CN112921369A - 提高循环寿命的锂金属负极集流体表面热氧化调控方法 - Google Patents

提高循环寿命的锂金属负极集流体表面热氧化调控方法 Download PDF

Info

Publication number
CN112921369A
CN112921369A CN202110119058.8A CN202110119058A CN112921369A CN 112921369 A CN112921369 A CN 112921369A CN 202110119058 A CN202110119058 A CN 202110119058A CN 112921369 A CN112921369 A CN 112921369A
Authority
CN
China
Prior art keywords
current collector
thermal oxidation
lithium metal
cycle life
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110119058.8A
Other languages
English (en)
Other versions
CN112921369B (zh
Inventor
姚怡远
吴蕴雯
胡旺
李明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202110119058.8A priority Critical patent/CN112921369B/zh
Publication of CN112921369A publication Critical patent/CN112921369A/zh
Application granted granted Critical
Publication of CN112921369B publication Critical patent/CN112921369B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • C23G1/103Other heavy metals copper or alloys of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本发明公开了提高循环寿命的锂金属负极集流体表面热氧化调控方法,先对金属集流体依次进行除油处理和酸洗处理,然后于金属集流体的表面形成三维结构,再对三维集流体表面进行热氧化处理,最后以三维集流体为正极,金属锂片为负极组装纽扣电池,利用电化学工作站在三维集流体上电镀锂金属。本发明通过热氧化处理三维集流体表面,实现负极集流体表面的亲锂性改变,来提高锂金属在集流体表面的沉积均匀性,有效抑制锂枝晶生长,提高电池长循环寿命,且本发明提供的提高循环寿命的锂金属负极集流体表面热氧化调控方法易于操作,成本低廉。

Description

提高循环寿命的锂金属负极集流体表面热氧化调控方法
技术领域
本发明属于表面技术及电化学技术领域,尤其涉及提高循环寿命的锂金属负极集流体表面热氧化调控方法。
背景技术
随着工业生产对电子设备移动性和小型化的要求越来越高,对环境污染的控制也越来越严格,增强可充电电池的稳定性和容量变得越来越重要。目前,锂离子电池已成功应用于大多数便携式电子设备中,例如手机、计算机和数码相机等。由于对能量存储的需求不断增长,电动汽车和用于负载均衡应用的大型储能系统都需要能量密度更高的设备。然而,由于插层化学的本质限制,锂离子电池的能量密度已达到理论极限。在许多电池化学反应的研究中,锂金属负极因其理论比容量高达3860mAh g-1,与标准氢电极相比的极低还原电位为-3.040V而受到广泛关注。
然而,尽管锂金属电池拥有上述的极大优势,锂电池中枝晶生长导致许多问题。有可能会刺穿隔膜接触电池正极材料,造成正负极之间的电子接触,导致电池短路、枝晶转化成不可利用的死锂、安全隐患等问题。
发明内容
本发明的目的是提供提高循环寿命的锂金属负极集流体表面热氧化调控方法,有效的抑制锂枝晶生长,提高电池长循环寿命。
为解决上述问题,本发明的技术方案为:
提高循环寿命的锂金属负极集流体表面热氧化调控方法,包括如下步骤:
S1:对金属集流体表面进行电解除油处理,电流密度为1~10ASD,除油时间为20~200s;
S2:将经过所述步骤S1处理过的金属集流体进行表面酸洗处理;
S3:于经过所述步骤S2处理的金属集流体的表面形成三维结构,得到三维集流体;
S4:将所述三维集流体进行清洗处理;
S5:将经过所述步骤S4处理的三维集流体进行热氧化处理,热氧化温度为300~400℃,热氧化时间为5~15min,三维集流体热氧化处理完成后降至室温;
S6:将经过所述步骤S5处理的三维集流体作为正极,提供金属锂片作为负极组装纽扣电池;
S7:利用电化学工作站在三维集流体上电镀锂金属,放电速度为0.2~0.8mA/cm2,锂金属的单位面积容量为1~3mAh/cm2
优选地,所述步骤S1中的金属集流体为铜片或镍片或泡沫铜。
优选地,所述步骤S2中的酸为盐酸或硫酸或硝酸。
优选地,所述步骤S3具体为:采用电化学沉积技术或化学沉积技术或磁控溅射技术于经过所述步骤S2处理的金属集流体的表面形成三维结构,得到三维集流体。
优选地,所述步骤S4具体为:将所述三维集流体表面采用去离子水清洗,清洗结束后,采用压缩氮气将三维集流体吹干。
优选地,所述热氧化温度为350℃,所述热氧化时间为10min。
优选地,所述电流密度为5ASD,所述除油时间为60s。
优选地,所述步骤S6具体为:将经过所述步骤S5处理的三维集流体作为正极放入纽扣电池壳中,加入电解液,放置电池隔膜,再滴加电解液后,放置作为负极的金属锂片,再依次放置垫片、弹片和金属负极壳,最后采用液压机将纽扣电池压紧完成组装。
优选地,所述步骤S7中,放电速度为0.5mA/cm2,锂金属的单位面积容量为2mAh/cm2
本发明由于采用以上技术方案,使其与现有技术相比具有以下的优点和积极效果:
1)本发明提供了提高循环寿命的锂金属负极集流体表面热氧化调控方法,先对金属集流体依次进行除油处理和酸洗处理,然后于金属集流体的表面形成三维结构,再对三维集流体表面进行热氧化处理,最后以三维集流体为正极,金属锂片为负极组装纽扣电池,利用电化学工作站在三维集流体上电镀锂金属。本发明通过热氧化处理三维集流体表面,实现负极集流体表面的亲锂性改变,来提高锂金属在集流体表面的沉积均匀性,有效抑制锂枝晶生长,提高电池长循环寿命,且本发明提供的提高循环寿命的锂金属负极集流体表面热氧化调控方法易于操作,成本低廉。
附图说明
图1为本发明实施例提供的提高循环寿命的锂金属负极集流体表面热氧化调控方法的步骤流程图;
图2为表面沉积锂金属后的三维集流体的表面形貌电镜图;
图3为改性后集流体-锂与原始集流体-锂组装的对称电池长循环性能对比图。
具体实施方式
以下结合附图和具体实施例对本发明提出的提高循环寿命的锂金属负极集流体表面热氧化调控方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。
目前,抑制锂枝晶的方法主要有:①人工SEI膜,②设计三维化负极骨架,③改善负极材料的亲锂性,④电解液添加剂,⑤固态电解质。通过有效的锂负极设计来减缓锂枝晶的生长是目前较为有效的解决方法之一,而本发明所采用的热氧化调控方法目前尚未在相关研究中报道过。
实施例一
参看图1所示,本实施例提供了提高循环寿命的锂金属负极集流体表面热氧化调控方法,包括如下步骤:
S1:对金属集流体表面进行电解除油处理,电流密度为1~10ASD,除油时间为20~200s;
具体为,在本实施例中,金属集流体可以选用铜片或镍片或泡沫铜,将切割好的金属集流体放入电解除油液中,对金属集流体进行除油处理;
在本实施例中,电流密度优选为5ASD,除油时间优选为60s;
S2:将经过步骤S1处理过的金属集流体进行表面酸洗处理;
具体为,将金属集流体放入酸溶液中浸泡一段时间后去除,再用去离子水进行清洗,在本实施例中,酸溶液为盐酸或硫酸或硝酸;
S3:于经过步骤S2处理的金属集流体的表面形成三维结构,得到三维集流体;
具体为,采用电化学沉积技术或化学沉积技术或磁控溅射技术中的任意一种,调整相关参数后于金属集流体的表面制备出特定形貌的三维结构,在本实施例中,三维结构宏观上为片状,相较传统的集流体网等结构具有更高的体积比容量和更高的柔性适应性;
S4:将三维集流体进行清洗处理;
具体为,将三维集流体表面采用去离子水清洗,清洗结束后,采用压缩氮气将三维集流体吹干;
S5:将经过步骤S4处理的三维集流体进行热氧化处理,热氧化温度为300~400℃,热氧化时间为5~15min,使用热氧化法对集流体片进行改性处理,依托集流体片表面三维结构从而形成具有亲锂性的表面,三维集流体热氧化处理完成后降至室温;
在本实施例中,热氧化温度优选为350℃,所述热氧化时间优选为10min;
S6:将经过步骤S5处理的三维集流体作为正极,提供金属锂片作为负极组装纽扣电池;
具体为,将三维集流体作为正极放入型号为CR2032纽扣电池壳中,加入电解液,放置电池隔膜,再滴加电解液后,放置作为负极的金属锂片,再依次放置垫片、弹片和金属负极壳,最后采用液压机将纽扣电池压紧完成组装;
在本实施例中,还提供一个对比组,提供一个原始金属集流体,将改性过后的三维集流体片和原始金属集流体片分别作为正极放入CR2032纽扣电池壳中,加入电解液后,放置电池隔膜,再滴加电解液后,放置切割好的金属锂片,最后依次放置垫片、弹片和金属负极壳,采用液压机将纽扣电池压紧,组装完成;
S7:利用电化学工作站在三维集流体上电镀锂金属,放电速度为0.2~0.8mA/cm2,锂金属的单位面积容量为1~3mAh/cm2
具体为,在本实施例中,将装有三维集流体和原始金属集流体的纽扣电池各自连接至电池专用工作站,以0.5mA/cm2的放电速度电镀单位面积容量为1~3mAh/cm2的锂金属后,拆除纽扣电池得到两种镀有锂金属的负极片。
最后,可将电镀完成的两种集流体片分别组装对称电池进行长循环性能验证。
实施例二
本实施例提供了提高循环寿命的锂金属负极集流体表面热氧化调控方法,包括如下步骤:
步骤1),将C194冷轧铜带切割成所需尺寸,即70mm×50mm;
步骤2),将切割好的铜片放入电解除油液中,电流密度为5.0ASD,除油时间为60s;
步骤3),将除油清洗后的基体放入20%硫酸溶液浸泡30s,去除表面氧化物同时将新鲜的基体露出;
步骤4),将基体挂入用去离子水配置好的镀液中进行化学沉积后,将样品用去离子水清洗干净,冷风吹干;
步骤5),将经过步骤4)处理之后的铜片放入加热板上进行加热,加热温度为350℃,气体氛围为空气,加热时间为10分钟,加热完成后将铜片缓慢降至室温;
步骤6),将改性过后的三维结构铜片和原始金属集流体片分别作为正极放入型号为CR2032纽扣电池壳中,加入配置好的溶于体积比为1:1的DOL:DME溶剂中的1mol/LLiTFSI(含有1%LiNO3)电解液后,放置Celgard 2400电池隔膜,再滴加电解液后,放置切割好的金属锂片,最后依次放置垫片、弹片和金属负极壳,采用液压机将纽扣电池压紧,组装完成;
步骤7),将步骤6)中组装好的装有两种集流体的纽扣电池各自连接至电池专用工作站,以0.5mA/cm2的放电速度,在三维集流体和原始铜片上分别电镀2mAh/cm2锂金属,其中经过改性的三维集流体沉积锂后表面形貌如图1所示。
将电镀完成的热氧化处理三维集流体-锂和原始铜片-锂分别组装对称电池,并以1mA cm-2的充放速率和50%的充放电深度对其进行长循环性能的测试,循环测试结果如图2所示。观察到1600h后热氧化处理三维集流体-锂组装的对称电池仍可稳定循环,而在不到500h时,原始铜片-锂组装的对称电池已开始产生锂枝晶的生长。
可知,本实施例提供的提高循环寿命的锂金属负极集流体表面热氧化调控方法,可以实现负极集流体亲锂化的改善,并通过改善锂金属在集流体片上的沉积均匀性实现对锂枝晶的抑制和电池长循环性能的提升。
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式。即使对本发明作出各种变化,倘若这些变化属于本发明权利要求及其等同技术的范围之内,则仍落入在本发明的保护范围之中。

Claims (9)

1.提高循环寿命的锂金属负极集流体表面热氧化调控方法,其特征在于,包括如下步骤:
S1:对金属集流体表面进行电解除油处理,电流密度为1~10ASD,除油时间为20~200s;
S2:将经过所述步骤S1处理过的金属集流体进行表面酸洗处理;
S3:于经过所述步骤S2处理的金属集流体的表面形成三维结构,得到三维集流体;
S4:将所述三维集流体进行清洗处理;
S5:将经过所述步骤S4处理的三维集流体进行热氧化处理,热氧化温度为300~400℃,热氧化时间为5~15min,三维集流体热氧化处理完成后降至室温;
S6:将经过所述步骤S5处理的三维集流体作为正极,提供金属锂片作为负极组装纽扣电池;
S7:利用电化学工作站在三维集流体上电镀锂金属,放电速度为0.2~0.8mA/cm2,锂金属的单位面积容量为1~3mAh/cm2
2.根据权利要求1所述的提高循环寿命的锂金属负极集流体表面热氧化调控方法,其特征在于,所述步骤S1中的金属集流体为铜片或镍片或泡沫铜。
3.根据权利要求1所述的提高循环寿命的锂金属负极集流体表面热氧化调控方法,其特征在于,所述步骤S2中的酸为盐酸或硫酸或硝酸。
4.根据权利要求1所述的提高循环寿命的锂金属负极集流体表面热氧化调控方法,其特征在于,所述步骤S3具体为:采用电化学沉积技术或化学沉积技术或磁控溅射技术于经过所述步骤S2处理的金属集流体的表面形成三维结构,得到三维集流体。
5.根据权利要求1所述的提高循环寿命的锂金属负极集流体表面热氧化调控方法,其特征在于,所述步骤S4具体为:将所述三维集流体表面采用去离子水清洗,清洗结束后,采用压缩氮气将三维集流体吹干。
6.根据权利要求1所述的提高循环寿命的锂金属负极集流体表面热氧化调控方法,其特征在于,所述热氧化温度为350℃,所述热氧化时间为10min。
7.根据权利要求1所述的提高循环寿命的锂金属负极集流体表面热氧化调控方法,其特征在于,所述电流密度为5ASD,所述除油时间为60s。
8.根据权利要求1所述的提高循环寿命的锂金属负极集流体表面热氧化调控方法,其特征在于,所述步骤S6具体为:将经过所述步骤S5处理的三维集流体作为正极放入纽扣电池壳中,加入电解液,放置电池隔膜,再滴加电解液后,放置作为负极的金属锂片,再依次放置垫片、弹片和金属负极壳,最后采用液压机将纽扣电池压紧完成组装。
9.根据权利要求1所述的提高循环寿命的锂金属负极集流体表面热氧化调控方法,其特征在于,所述步骤S7中,放电速度为0.5mA/cm2,锂金属的单位面积容量为2mAh/cm2
CN202110119058.8A 2021-01-28 2021-01-28 提高循环寿命的锂金属负极集流体表面热氧化调控方法 Active CN112921369B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110119058.8A CN112921369B (zh) 2021-01-28 2021-01-28 提高循环寿命的锂金属负极集流体表面热氧化调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110119058.8A CN112921369B (zh) 2021-01-28 2021-01-28 提高循环寿命的锂金属负极集流体表面热氧化调控方法

Publications (2)

Publication Number Publication Date
CN112921369A true CN112921369A (zh) 2021-06-08
CN112921369B CN112921369B (zh) 2022-07-22

Family

ID=76168003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110119058.8A Active CN112921369B (zh) 2021-01-28 2021-01-28 提高循环寿命的锂金属负极集流体表面热氧化调控方法

Country Status (1)

Country Link
CN (1) CN112921369B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115000348A (zh) * 2022-05-23 2022-09-02 上海交通大学 碱金属负极复合涂层及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229462A (zh) * 2016-07-29 2016-12-14 四川大学 三维纳米多孔铜/二维氧化亚铜纳米片阵列型锂离子电池负极及其一步制备法
US20190165366A1 (en) * 2016-07-26 2019-05-30 Hutchinson Anode for a lithium-ion battery cell, production method thereof and battery including same
CN110190243A (zh) * 2019-05-29 2019-08-30 华中科技大学 一种具有复合膜的锂金属负极的制备及应用
CN111668493A (zh) * 2020-06-16 2020-09-15 南开大学 一种抑制锂金属负极枝晶的三维集流体及在金属锂电池中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190165366A1 (en) * 2016-07-26 2019-05-30 Hutchinson Anode for a lithium-ion battery cell, production method thereof and battery including same
CN106229462A (zh) * 2016-07-29 2016-12-14 四川大学 三维纳米多孔铜/二维氧化亚铜纳米片阵列型锂离子电池负极及其一步制备法
CN110190243A (zh) * 2019-05-29 2019-08-30 华中科技大学 一种具有复合膜的锂金属负极的制备及应用
CN111668493A (zh) * 2020-06-16 2020-09-15 南开大学 一种抑制锂金属负极枝晶的三维集流体及在金属锂电池中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHAOBO HUANG ET AL: ""Chemical Energy Release Driven Lithiophilic Layer on 1m2 Commercial Brass Mesh toward Highly Stable Lithium Metal Batteries"", 《NNAO LETTERS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115000348A (zh) * 2022-05-23 2022-09-02 上海交通大学 碱金属负极复合涂层及其制备方法和应用

Also Published As

Publication number Publication date
CN112921369B (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN109244473A (zh) 一种锂合金带材及其制备方法
CN109037594B (zh) 一种自愈合聚合物修饰的碱金属负极及其制备方法与应用
CN102903973A (zh) 电池
CN102903924A (zh) 电池
CN103094627A (zh) 电池
CN103094583A (zh) 电池及电池集流体的处理方法
CN112909229A (zh) 一种三维亲锂性金属泡沫骨架的银包覆方法及其在锂金属负极中的应用的制备方法
CN112921369B (zh) 提高循环寿命的锂金属负极集流体表面热氧化调控方法
CN112072076B (zh) 一种锂金属电池负极表面的改性方法
CN114141992A (zh) 一种自蔓延合金化的锂负极及其制备方法
CN112421115A (zh) 硒化铜原位包覆泡沫铜作为锂金属载体的锂金属基电池及其制备方法
CN116387463A (zh) 一种三维自支撑复合锂负极的制备方法及其应用
CN113013400A (zh) 一种改性锂金属负极、制备方法及其电池
CN108574084B (zh) 一种新型锡基纳米晶合金柔性薄膜电极的制备方法
CN116053485A (zh) 一种三维多孔集流体的制备和应用
CN111785933A (zh) 一种锂合金薄膜材料的工业化生产方法
CN115810710A (zh) 一种一次锂电池锂合金负极的表面修饰方法
CN115732783A (zh) 一种具有人工固态电解质界面层的复合金属锂负极及其制备方法和应用
CN112825350B (zh) 预锂化负极极片及其制备方法、锂二次电池
CN111799434B (zh) 从锂金属箔上除去氢化锂刻面缺陷的方法
CN113675376A (zh) 一种无枝晶的基于负极表面固/液相转化的碱金属离子电池
CN108642533B (zh) 一种Sn-Cu电镀液、锂离子电池用锡基合金电极及其制备方法和锂离子电池
CN113451547A (zh) 一种复合金属锂负极及包括该复合金属锂负极的锂离子电池
CN108807889B (zh) 一种多孔铁掺杂钒氧化物电极材料的制备方法及其应用
CN111952595A (zh) 一种基于尖端效应的无枝晶金属负极载体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant