CN112919899A - 一种铽离子激活的磷酸盐发光陶瓷制备方法与应用 - Google Patents

一种铽离子激活的磷酸盐发光陶瓷制备方法与应用 Download PDF

Info

Publication number
CN112919899A
CN112919899A CN202110260407.8A CN202110260407A CN112919899A CN 112919899 A CN112919899 A CN 112919899A CN 202110260407 A CN202110260407 A CN 202110260407A CN 112919899 A CN112919899 A CN 112919899A
Authority
CN
China
Prior art keywords
compound
solution
optical engineering
engineering ceramic
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110260407.8A
Other languages
English (en)
Inventor
李刚
乔学斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danyu Technology Jiangsu Co ltd
Original Assignee
Danyu Technology Jiangsu Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danyu Technology Jiangsu Co ltd filed Critical Danyu Technology Jiangsu Co ltd
Priority to CN202110260407.8A priority Critical patent/CN112919899A/zh
Publication of CN112919899A publication Critical patent/CN112919899A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7777Phosphates
    • C09K11/7778Phosphates with alkaline earth metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种铽离子激活的磷酸盐光学工程陶瓷制备方法与应用,属于光学工程陶瓷技术领域。该光学工程陶瓷的化学通式为NaSrLa1‑xTbx(PO4)2,其中基质为磷酸盐,x为激活剂Tb3+离子的掺杂摩尔比,0.015≤x≤0.3。该光学工程陶瓷制备步骤为:先采用化学溶胶‑凝胶法制备陶瓷粉体,再采用干压、等静压方法进行陶瓷粉体净尺寸成型,最后进行固相烧结得到最终光学工程陶瓷。得到的光学工程陶瓷在近紫外光的激发下发射出~545纳米的绿色发光,可以用来制造近紫外芯片激发的白光LED器件或用于工程陶瓷缺陷的无损光学检测方面。本发明的磷酸盐光学工程陶瓷制备简单、生产成本低。

Description

一种铽离子激活的磷酸盐发光陶瓷制备方法与应用
技术领域
本发明涉及无机发光陶瓷材料领域,特别涉及一种铽离子激活的磷酸盐发光陶瓷制备方法与应用。
背景技术
发光二极管(LED)是一种可将电能转换为光能的能量转换器件,是继白炽灯、荧光灯、高强度放电灯之后的第四代绿色环保照明光源。当前,国内外现行的白光LED封装工艺方法有多种,其中“蓝光芯片+荧光粉”封装工艺中,该封装工艺中用到的粘结剂为环氧树脂;但是随着白光LED亮度和功率的不断提高,对LED的封装材料提出更高的要求,而环氧树脂自身存在的吸湿性、易老化、耐热性差、高温和短波光照下易变色等缺陷暴露了出来,环氧树脂也不易实现与荧光粉的均匀掺杂,从而大大影响和缩短LED器件的性能和使用寿命。为了解决环氧树脂存在的上述问题,有机硅材料由于具有良好的透明性、耐高低温性、耐候性、绝缘性等,受到了国内外研究者的广泛关注,被认为是替代环氧树脂的理想材料。但有机硅作为封装材料也存在一些缺点,有机硅没有解决荧光粉均匀掺杂的问题,有机硅的折射率在1.5左右,与LED芯片的折射率相差较大,不利于光的输出;另外,有机硅虽然较环氧树脂在耐热性、力学性能方面有所提高,但在高温、高腐蚀性等恶劣环境下工作的能力较差。而且由于有机硅的生产工艺较复杂、成本较高,当前市场上的有机硅价格十分昂贵,不利于白光LED的推广及应用。
本专利设计和制备了一种Tb3+激活的绿色发光陶瓷除了用作白光LED的三基色荧光材料外,还能作为绿色LED光源来获得纯粹的绿光。目前,获取绿色荧光材料的主要途径是往基质中掺杂Tb3+,Ce3+,Eu2+等稀土离子,此外,绿色荧光材料的基质材料也不尽相同,主要有硫化物,硼酸盐,硅酸盐及氮氧化物系列。但是这些基质由于自身特性也存在许多不足,例如硫化物基荧光材料化学性质不稳定,热稳定差,光衰比较大;硼酸盐荧光材料热稳定性差,易结块,需要增加后续处理工艺;硅酸盐基荧光材料的制备需要很高的温度,保温时间长,能耗高,对设备的要求比较严格,氮氧化物荧光材料虽然发光效率较高,但是其制备条件苛刻,合成工艺复杂,对设备要求高,制作成本相对较高。经大量研究发现,磷酸盐物理化学稳定性好、寿命长、环境友好、热淬灭温度高,并且在紫外、近紫外或蓝光区域具有良好的吸收,是一类优良的发光基质材料。
工程陶瓷是经过烧结形成的硬脆材料,因为其独特的分子结构特点具有高硬度、高耐磨性、抗腐蚀性、高耐热性等优良的物理机械性能,在化工、航空航天等领域具有十分广阔的应用前景。其缺陷会在其制备和使用过程中产生,当表面或者亚表面存在10微米至60微米数量级的缺陷,即可导致其在工作使用过程中发生破坏。因此对陶瓷缺陷的检测,特别是陶瓷的无损检测十分重要。表面荧光浸透检测是陶瓷无损检测的常用方法之一。该检测方法中的核心材料即为荧光材料。本发明中制备的光学荧光陶瓷材料可作为荧光检测剂用在陶瓷缺陷的无损检测领域。
发明内容
本发明的目的之一是提供一种铽离子激活的磷酸盐光学工程陶瓷,其在近紫外波段能够被有效激发,并能够发射绿光。
本发明的目的之二是提供上述铽离子激活的磷酸盐光学工程陶瓷的制备方法,成相温度低,制备条件简单。
本发明的目的之三是提供上述铽离子激活的磷酸盐光学工程陶瓷的应用。
本发明的目的之四是此发明制备的工程陶瓷具有高硬度、高耐磨性、抗腐蚀性、高耐热性等优良的物理机械性能,可以在有色冶炼、化工、电力、航空航天等行业使用的特种泵阀制造领域具有十分广阔的应用前景。
为实现上述目的,本发明采用的技术方案如下:一种铽离子激活的磷酸盐光学工程陶瓷,其化学通式为:NaSrLa1-xTbx(PO4)2, 其中x为激活剂Tb3+离子的掺杂摩尔比, 0.015≤x≤0.3。
本发明提供的上述铽离子激活的磷酸盐光学工程陶瓷的制备方法,采用化学溶胶-凝胶法制备陶瓷粉体,干压、等静压进行粉体成型,最后采用固相烧结得到光学工程陶瓷,具体包括以下步骤:
(1)根据化学通式 NaSrLa1-xTbx(PO4)2中各元素的化学计量比,分别称取含Na+的化合物、含Tb3+的化合物、含Sr+的化合物、含La3+和含P5+的化合物,其中 0.015≤x≤0.3;将含Tb3+的化合物加入稀硝酸溶液中,搅拌直至完全溶解,得到溶液A;将含Sr2+的化合物、含Na+的化合物和含P5+的化合物加入去离子水或稀硝酸溶液中,搅拌直至完全溶解,得到混合溶液B;
(2)根据化学通式 NaSrLa1-xTbx(PO4)2中La元素的化学计量比,称取含La3+的化合物,将含La3+的化合物溶解在稀硝酸溶液中,得到溶液C;
(3)将所述混合溶液B与所述溶液C按先后顺序依次逐滴加入到所述溶液A中,边滴加边搅拌;然后往混合液中加入柠檬酸和聚乙二醇,充分混合,调节溶液的pH至6;在60℃的水浴条件下不断搅拌,待溶液变得粘稠形成凝胶;
(4)将凝胶陈化一段时间后置于烘箱中,先在80℃条件下烘焙12小时,然后在120℃条件下烘焙6小时,得到蓬松的前驱体;
(5)取出前驱体置于干净的氧化铝坩埚内,然后放入马弗炉内,在空气气氛中煅烧,煅烧温度为750-1000℃,煅烧时间为4-8小时,
(6)自然冷却至室温,取出,采用干压方式压制成块状,再采用冷等静压方式提高坯体的密度,然后将得到的块体在空气气氛中煅烧,煅烧温度为1100-1300℃,煅烧时间为1-15小时。即得到铽离子激活的磷酸盐光学工程陶瓷。
步骤(3)中,所述柠檬酸的加入量为混合液中所有金属阳离子摩尔量的两倍。
步骤(1)中,所述含Sr2+的化合物为硝酸锶、草酸锶、氯化锶、乙酸锶中的一种;所述含Tb3+的化合物为硝酸铽或氯化铽;所述含Na+的化合物为氯化钠、硝酸钠、醋酸钠中的一种,所述含P5+的化合物为五氧化二磷、五氯化磷或磷酸。
步骤(2)中,所述含La3+的化合物为氯化镧、氧化镧和氢氧化镧中的一种。
本发明还提供上述铽离子激活的磷酸盐光学工程陶瓷的应用。
本发明提供的铽离子激活的磷酸盐光学工程陶瓷在近紫外光的激发下,发射出主波长在545纳米附近的绿色荧光,可与红色和蓝色荧光材料配合用于制造近紫外芯片激发的白光LED器件或单独使用用于制造纯绿色LED光源。
本发明提供的铽离子激活的磷酸盐光学工程陶瓷可以作为一种高效的发绿色光的荧光材料用于工程陶瓷缺陷的表面荧光无损浸透检测。
与现有技术相比,本发明具有如下有益效果:
(1)本发明的产物荧光陶瓷具有近紫外吸收的特质,能发射绿光,发射中心位于~545纳米,可以用来制造近紫外芯片激发的白光LED器件或纯绿色LED光源;
(2)Tb3+激活离子掺杂进入三价格位晶格,无掺杂缺陷可提高了材料的发光性能;
(3)本发明的Tb3+激活的磷酸酸盐光学工程陶瓷为NaSrLa (PO4)2纯相,具有制备简单、生产成本低、绿色环保等优点。
(4)本发明的Tb3+激活的磷酸酸盐光学工程陶瓷作为一种高效的绿色光学材料,其发光波长为545纳米,在表面荧光无损浸透检测时,人眼对该波段的光最为敏感,能够提高检测效率。
附图说明
图1为本发明实施例1制备NaSrLa0.93Tb0.07(PO4)2的X射线粉末衍射图谱;
图2为本发明实施例1制备NaSrLa0.93Tb0.07(PO4)2的扫描电子显微镜图;
图3为本发明实施例1制备NaSrLa0.93Tb0.07(PO4)2的激发光谱,监测波长545纳米;
图4为本发明实施例1制备NaSrLa0.93Tb0.07(PO4)2的发射光谱,激发波长371纳米;
图5为本发明实施例1制备NaSrLa0.93Tb0.07(PO4)2的发光衰减图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
实施例1:制备NaSrLa0.93Tb0.07(PO4)2
(1)根据化学通式NaSrLa0.93Tb0.07(PO4)2中各元素的化学计量比,分别称取氯化锶SrCl2 1.59克,氯化铽TbCl3 0.1857克,氯化钠NaCl 0.5845克,磷酸 H3PO4 1.96克,将氯化铽加入稀硝酸溶液中,搅拌直至完全溶解,得到溶液A;将氯化锶、氯化钠和磷酸加入稀硝酸溶液中,搅拌直至完全溶解,得到混合溶液B;
(2)根据化学通式NaSrLa0.93Tb0.07(PO4)2中La元素的化学计量比,称取氧化镧La2O31.515克,将氯化镧溶解在稀硝酸中,得到溶液C;
(3)将所述混合溶液B与所述溶液C按先后顺序依次逐滴加入到所述溶液A中,充分混合;然后往混合液中加入按金属离子总摩尔量两倍称取的柠檬酸11.53g和适量的聚乙二醇,使之与金属离子络合,滴加少量氨水调节溶液的pH至6;在60℃的水浴条件下不断搅拌,待溶液变得粘稠形成凝胶;
(4)将凝胶陈化一段时间后置于烘箱中,先在80℃条件下烘焙12小时,然后在120℃条件下烘焙6小时,得到蓬松的前驱体;
(5)取出前驱体置于干净的氧化铝坩埚内,然后放入马弗炉内,在空气气氛中煅烧,煅烧温度为800℃,煅烧时间为5小时,
(6)自然冷却至室温,取出,采用干压方式压制成块状,再采用冷等静压方式提高坯体的密度,然后将得到的块体在空气气氛中煅烧,煅烧温度为1200℃,煅烧时间为10小时。即得到铽离子激活的磷酸盐光学工程陶瓷。
对所得样品进行性能检测,具体结果参照附图1-5。
参照附图1,X射线粉末衍射图谱表明制备的样品为NaSrLa(PO4)2纯相,激活剂Tb3+的加入并未影响晶体的形成;
参照附图2,从扫描电子显微镜图可以看出,该光学工程陶瓷晶粒分布均匀,颗粒与颗粒间界限清楚,成相情况好;
参照附图3,545纳米对应的激发光谱显示该发光材料在300-500纳米范围内有吸收;
参照附图4,在371纳米激发下,样品可产生峰值位于545纳米左右的绿色荧光;
参照附图5,是在371纳米激发,545纳米监测下获得的荧光衰减曲线,经计算,该样品的发光寿命为2.92毫秒。
实施例2:制备NaSrLa0.985Tb0.015(PO4)2
(1)根据化学通式NaSrLa0.985Tb0.015(PO4)中各元素的化学计量比,分别称取硝酸锶Sr(NO3)2 2.116克,硝酸铽Tb(NO3)3 0.052克,硝酸钠NaNO3 0.85克,五氧化二磷 P2O5 1.419克,将硝酸铽加入稀硝酸溶液中,搅拌直至完全溶解,得到溶液A;将硝酸锶、硝酸钠和五氧化二磷加入稀硝酸溶液中,搅拌直至完全溶解,得到混合溶液B;
(2)根据化学通式NaSrLa0.985Tb0.015(PO4)2中La元素的化学计量比,称取氯化镧LaCl3 2.416克,将氯化镧溶解在稀硝酸中,得到溶液C;
(3)将所述混合溶液B与所述溶液C按先后顺序依次逐滴加入到所述溶液A中,充分混合;然后往混合液中加入按金属离子总摩尔量两倍称取的柠檬酸11.53g和适量的聚乙二醇,使之与金属离子络合,滴加少量氨水调节溶液的pH至6;在60℃的水浴条件下不断搅拌,待溶液变得粘稠形成凝胶;
(4)将凝胶陈化一段时间后置于烘箱中,先在80℃条件下烘焙12小时,然后在120℃条件下烘焙6小时,得到蓬松的前驱体;
(5)取出前驱体置于干净的氧化铝坩埚内,然后放入马弗炉内,在空气气氛中煅烧,煅烧温度为900℃,煅烧时间为5小时,
(6)自然冷却至室温,取出,采用干压方式压制成块状,再采用冷等静压方式提高坯体的密度,然后将得到的块体在空气气氛中煅烧,煅烧温度为1250℃,煅烧时间为12小时。即得到铽离子激活的磷酸盐光学工程陶瓷。
X射线衍射分析表明其为单一的晶相;荧光光谱性质与实施例1相似。
实施例3:制备NaSrLa0.85Tb0.15(PO4)2
(1)根据化学通式NaSrLa0.85Tb0.15(PO4)2中各元素的化学计量比,分别称取草酸锶SrC2O4:1.757克,硝酸铽Tb(NO3)3:1.0348克,醋酸钠CH3COONa:0.8215克,五氯化磷PCl5:4.1848克,将硝酸铽加入稀硝酸溶液中,搅拌直至完全溶解,得到溶液A;将草酸锶、醋酸钠和五氯化磷加入稀硝酸溶液中,搅拌直至完全溶解,得到混合溶液B;
(2)根据化学通式NaSrLa0.985Tb0.015(PO4)2中La元素的化学计量比,称取氢氧化镧La(OH)3 1.8705克,将氢氧化镧溶解在稀硝酸中,得到溶液C;
(3)将所述混合溶液B与所述溶液C按先后顺序依次逐滴加入到所述溶液A中,充分混合;然后往混合液中加入按金属离子总摩尔量两倍称取的柠檬酸11.53g和适量的聚乙二醇,使之与金属离子络合,滴加少量氨水调节溶液的pH至6;在60℃的水浴条件下不断搅拌,待溶液变得粘稠形成凝胶;
(4)将凝胶陈化一段时间后置于烘箱中,先在80℃条件下烘焙12小时,然后在120℃条件下烘焙6小时,得到蓬松的前驱体;
(5)取出前驱体置于干净的氧化铝坩埚内,然后放入马弗炉内,在空气气氛中煅烧,煅烧温度为1000℃,煅烧时间为8小时,
(6)自然冷却至室温,取出,采用干压方式压制成块状,再采用冷等静压方式提高坯体的密度,然后将得到的块体在空气气氛中煅烧,煅烧温度为1300℃,煅烧时间为15小时。即得到铽离子激活的磷酸盐光学工程陶瓷。
X射线衍射分析表明其为单一的晶相;荧光光谱性质与实施例1相似。

Claims (6)

1.一种铽离子激活的磷酸盐光学工程陶瓷,其特征在于,其化学通式为:NaSrLa1-xTbx(PO4)2, 其中x为激活剂Tb3+离子的掺杂摩尔比, 0.015≤x≤0.3。
2.一种权利要求1所述的铽离子激活的磷酸盐光学工程陶瓷的制备方法,其特征在于,采用化学溶胶-凝胶法制备陶瓷粉体,干压、等静压进行粉体成型,最后采用固相烧结得到光学工程陶瓷,具体包括以下步骤:
(1)根据化学通式 NaSrLa1-xTbx(PO4)2中各元素的化学计量比,分别称取含Na+的化合物、含Tb3+的化合物、含Sr+的化合物、含La3+和含P5+的化合物,其中 0.015≤x≤0.3;将含Tb3 +的化合物加入稀硝酸溶液中,搅拌直至完全溶解,得到溶液A;将含Sr2+的化合物、含Na+的化合物和含P5+的化合物加入去离子水或稀硝酸溶液中,搅拌直至完全溶解,得到混合溶液B;
(2)根据化学通式 NaSrLa1-xTbx(PO4)2中La元素的化学计量比,称取含La3+的化合物,将含La3+的化合物溶解在稀硝酸溶液中,得到溶液C;
(3)将所述混合溶液B与所述溶液C按先后顺序依次逐滴加入到所述溶液A中,边滴加边搅拌;然后往混合液中加入柠檬酸和聚乙二醇,充分混合,调节溶液的pH至6;在60℃的水浴条件下不断搅拌,待溶液变得粘稠形成凝胶;
(4)将凝胶陈化一段时间后置于烘箱中,先在80℃条件下烘焙12小时,然后在120℃条件下烘焙6小时,得到蓬松的前驱体;
(5)取出前驱体置于干净的氧化铝坩埚内,然后放入马弗炉内,在空气气氛中煅烧,煅烧温度为750-1000℃,煅烧时间为4-8小时,
(6)自然冷却至室温,取出,采用干压方式压制成块状,再采用冷等静压方式提高坯体的密度,然后将得到的块体在空气气氛中煅烧,煅烧温度为1100-1300℃,煅烧时间为1-15小时,即得到铽离子激活的磷酸盐光学工程陶瓷。
3.根据权利要求2所述的铽离子激活的磷酸盐光学工程陶瓷的制备方法,其特征在于,步骤(3)中,所述柠檬酸的加入量为混合液中所有金属阳离子摩尔量的两倍。
4.根据权利要求2所述的铽离子激活的磷酸盐光学工程陶瓷的制备方法,其特征在于,步骤(1)中,所述含Sr2+的化合物为硝酸锶、草酸锶、氯化锶、乙酸锶中的一种;所述含Tb3+的化合物为硝酸铽或氯化铽;所述含Na+的化合物为氯化钠、硝酸钠、醋酸钠中的一种,所述含P5+的化合物为五氧化二磷、五氯化磷或磷酸。
5.根据权利要求2所述的铽离子激活的磷酸盐光学工程陶瓷的制备方法,其特征在于,步骤(2)中,所述含La3+的化合物为氯化镧、氧化镧和氢氧化镧中的一种。
6.权利要求1所述的铽离子激活的磷酸盐光学工程陶瓷可应用在制造近紫外芯片激发的白光LED器件方面应用或者在工程陶瓷缺陷的无损光学检测方面应用。
CN202110260407.8A 2021-03-10 2021-03-10 一种铽离子激活的磷酸盐发光陶瓷制备方法与应用 Pending CN112919899A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110260407.8A CN112919899A (zh) 2021-03-10 2021-03-10 一种铽离子激活的磷酸盐发光陶瓷制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110260407.8A CN112919899A (zh) 2021-03-10 2021-03-10 一种铽离子激活的磷酸盐发光陶瓷制备方法与应用

Publications (1)

Publication Number Publication Date
CN112919899A true CN112919899A (zh) 2021-06-08

Family

ID=76172368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110260407.8A Pending CN112919899A (zh) 2021-03-10 2021-03-10 一种铽离子激活的磷酸盐发光陶瓷制备方法与应用

Country Status (1)

Country Link
CN (1) CN112919899A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE725863A (zh) * 1967-12-22 1969-06-20
US3525698A (en) * 1967-10-20 1970-08-25 American Cyanamid Co Cerium and lanthanide activated alkaline earth metal phosphate phosphors
US3634282A (en) * 1968-09-26 1972-01-11 Anvar Luminescent compounds of cerium phosphates activated by terbium
CN102575162A (zh) * 2010-02-04 2012-07-11 海洋王照明科技股份有限公司 掺铽的磷酸盐基绿色发光材料及其制备方法
US20130099161A1 (en) * 2010-04-12 2013-04-25 Rhodia Operations Core/shell lanthanum cerium terbium phosphate, and phosphor having improved thermal stability and including said phosphate
JP2015025077A (ja) * 2013-07-26 2015-02-05 岩崎電気株式会社 蛍光体
CN105199729A (zh) * 2015-10-20 2015-12-30 陕西科技大学 一种LED用NaSrPO4:xEu3+红色荧光粉及其制备方法
CN107384401A (zh) * 2017-06-28 2017-11-24 陕西科技大学 以磷酸盐为基质的掺铽绿色荧光粉及其制备方法
CN109266345A (zh) * 2018-10-29 2019-01-25 江苏师范大学 一种稀土离子双掺杂的单基质磷酸盐白光荧光粉及其制备方法
CN109370580A (zh) * 2018-10-23 2019-02-22 江苏师范大学 一种铋离子激活的钛铝酸盐荧光粉及其制备方法与应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3525698A (en) * 1967-10-20 1970-08-25 American Cyanamid Co Cerium and lanthanide activated alkaline earth metal phosphate phosphors
BE725863A (zh) * 1967-12-22 1969-06-20
US3634282A (en) * 1968-09-26 1972-01-11 Anvar Luminescent compounds of cerium phosphates activated by terbium
CN102575162A (zh) * 2010-02-04 2012-07-11 海洋王照明科技股份有限公司 掺铽的磷酸盐基绿色发光材料及其制备方法
US20130099161A1 (en) * 2010-04-12 2013-04-25 Rhodia Operations Core/shell lanthanum cerium terbium phosphate, and phosphor having improved thermal stability and including said phosphate
JP2015025077A (ja) * 2013-07-26 2015-02-05 岩崎電気株式会社 蛍光体
CN105199729A (zh) * 2015-10-20 2015-12-30 陕西科技大学 一种LED用NaSrPO4:xEu3+红色荧光粉及其制备方法
CN107384401A (zh) * 2017-06-28 2017-11-24 陕西科技大学 以磷酸盐为基质的掺铽绿色荧光粉及其制备方法
CN109370580A (zh) * 2018-10-23 2019-02-22 江苏师范大学 一种铋离子激活的钛铝酸盐荧光粉及其制备方法与应用
CN109266345A (zh) * 2018-10-29 2019-01-25 江苏师范大学 一种稀土离子双掺杂的单基质磷酸盐白光荧光粉及其制备方法

Similar Documents

Publication Publication Date Title
Zhou et al. Improved luminescence and energy-transfer properties of Ca 14 Al 10 Zn 6 O 35: Ti 4+, Mn 4+ deep-red-emitting phosphors with high brightness for light-emitting diode (LED) plant-growth lighting
CN112094647B (zh) 一种窄带发射氮氧化物红色荧光粉及其制备方法
CN109777404B (zh) 一种铕离子Eu3+激活的铝酸盐红色荧光粉及其制备方法
CN113249125B (zh) Ce3+掺杂的硅酸盐基绿色荧光粉及其制备方法和应用
CN114686225A (zh) 一种近红外荧光粉及其制备方法和应用
CN113403074A (zh) 一种Mn4+激活的锑酸盐窄带红色荧光粉及其制备方法
CN109370580B (zh) 一种铋离子激活的钛铝酸盐荧光粉及其制备方法与应用
CN103555327A (zh) 一种白光led用近紫外激发双钙钛矿荧光粉及其制备方法
CN103289698B (zh) 一种铕离子Eu3+激活的磷酸盐基红色荧光粉、制备方法及应用
US8591768B2 (en) Germanate luminescence material and its preparation
CN112940723A (zh) 一种Bi3+、Eu3+离子共激活的镥酸盐荧光粉及制备方法
CN112625683A (zh) 一种锗酸盐型红色荧光粉及制备方法
CN103965897A (zh) 一种led用铝硅酸盐黄绿色荧光粉及其制备方法
CN108531174B (zh) 一种Eu3+掺杂的铌酸盐基红色发光材料及其制备方法
CN108822842B (zh) 一种红色锶镁磷酸盐荧光材料及其制备方法和应用
CN108034423B (zh) 一种Mn2+离子掺杂的硅酸盐红色荧光粉、制备方法及应用
CN107267146B (zh) 一种Mn4+离子掺杂的钛铝酸盐红色纳米荧光粉及其制备方法
CN113549458B (zh) 一种基于磷灰石结构的高显色性三价Eu离子掺杂的红色荧光材料及其制备方法
Sheoran et al. Synthesis and Optoelectronic Characterization of Silicate Lattice-Based M3La2Si3O12 (M= Mg2+, Ca2+, Sr2+ and Ba2+) Nanophosphors for Display Applications
CN112898975B (zh) 一种钐离子激活的磷酸盐发光陶瓷制备方法与应用
CN112919899A (zh) 一种铽离子激活的磷酸盐发光陶瓷制备方法与应用
CN109233826B (zh) 一种铕离子激活的钛铝酸盐荧光粉及其制备方法与应用
CN103087711B (zh) 一种蓝光和近紫外激发型一维红色纳米荧光粉的制备方法
CN112939593A (zh) 一种铈离子激活的磷酸盐发光陶瓷制备方法与应用
CN111057546A (zh) 一种高量子产率的Eu3+激活红色荧光粉及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210608