇洗涤,所述干燥为真空干燥。
步骤5)所述硼氢化钠水溶液的浓度为0.5-2mo/L,优选为1mol/L,采用去离子水洗涤,所述干燥为真空干燥。
富硫空位中空硫化物微球的粒径为1-2.5μm,且中空硫化物壳层厚度为15-30nm。
本发明还请求保护上述任一富硫空位中空硫化物微球在用于制备电极材料中的用途。
优选的,所述电极材料为电池类电极材料。
采用上述技术方案具有以下有益效果:
1、本发明以过渡金属镍离子、钴离子配位聚合为模板,采用溶剂热硫化的方法制备得到镍钴中空硫化物,并经硼氢化钠水溶液还原处理,得到了富硫空位的中空硫化物。其中,以镍离子、钴离子配位聚合物为模板得到的中空结构具有结构缓冲作用,提高其电极材料的稳定性;引入硫空位,不仅能够调节硫化物的电子结构,提高其电导率,而且能够增加电化学活性位点,进而提高电化学性能。
2、本发明通过利用N,N-二甲基甲酰胺和丙酮的混合溶液溶解硝酸钴和硝酸镍,保证溶解完全,若采用其他单组份溶剂则会出现沉淀,导致后续反应无法正常进行;通过控制螯合剂的摩尔量与硝酸钴、硝酸镍的摩尔量之和的比例为1-2:2-4、溶剂热温度为140~160℃和反应时间为1~5h时,可得到分散较为均匀的配位聚合物微球;其次将配合物微球与硫化剂按质量比为2:4~1:8分散到乙醇中,并在120~160℃下,反应0.5~6h,可得到中空硫化物微球;最后将中空硫化物微球分散到0.5~2mol/L的硼氢化钠水溶液中处理0.5~2h,可得到富硫空位的中空硫化物微球。整个反应过程操作简单且反应条件温和、制备成本较低。
经申请人试验验证,最终制备的富硫空位中空硫化物微球其硫空位相对含量为65.34%,比容量可达763.4C g-1且容量保持率为91.3%,连续充放电5000次,电流密度为10A g-1,容量保持率保持在90%以上,库伦效率不衰减,维持100%。
下面结合附图和具体实施方式作进一步的说明。
附图说明
图1为本发明实施例5的SEM照片;
图2为本发明实施例5的TEM照片;
图3为实施例5和实施例2的XRD图;
图4为实施例5的XPS谱图和S元素的高分辨XPS谱图;
图5为实施例6在不同扫描速率下的CV曲线;
图6为实施例6在不同电流密度下的GCD曲线;
图7为实施例6在不同电流密度下的比容量;
图8为实施例6循环5000次比容量、库伦效率的曲线图。
具体实施方式
本发明中,使用的化学品原料从北京市通广精细化工有限公司购买,且为分析纯。
实施例1
将0.2mmol硝酸钴和0.1mmol硝酸镍溶解于15ml的N,N-二甲基甲酰胺和15ml的丙酮的混合溶液中;并添加0.15mmol的间苯二甲酸,室温下搅拌6h,转移至水热釜中,设置溶剂热反应温度为160℃,反应时间为4h;待水热釜冷却后,离心、洗涤和真空干燥,得到镍钴离子配位聚合物微球。其粒径大约为1-2μm且为实心球。
实施例2
将0.2mmol硝酸钴和0.1mmol硝酸镍溶解于15ml的N,N-二甲基甲酰胺和15ml的丙酮的混合溶液中;并添加0.15mmol的间苯二甲酸,室温下搅拌6h,转移至水热釜中,设置溶剂热反应温度为160℃,反应时间为4h;待水热釜冷却后,离心、洗涤和真空干燥,得到镍钴离子配位聚合物微球;称量30mg镍钴离子配位聚合物微球和60mg硫代乙酰,分散于30ml无水乙醇中,超声处理15min后,转移至水热釜中,溶剂热反应温度为160℃,反应时间为2h。反应得到的硫化物呈现核壳结构,粒径为1-2μm,表面不在呈现光滑的情况。
实施例3
将0.133mmol硝酸钴和0.067mmol硝酸镍溶解于15ml的N,N-二甲基甲酰胺和15ml的丙酮的混合溶液中;并添加0.2mmol的间苯二甲酸,室温下搅拌6h,转移至水热釜中,设置溶剂热反应温度为160℃,反应时间为4h;待水热釜冷却后,离心、洗涤和真空干燥,得到镍钴离子配位聚合物微球;称量30mg镍钴离子配位聚合物微球和60mg硫代乙酰,分散于30ml无水乙醇中,超声处理15min后,转移至水热釜中,溶剂热反应温度为160℃,反应时间为6h。反应得到的硫化物呈现中空微球状,粒径为1-2μm,壳层厚度约为20-30nm;同时根据X射线光电子谱拟合的峰面积计算,产物中硫空位相对含量为31.24%。
实施例4
将0.133mmol硝酸钴和0.067mmol硝酸镍溶解于15ml的N,N-二甲基甲酰胺和15ml的丙酮的混合溶液中;并添加0.2mmol间苯二甲酸,室温下搅拌6h,转移至水热釜中,设置溶剂热反应温度为160℃,反应时间为4h;待水热釜冷却后,离心、洗涤和真空干燥,得到镍钴离子配位聚合物微球;称量30mg镍钴离子配位聚合物微球和60mg硫代乙酰,分散于30ml无水乙醇中,超声处理15min后,转移至水热釜中,溶剂热反应温度为160℃,反应时间为6h,得到中空硫化物;将30mg中空硫化物分散到1mol/L硼氢化钠水溶液中,室温搅拌1h后,离心、去离子水洗涤和真空干燥处理,得到硫空位的中空硫化物微球。经硼氢化钠溶液还原处理的中空硫化物形貌仍为微球状,粒径为1-2.5um,硫化物的结晶度略微降低,同时根据X射线光电子谱拟合的数据计算,硫空位的相对含量为45.64%。
实施例5
将0.133mmol硝酸钴和0.067mmol硝酸镍溶解于15ml的N,N-二甲基甲酰胺和15ml的丙酮的混合溶液中;并添加0.2mmol间苯二甲酸,室温下搅拌6h,转移至水热釜中,设置溶剂热反应温度为160℃,反应时间为4h;待水热釜冷却后,离心、洗涤和真空干燥,得到镍钴离子配位聚合物微球;称量30mg镍钴离子配位聚合物微球和60mg硫代乙酰,分散于30ml无水乙醇中,超声处理15min后,转移至水热釜中,溶剂热反应温度为160℃,反应时间为6h,得到中空硫化物;将30mg中空硫化物分散到1mol/L硼氢化钠水溶液中,室温搅拌2h后,离心、去离子水洗涤和真空干燥处理,得到富硫空位的中空硫化物微球。经硼氢化钠还原处理的中空硫化物形貌仍为微球状,粒径为1-2um,且中空硫化物的壳层厚度为15-25nm;根据X射线光电子谱图的分峰拟合计算出产物中硫空位的相对含量为65.34%。
图1SEM测试结果表明,富硫空位中空硫化物微球直径大约为1-2μm,且微球表面粗糙;图2试样的TEM测结果表明微球呈中空结构且壳层厚度为10-20nm;XRD测是结果(图3)表明经过还原处理后,富硫空位中空硫化物微球的晶型与标准峰(JPCDS:#20-0278)相似;XPS测试结果表明,富硫空位中空硫化物微球中存在Ni、Co和S元素,并且根据S的高分辨XPS谱图结果可知,S空位(2p1/2)的相对含量为65.34%。
实施例6
取实施例5制备得到的富硫空位的中空硫化物微球、乙炔黑和四氟乙烯按照质量比7:2:1混合,并涂于1×1cm2泡沫镍上,80℃真空干燥12h后并压片,作为工作电极。用电化学工作站进行循环伏安测试和恒电流充放电测试,电解液为3M的氢氧化钾溶液,参比电极为Hg/HgO电极,对电极为Pt电极。
由图5可知,曲线呈现明显氧化还原峰,且随着CV扫描速率的增加,氧化峰向高电位移动,还原峰向低电位移动;其次,在充放电过程中,试样的GCD曲线(图6)出现明显的充放电平台,表明出典型的电池类电极材料行为;当电流密度为1A g-1时,其放电时间为763.4s,比容量为763.4C g-1(比电容为1526.8F g-1,图7)。工作电极连续充放电5000次,电流密度为10A g-1,电化学工作站的容量保持率保持在90%以上,库伦效率不衰减,维持100%,如图8所示。

Claims (10)

1.一种富硫空位中空硫化物微球,其特征在于,包括以下步骤制备:
1)取硝酸钴和硝酸镍,溶于N,N-二甲基甲酰胺和丙酮的混合溶液中,得到溶液A;
2)取带有羧酸根的螯合剂,溶于溶剂A中,得到溶剂B;
3)将溶剂B于140-160℃条件下反应1-5h,冷却、离心,经洗涤后干燥,得到配位聚合物微球;
4)取配位聚合物微球、硫化剂,分散于有机溶剂中,于120-160℃条件下反应0.5-6h,冷却、离心,经洗涤后干燥,得到中空硫化物微球;
5)取中空硫化物微球,分散于硼氢化钠水溶液中,搅拌0.5-2h,离心,经洗涤后干燥,得到目标产品。
2.根据权利要求1所述的富硫空位中空硫化物微球,其特征在于,步骤1)N,N-二甲基甲酰胺和丙酮的体积比为1:1,所述硝酸钴和硝酸镍的摩尔比为2-4:1-2。
3.根据权利要求1所述的富硫空位中空硫化物微球,其特征在于,步骤2)所述螯合剂为间苯二甲酸、均苯三甲酸、对苯二甲酸、3,5-二甲酸吡啶的任一种或几种混合,螯合剂溶于溶剂A中,搅拌6h,螯合剂的摩尔量与硝酸钴、硝酸镍的摩尔量之和的比例为1-2:2-4。
4.根据权利要求1所述的富硫空位中空硫化物微球,其特征在于,步骤3)采用无水乙醇洗涤,所述干燥为真空干燥。
5.根据权利要求1所述的富硫空位中空硫化物微球,其特征在于,步骤4)所述硫化剂为硫代乙酰胺、硫脲、L-半膀氨酸、硫化钠的任一种或几种混合,配位聚合物微球和硫化剂的质量比为2-4:1-8,所述有机溶剂为无水乙醇,所述分散为超声分散15min。
6.根据权利要求1所述的富硫空位中空硫化物微球,其特征在于,步骤4)采用无水乙醇洗涤,所述干燥为真空干燥。
7.根据权利要求1所述的富硫空位中空硫化物微球,其特征在于,步骤5)所述硼氢化钠水溶液的浓度为0.5-2mo/L,优选为1mol/L,采用去离子水洗涤,所述干燥为真空干燥。
8.根据权利要求1所述的富硫空位中空硫化物微球,其特征在于,富硫空位中空硫化物微球的粒径为1-2.5μm,且中空硫化物壳层厚度为15-30nm。
9.权利要求1-8任一富硫空位中空硫化物微球在用于制备电极材料中的用途。
10.根据权利要求9所述的用途,其特征在于,所述电极材料为电池类电极材料。
CN202110154262.3A 2021-02-04 2021-02-04 一种富硫空位中空硫化物微球及其制备方法和用途 Pending CN112978811A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110154262.3A CN112978811A (zh) 2021-02-04 2021-02-04 一种富硫空位中空硫化物微球及其制备方法和用途
US17/584,732 US11967716B2 (en) 2021-02-04 2022-01-26 Preparation method and application for metal sulfide hollow microspheres with enriched sulfur vacancies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110154262.3A CN112978811A (zh) 2021-02-04 2021-02-04 一种富硫空位中空硫化物微球及其制备方法和用途

Publications (1)

Publication Number Publication Date
CN112978811A true CN112978811A (zh) 2021-06-18

Family

ID=76346953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110154262.3A Pending CN112978811A (zh) 2021-02-04 2021-02-04 一种富硫空位中空硫化物微球及其制备方法和用途

Country Status (2)

Country Link
US (1) US11967716B2 (zh)
CN (1) CN112978811A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115504517B (zh) * 2022-08-18 2023-07-04 大连理工大学 在碳包覆双金属硫化物外壳生长金属水滑石纳米刺微球、制备方法及其应用
CN117353046B (zh) * 2023-12-05 2024-06-04 南昌大学 一种中空多层复合电磁吸波材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109092329A (zh) * 2018-09-10 2018-12-28 南京大学 一种中空富钴双金属硫化物活化过硫酸盐快速去除废水中难降解有机物的方法
CN110246700A (zh) * 2019-07-30 2019-09-17 哈尔滨工业大学 一种多层核壳氧化物/硫化物异质结构电极材料的制备方法
CN111525128A (zh) * 2020-04-20 2020-08-11 电子科技大学 一种钌掺杂含硫空位的过渡金属硫化物电极及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109092329A (zh) * 2018-09-10 2018-12-28 南京大学 一种中空富钴双金属硫化物活化过硫酸盐快速去除废水中难降解有机物的方法
CN110246700A (zh) * 2019-07-30 2019-09-17 哈尔滨工业大学 一种多层核壳氧化物/硫化物异质结构电极材料的制备方法
CN111525128A (zh) * 2020-04-20 2020-08-11 电子科技大学 一种钌掺杂含硫空位的过渡金属硫化物电极及制备方法

Also Published As

Publication number Publication date
US20220246934A1 (en) 2022-08-04
US11967716B2 (en) 2024-04-23

Similar Documents

Publication Publication Date Title
CN102275903B (zh) 一种石墨烯和二氧化锰纳米复合材料的制备方法
CN107735889B (zh) 掺杂的导电氧化物以及基于此材料的改进电化学储能装置极板
CN112018344B (zh) 碳包覆硫化镍电极材料及其制备方法和应用
CN108461729B (zh) 一种碲硫复合碳材料及其制备方法与应用
CN108172406B (zh) 一种以FeS2-xSex材料为负极材料的钠离子电容器
CN112978811A (zh) 一种富硫空位中空硫化物微球及其制备方法和用途
CN110335757B (zh) 一种铜锡硫Cu2SnS3/碳量子点复合材料及其制备方法和在超级电容器中的应用
CN101593825B (zh) 锂离子电池纳米锑/石墨纳米片复合材料负极及其制备方法
CN105932284A (zh) 一种介孔碳紧密包覆型复合材料及其制备方法和应用
CN108598405B (zh) 一种三维石墨烯氧化锡碳复合负极材料的制备方法
CN112490017A (zh) 一种NiCo-LDH纳米材料的制备方法及其应用
CN101593826A (zh) 锂离子电池SnSb合金/石墨纳米片复合材料负极及其制备方法
CN108987735A (zh) 一种多孔空心碳球负载一硫化锡纳米量子点复合电极材料
Yuan et al. Preparation and electrochemical performance of nanosized Bi compounds-modified ZnO for Zn/Ni secondary cell
CN113943022B (zh) 一种钴基MOFs衍生的空心球状Co9S8/Ni3S4异质结材料及其制备方法和应用
CN110683521A (zh) 一种二硒化镍-石墨烯复合材料的制备及钠电应用
CN114843109B (zh) 海胆状MoS2/泡沫镍复合电容器电极材料及其制备方法
CN113903915B (zh) 一种石墨烯包覆多孔氧化铅-硫化铅复合材料的制备方法
CN104022259A (zh) 一种多孔疏松聚苯胺-纳米硅复合材料及其制备方法和应用
CN111697214B (zh) 一种锌钴硫化物/石墨烯复合材料及其制备方法和应用
CN102509787A (zh) 一种球形掺杂纳米Ni(OH)2的制备方法
CN111816873A (zh) 一种碳包覆磷酸钛锰锂复合材料及其制备方法和在锂离子电池中的应用
CN115020660B (zh) 一种PQ-MnO2复合电极材料及其制备方法和应用
US20030235760A1 (en) Lead-acid storage battery, carbon material and process of manufacturing the carbon material
CN114702014B (zh) 一种具有网络结构的镍钴硒纳米材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination