CN112898133B - 一种反式酮类中间体的制备方法 - Google Patents

一种反式酮类中间体的制备方法 Download PDF

Info

Publication number
CN112898133B
CN112898133B CN202110110977.9A CN202110110977A CN112898133B CN 112898133 B CN112898133 B CN 112898133B CN 202110110977 A CN202110110977 A CN 202110110977A CN 112898133 B CN112898133 B CN 112898133B
Authority
CN
China
Prior art keywords
formula
ketone intermediate
trans
compound shown
benzyloxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110110977.9A
Other languages
English (en)
Other versions
CN112898133A (zh
Inventor
葛会军
李志慧
申强
李俊
杨镜轩
王震
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Milestone Electronic Material Co ltd
Original Assignee
Hebei Milestone Electronic Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Milestone Electronic Material Co ltd filed Critical Hebei Milestone Electronic Material Co ltd
Priority to CN202110110977.9A priority Critical patent/CN112898133B/zh
Publication of CN112898133A publication Critical patent/CN112898133A/zh
Application granted granted Critical
Publication of CN112898133B publication Critical patent/CN112898133B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/006Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydrogenation of aromatic hydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/02Magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/09Geometrical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种反式酮类中间体的制备方法,包括如式(I)和式(II)所示的化合物:

Description

一种反式酮类中间体的制备方法
技术领域
本发明属于液晶中间体合成技术领域,具体地说,涉及一种反式酮类中间体的制备方法。
背景技术
液晶材料行业内,反-4’-(4-甲基苯基)(1,1’-联环己烷)-4-酮是生产
Figure BDA0002918989810000011
(简称乙烯单体)及
Figure BDA0002918989810000012
(简称丁烯单体)等单体类化合物的重要原料。二者大批量应用于STN混晶和TFT混晶配方中。
公开号为JP2014162752A的日本专利涉及一种反-4’-(4-甲基苯基)(1,1’-联环己烷)-4-酮的制备路线,具体如下:
Figure BDA0002918989810000013
其中,甲基溴苯和镁片在无水四氢呋喃中制备格氏试剂,并进一步和双环己酮乙二醇单缩酮反应制备苄醇;然后在甲苯溶液中使用对甲基苯磺酸回流脱水成烯产物;所述烯产物在钯碳催化下加氢还原,其饱和产物在叔丁醇钾和DMF作用下进行异构化转位,最后在甲酸中脱去乙二醇保护得到产物酮中间体。
公开号为CN 110790650的中国专利则是在传统工艺的基础上,改进了脱水和脱乙二醇保护的进程,合并为一步反应制备,路线如下:
Figure BDA0002918989810000021
上述现有技术中均有涉及的关键中间体为双环己酮乙二醇单缩酮,其制备流程如下:
Figure BDA0002918989810000022
其制备过程涉及加氢、氧化和二元醇选择性保护等步骤,使得批量生产提纯较为繁琐。尤其是二元醇单保护的反应选择性为80%,实际生产中若想达到纯度高于99.5%的要求,则会使单程产率降至60%以下,提纯去除原料双酮和双乙二醇保护副产过程比较繁琐、并且此原料高品质生产商较少,采购选择余地不多。
此外,4-甲基溴苯格氏试剂与双环己酮乙二醇单缩酮反应后水解(酸解)会产生少量的脱保产物
Figure BDA0002918989810000023
在进一步脱水反应制备
Figure BDA0002918989810000024
中产生或残留一系列苄醇杂质和酮缩合后杂产物,会导致中间体产物中产生数十种以上已知和未知结构的残留杂质,例如:
Figure BDA0002918989810000025
(顺反混合物),
Figure BDA0002918989810000026
(顺反混合物),
Figure BDA0002918989810000027
(顺反混合物),
Figure BDA0002918989810000028
(顺反混合物)
Figure BDA0002918989810000029
等,这些固有杂质结晶难以去除,降低了产物的纯度。
更进一步的,传统路线脱除乙二醇保护采用浓甲酸反应,可接近完全脱除,但此举会导致产生大量废甲酸,而体系中的其他无机酸由于强酸性环境会产生更多的酮类副产杂质。另外脱除乙二醇保护的不完全,也会导致未反应的原料残余进入下一步成为较大杂质,影响提纯效果。
综上所述,现有技术中反-4’-(4-甲基苯基)(1,1’-联环己烷)-4-酮及类似酮类中间体的制备工艺路线较长,且其中产生的固有杂质不易去除,影响了最终产品的品质。
有鉴于此,特提出本发明。
发明内容
本发明要解决的技术问题在于克服现有技术的不足,提供一种反式酮类中间体的制备方法,利用含苄基的卤代苯为原料,使制备过程中的中间产物不会产生或残留苄醇杂质和酮缩合后杂产物,极大地降低了反式酮类中间体产物的提纯难度。
为解决上述技术问题,本发明采用技术方案的基本构思是:
本发明提供了一种反式酮类中间体的制备方法,制备所述反式酮类中间体的原料包括如式(I)和式(II)所示的化合物:
Figure BDA0002918989810000031
所述制备过程包括:
(1)将式(I)所示化合物经催化加氢制得酮中间产物;
(2)将苄氧基卤代苯与镁片制成格氏试剂,所述格氏试剂与步骤(1)制备的酮中间产物经酸解脱水后得到如式(II)所示化合物;
(3)将步骤(2)制备的式(II)所示化合物进行催化加氢和异构化反应后制得如式(III)所示的反式酮类中间体;
Figure BDA0002918989810000041
所述R基选自碳原子数1~2的烷基。
本发明所提供中间体制备方法的进一步方案为:所述式(I)所示化合物是由如下方法制备的:
A.以苄氧基卤代苯和烷基卤代苯为原料,并取其任一与镁片反应制成格氏试剂;
B.向步骤A制得的格氏试剂中加入硼酸酯反应生成苄氧基苯硼酸或烷基苯硼酸;
C.向步骤B制得的苄氧基苯硼酸或烷基苯硼酸中加入步骤A中未参与格氏反应的原料,并加入铃木偶联催化剂制得式(I)所示化合物;
所述苄氧基卤代苯、镁片、硼酸酯和烷基卤代苯的摩尔比为1.0:0.8~2.0:1.0~2.0:0.8~2.0;优选摩尔比为1.0:0.9~1.3:1.0~2.0:0.9~1.2。
上述方案中,当以苄氧基卤代苯为原料与镁片反应制成格氏试剂并进行后续反应时,其反应路线为:
Figure BDA0002918989810000042
具体包括:在氮气保护下将4-苄氧基溴苯与镁片在无水四氢呋喃及40~80℃条件下制备格氏试剂,然后降温至-20~10℃并滴加硼酸酯,保温完毕后,在温度小于10℃的条件下滴入盐酸水解,水解完毕后分去酸水。在含四氢呋喃有机层中加入碱,再加入甲基溴苯和甲苯,继而在氮气保护下加入铃木偶联催化剂,于40~80℃保温4~6h制备式(I)所示化合物,反应结束后水洗到中性,过少量硅胶柱后蒸干溶剂,使用乙醇结晶提纯。
而以烷基卤代苯为原料与镁片反应制成格氏试剂并进行后续反应时,其反应路线为:
Figure BDA0002918989810000051
此路线与上述以苄氧基卤代苯为原料与镁片反应制成格氏试剂的反应方式类似,由于芳烃硼酸制备一般以卤代芳烃为起点,通过格氏试剂反应、或通过锂化试剂锂化,使卤代芳烃与硼酸酯反应制得芳烃硼酸,而本发明在制备式(I)所示化合物时由需要藉由原料中的苄氧基卤代苯和烷基卤代苯分别提供环结构,因此在具体制备过程中,可根据实际需求调整发生格氏反应的原料。
本发明所提供中间体制备方法的进一步方案为,步骤(1)中所述酮中间产物为如式(IV)所示的化合物:
Figure BDA0002918989810000052
式中所述R基的定义同权利要求1。
本发明所提供中间体制备方法的进一步方案为:步骤(1)还包括对催化加氢产物中所含的少量醇通过次氯酸钠氧化得到如式(IV)所示酮中间产物,经步骤(1)制得的酮中间产物的纯度大于99.5%,产率不小于90%。
上述方案中,步骤(1)所述催化加氢的反应路线如下:
Figure BDA0002918989810000053
其中式(IV’)所示化合物为含量较少的环己醇副产物,通过次氯酸钠的氧化,可回收为式(IV)所示的酮中间产物。所述步骤在催化加氢反应中脱除了苄基生成酮和少量醇,其具体包括:在20~40℃、0.1~1.0MPa条件下分段加氢2~3h脱除苄基,之后升温至80~120℃,并调节压力至0.2~1.5MPa,维持3~6h,在此过程中酚选择性加氢成酮,并产生少量醇。反应完毕过滤回收催化剂,蒸干溶剂,经乙醇和正庚烷结晶提纯得到高纯度>99.5%,并得到酮中间产物的产率为80~85%。此时母液中含副产环己醇少量,根据醇的含量计算醇的具体数量,在反应器内加入含副产环己醇副产物的母液和2倍体积的二氯甲烷或甲苯溶剂,(以环己醇副产物的摩尔量为基准)加入0.1倍溴化钾,0.01倍TEMPO(CAS2564-83-2),1倍碳酸氢钠,控温0~10℃滴加10%浓度0.95~1.05倍的次氯酸钠,反应1h后检测。检测合格后,滴入亚硫酸钠溶液消除氧化性,水洗,蒸干溶剂使用,经过乙醇和正庚烷结晶,纯度>99.5%,回收酮的产率为10~13%,合并产率≥90%。
本发明所提供中间体制备方法的进一步方案为:步骤(2)包括:将苄氧基卤代苯与镁片制成的格氏试剂与式(IV)所示化合物经反应生成苄醇,所述苄醇经酸解脱水后得到如式(II)所示化合物;
Figure BDA0002918989810000061
所述酮中间产物、苄氧基卤代苯和镁片的摩尔比为1.0:1.05~1.5:1.05~1.5;所述卤代基团X选自Br或Cl。
上述方案中,苄氧基卤代苯与镁片制备格氏试剂的方法同上所述,在制成的格氏试剂中滴加式(IV)所示酮中间产物和甲苯溶液,反应生成苄醇,苄醇料液经过酸解,水洗后,加入酸性催化剂和少量酚类阻聚剂,甲苯中回流脱水得到式(II)所示化合物。反应结束水洗到中性,经干燥后甲苯料液过硅胶柱纯化,进一步经过甲苯和乙醇结晶得到高纯度的式(II)所示化合物,其纯度≥99.5%,产率>85%。此步骤中所用酸性催化剂选自对甲基苯磺酸、硫酸氢钾、强酸性离子树脂或负载磺酸型硅胶,用量为体系中反应物的1~20wt%。所述苄醇结构较为单一,其所能发生脱水反应的位点相对固定,因此其酸解脱水进行得较为完全,也避免了在脱水时产生大量结构不同的杂质。
本发明所提供中间体制备方法的进一步方案为:步骤(3)还包括对催化加氢产物中所含的少量醇通过次氯酸钠氧化得到如式(V)所示的化合物:
Figure BDA0002918989810000062
式中所述R基的定义同权利要求1。
上述方案中,步骤(3)所述催化加氢的反应路线如下:
Figure BDA0002918989810000071
其中式(V’)所示化合物为含量较少的环己醇副产物,通过次氯酸钠的氧化,可回收为式(V)所示化合物。其回收方法与步骤(1)中回收酮产物的方法类似,最终得到式(V)所示化合物的纯度≥99.5%(顺式+反式产物),合并产率>95%。
本发明所提供中间体制备方法的进一步方案为:步骤(3)还包括对式(V)所示化合物进行异构化处理,包括:以式(V)所示化合物的摩尔量为基准,先加入3~5倍的二氯甲烷,1~10%的乙酸钠,1.05~1.35倍的无水三氯化铝,在氮气保护下,降温至-15~-5℃,后加入1倍的式(V)所示化合物,保温2~8h后倒入冰水中水解,水解产物经水洗中和、硅胶柱纯化后蒸干溶剂,最后经结晶纯化得到如式(III)所示反式酮类中间体。
本发明所提供中间体制备方法的进一步方案为:所述硼酸酯选自硼酸三甲酯、硼酸三乙酯、硼酸三异丙酯、硼酸三丁酯、硼酸三异丁酯中的一种;所述硼酸酯优选自硼酸三异丙酯、硼酸三丁酯、硼酸三异丁酯中的一种;所述铃木偶联催化剂的用量为步骤C中反应物总质量的0.0001~0.005wt%,铃木偶联催化剂选自钯催化剂或镍催化剂;优选为四三苯基膦钯催化剂或Pd-132催化剂。
本发明所提供中间体制备方法的进一步方案为:苄氧基卤代苯为4-苄氧基溴苯,所述烷基卤代苯为4-甲基溴苯。
本发明所提供中间体制备方法的进一步方案为:所述制备方法所制得如式(III)所示化合物的纯度不小于99.9%。
采用上述技术方案后,本发明与现有技术相比具有以下有益效果:
1.本发明所提供的酮类中间体制备方法,规避了传统工艺中以双环己酮乙二醇单缩酮为关键中间产物的合成路线,解决了酸解脱水产物中存在多种苄醇杂质和酮缩合后杂产物的技术问题,极大地提高了反式酮类中间体产物的纯度;
2.本发明在酮类中间体的制备过程中产生的苄醇结构在后续的酸解脱水过程中可完全脱水,相比双环己酮乙二醇单缩酮的工艺极大地减少了苄醇杂质的产生和残留,且不会因高温和强酸环境产生的酮缩合大分子杂质;本发明提供的制备方法中的苄醇杂质结构简单,易于提纯使杂质含量低于0.01%,且后续的高温钯碳加氢过程也会进一步氢解消除所述苄醇杂质,使其含量低于0.005%;
3.本发明在酮类中间体的制备过程中所采用的铃木偶联反应会产生自偶杂质和氧化酚类杂质,而格氏反应会产生部分自偶杂质,并氧化成酚等杂质;而本申请提供的式(II)所示化合物得益于苄醚的引入,其大分子量晶型好,结晶损失小,有利于结晶去除上述杂质,因此极大地降低了最终产品酮的提纯难度;
4.本发明制备酮类中间体的原料多采用苄氧基卤代苯和甲基卤代苯,原料价格低廉且获取难度低,极大地降低了生产成本。
下面结合附图对本发明的具体实施方式作进一步详细的描述。
附图说明
附图作为本发明的一部分,用来提供对本发明的进一步的理解,本发明的示意性实施例及其说明用于解释本发明,但不构成对本发明的不当限定。显然,下面描述中的附图仅仅是一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。在附图中:
图1是本发明实施例1中式(II)所示化合物的质谱图;
图2是本发明实施例1所制备反式酮类中间体产物的质谱图。
需要说明的是,这些附图和文字描述并不旨在以任何方式限制本发明的构思范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
本实施例中,采用如下方法制备反式酮类中间体:
(1)式(I)所示化合物经催化加氢制备酮中间产物,包括:
1A.制备格氏试剂:氮气保护下,向反应器内加入1g 4-苄氧基溴苯,2.5g镁片,30mL无水四氢呋喃,搅拌下加热到回流引发反应,然后在40~60℃条件下滴加剩余的25.3g4-苄氧基溴苯和30mL无水四氢呋喃配制的溶液;滴加完毕,于40~60℃保温2h,制得格氏试剂;
1B.制备芳烃硼酸:将步骤A制备的格氏试剂降温至-10~0℃,滴加24.5g硼酸三异丙酯,保温2h,之后控温<10℃滴加10%盐酸47g水解30min,得到4-苄氧基苯硼酸水溶液;
1C.铃木反应:向步骤B制得的4-苄氧基苯硼酸水溶液中加入100mL甲苯,17.1克4-甲基溴苯,碳酸钾27.6克,搅拌均匀后,氮气置换,加入铃木偶联催化剂0.1g四三苯基膦钯,升温至80℃保温6h,后降温并经水洗到中性,甲苯溶液过硅胶柱纯化,蒸干甲苯后使用乙醇结晶,得到式(I)所示化合物(R为甲基),其纯度为99.5%,产率为87.3%;
Figure BDA0002918989810000091
1D.催化加氢:向1L高压釜内,加入23.9g式(I)化合物(R为甲基),加入乙醇100mL,再加入惰化(碳酸钠水溶液浸泡后)的5%钯碳1g;氮气充分置换后,再通入氢气充分置换氮气,在氢气压力0.1~0.4MPa条件下,控温30~40℃反应2h,后升温到90~105℃,氢气压力0.4~0.8MPa,反应4h;反应完毕,滤除回收钯碳催化剂,蒸干溶剂使用乙醇和正庚烷溶剂结晶得到13.8g式(IV)化合物(R为甲基),其纯度为99.58%,产率为84.1%;
Figure BDA0002918989810000092
母液浓缩后计重根据醇的含量折算醇的摩尔量,反应器内加入含环己醇副产(式IV’所示,R为甲基)料液和2倍体积的二氯甲烷溶剂,(以环己醇副产的摩尔量为基准)加入0.1倍摩尔溴化钾,0.01倍摩尔TEMPO(CAS 2564-83-2),1倍摩尔碳酸氢钠,控温0~10℃滴加10%浓度0.95~1.05倍的次氯酸钠,反应1h后检测;检测合格后,滴入亚硫酸钠溶液消除氧化性,水洗,干燥,蒸干溶剂得到式(IV)化合物(R为甲基)粗品;再通过乙醇和正庚烷溶剂结晶得到纯度≥99.5%的式(IV)化合物(R为甲基),直接加氢提纯产品和母液氧化产品,得到式(IV)化合物(R为甲基)合并产率≥90%;
(2)格氏试剂与步骤(1)制备的酮中间产物经酸解脱水制备式(II)所示化合物,包括:
氮气保护下,向反应器内加入1g 4-苄氧基溴苯,2.9g镁片,40mL无水四氢呋喃,搅拌下加热到回流引发反应,然后40~60℃滴加剩余30.4g 4-苄氧基溴苯和30mL无水四氢呋喃配置的溶液,滴加完毕,40~60℃保温2h制得格氏试剂,之后维持40~60℃滴加18.8g式(IV)化合物(R为甲基)和40mL甲苯配置的溶液,保温4h;之后控温<10℃滴加5%盐酸120g水解30min,经过甲苯提取水洗得到苄醇甲苯溶液约280mL;苄醇甲苯溶液约280mL加入1.1g对甲基苯磺酸,0.5g 2,6-二叔丁基对甲酚,加热回流(约110℃)分水3h;降至室温,加入氢氧化钠碱水溶液洗涤,再水洗到中性;无水硫酸钠干燥后,经硅胶柱纯化,蒸干溶剂后使用甲苯乙醇结晶纯化得到31.5g白色晶体,即式(II)所示化合物(R为甲基),纯度为99.7%;
Figure BDA0002918989810000101
(3)将步骤(2)制备的式(II)化合物进行催化加氢和异构化反应后制得反式酮类中间体,包括:
3A.催化加氢:向1L高压釜内,加入31.5g式(II)化合物(R为甲基),加入乙醇150mL,加入惰化(碳酸钠水溶液惰化后)的5%钯碳0.9g;氮气充分置换后,氢气置换后,在压力0.1~0.4MPa条件下,控温30~40℃反应2h,后升温到90~105℃,氢气压力0.4~0.8MPa,反应6h;反应完毕后主产式(V)化合物(R为甲基)的含量≥90%(副产醇式(V’)化合物(R为甲基)的含量<10%),滤除回收钯碳催化剂;
Figure BDA0002918989810000111
蒸干溶剂加入100mL甲苯配制式(V)化合物(R为甲基)溶液,根据副产式(V’)化合物(R为甲基)的含量计算出摩尔量;(以副产式(V’)化合物(R为甲基)的摩尔量为基准)加入0.1倍摩尔溴化钾,0.01倍摩尔TEMPO(CAS 2564-83-2),1倍摩尔碳酸氢钠,控温0~10℃滴加10%浓度0.95~1.05倍摩尔的次氯酸钠;反应1h后检测;检测合格后,滴入亚硫酸钠溶液消除氧化性,水洗,干燥,蒸干溶剂得到式(V)化合物(R为甲基)粗品;再通过乙醇和正庚烷溶剂结晶得到纯度≥99.5%的式(V)化合物(R为甲基),直接加氢提纯产品和母液氧化产品,得到式(V)化合物(R为甲基)合并产率≥95%;
3B.异构化:继续向反应器内加入100mL二氯甲烷,0.2g无水乙酸钠,加入16.7g无水三氯化铝,氮气保护下降温到-15~-5℃,滴加27g式(V)化合物(R为甲基)和30mL二氯甲烷的溶液,于-10~-15℃保温3h,取样检测反应结束后,倒入100mL含10%乙酸钠冰水中水解30min;经水洗中和后,过硅胶柱纯化,蒸干溶剂,经乙酸乙酯和正庚烷结晶纯化后,得到式(III)化合物(R为甲基)的纯度为99.95%,最大杂质含量<0.005%,产率≥80%。
实施例2
本实施例是在实施例1的基础上,调整了步骤(1)中1A~1C的制备方法,具体如下:
(1)式(I)所示化合物经催化加氢制备酮中间产物,包括:
1A.制备格氏试剂:氮气保护下,向反应器内加入1g 4-甲基溴苯,2.5g镁片,30mL无水四氢呋喃,搅拌下加热到回流引发反应,然后在40~60℃条件下滴加剩余的16.9g 4-甲基溴苯和20mL无水四氢呋喃配制的溶液;滴加完毕,于40~60℃保温2h,制得格氏试剂;
1B.制备芳烃硼酸:将步骤A制备的格氏试剂降温至-10~0℃,滴加24.5g硼酸三异丙酯,保温2h,之后控温<10℃滴加10%盐酸47g水解30min,得到4-苄氧基苯硼酸水溶液;
1C.铃木反应:向步骤B制得的4-苄氧基苯硼酸水溶液中加入100mL甲苯,26.3克4-苄氧基溴苯,碳酸钾27.6克,搅拌均匀后,氮气置换,加入铃木偶联催化剂0.1g四三苯基膦钯,升温至80℃保温6h,后降温并经水洗到中性,甲苯溶液过硅胶柱纯化,蒸干甲苯后使用乙醇结晶,得到式(I)所示化合物(R为甲基),其纯度为99.6%,产率为88.1%;
Figure BDA0002918989810000121
本实施例的其他实施方式同实施例1。
以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。

Claims (11)

1.一种反式酮类中间体的制备方法,其特征在于,制备所述反式酮类中间体的原料包括如式(I)和式(II)所示的化合物:
Figure FDA0003858542360000011
所述制备过程包括:
(1)将式(I)所示化合物经催化加氢制得酮中间产物;
(2)将苄氧基卤代苯与镁片制成格氏试剂,所述格氏试剂与步骤(1)制备的酮中间产物经酸解脱水后得到如式(II)所示化合物;
(3)将步骤(2)制备的式(II)所示化合物进行催化加氢和异构化反应后制得如式(III)所示的反式酮类中间体;
Figure FDA0003858542360000012
其中,步骤(1)中所述酮中间产物为如式(IV)所示的化合物:
Figure FDA0003858542360000013
步骤(2)包括:将苄氧基卤代苯与镁片制成的格氏试剂与式(IV)所示化合物经反应生成苄醇,所述苄醇经酸解脱水后得到如式(II)所示化合物;
Figure FDA0003858542360000014
式中卤代基团X选自Br或Cl;
步骤(3)中将式(II)所示化合物进行催化加氢得到如式(V)所示的化合物:
Figure FDA0003858542360000021
所述R基选自碳原子数为1~2的烷基。
2.根据权利要求1所述反式酮类中间体的制备方法,其特征在于,所述式(I)所示化合物是由如下方法制备的:
A.以苄氧基卤代苯和烷基卤代苯为原料,并取其任一与镁片反应制成格氏试剂;
B.向步骤A制得的格氏试剂中加入硼酸酯反应生成苄氧基苯硼酸或烷基苯硼酸;
C.向步骤B制得的苄氧基苯硼酸或烷基苯硼酸中加入步骤A中未参与格氏反应的原料,并加入铃木偶联催化剂制得式(I)所示化合物;
所述苄氧基卤代苯、镁片、硼酸酯和烷基卤代苯的摩尔比为1.0:0.8~2.0:1.0~2.0:0.8~2.0。
3.根据权利要求2所述反式酮类中间体的制备方法,其特征在于,所述苄氧基卤代苯、镁片、硼酸酯和烷基卤代苯的摩尔比为1.0:0.9~1.3:1.0~2.0:0.9~1.2。
4.根据权利要求1所述反式酮类中间体的制备方法,其特征在于,步骤(1)还包括对催化加氢产物中所含的少量醇通过次氯酸钠氧化得到如式(IV)所示酮中间产物,经步骤(1)制得的酮中间产物的纯度大于99.5%,产率不小于90%。
5.根据权利要求4所述反式酮类中间体的制备方法,其特征在于,所述酮中间产物、苄氧基卤代苯和镁片的摩尔比为1.0:1.05~1.5:1.05~1.5。
6.根据权利要求1所述反式酮类中间体的制备方法,其特征在于,步骤(3)还包括对催化加氢产物中所含的少量醇通过次氯酸钠氧化得到如式(V)所示的化合物:
Figure FDA0003858542360000022
式中所述R基选自碳原子数为1~2的烷基。
7.根据权利要求6所述反式酮类中间体的制备方法,其特征在于,步骤(3)还包括对式(V)所示化合物进行异构化处理,包括:以式(V)所示化合物的摩尔量为基准,先加入3~5倍的二氯甲烷,1~10%的乙酸钠,1.05~1.35倍的无水三氯化铝,在氮气保护下,降温至-15~-5℃,后加入1倍的式(V)所示化合物,保温2~8h后倒入冰水中水解,水解产物经水洗中和、硅胶柱纯化后蒸干溶剂,最后经结晶纯化得到如式(III)所示反式酮类中间体。
8.根据权利要求2所述反式酮类中间体的制备方法,其特征在于,所述硼酸酯选自硼酸三甲酯、硼酸三乙酯、硼酸三异丙酯、硼酸三丁酯、硼酸三异丁酯中的一种;所述硼酸酯优选自硼酸三异丙酯、硼酸三丁酯、硼酸三异丁酯中的一种;所述铃木偶联催化剂的用量为步骤C中反应物总质量的0.0001~0.005wt%,铃木偶联催化剂选自钯催化剂或镍催化剂。
9.根据权利要求8所述反式酮类中间体的制备方法,其特征在于,所述铃木偶联催化剂选自四三苯基膦钯催化剂或Pd-132催化剂。
10.根据权利要求2所述反式酮类中间体的制备方法,其特征在于,苄氧基卤代苯为4-苄氧基溴苯,所述烷基卤代苯为4-甲基溴苯。
11.根据权利要求1~10任意一项所述反式酮类中间体的制备方法,其特征在于,所述制备方法所制得如式(III)所示化合物的纯度不小于99.9%。
CN202110110977.9A 2021-01-27 2021-01-27 一种反式酮类中间体的制备方法 Active CN112898133B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110110977.9A CN112898133B (zh) 2021-01-27 2021-01-27 一种反式酮类中间体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110110977.9A CN112898133B (zh) 2021-01-27 2021-01-27 一种反式酮类中间体的制备方法

Publications (2)

Publication Number Publication Date
CN112898133A CN112898133A (zh) 2021-06-04
CN112898133B true CN112898133B (zh) 2022-11-15

Family

ID=76118832

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110110977.9A Active CN112898133B (zh) 2021-01-27 2021-01-27 一种反式酮类中间体的制备方法

Country Status (1)

Country Link
CN (1) CN112898133B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946986A (en) * 1988-02-29 1990-08-07 Dainippon Ink And Chemicals Cyclohexene derivatives
JP2014162752A (ja) * 2013-02-25 2014-09-08 Dic Corp 化合物、液晶組成物、及び表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100275841B1 (ko) * 1992-10-07 2000-12-15 고토 기치 사이클로헥산 유도체 및 이를 함유하는 액정 조성물
DE10325697A1 (de) * 2002-07-04 2004-02-26 Merck Patent Gmbh Verfahren zur Hydrierung von Cyclohexenen
AU2007307597A1 (en) * 2006-10-12 2008-04-17 Institute Of Medicinal Molecular Design. Inc. Carboxylic acid derivatives
CN103420855B (zh) * 2012-12-12 2015-06-17 烟台万润精细化工股份有限公司 一种反式-4-氨基环己基甲醇盐酸盐及其制备方法
KR102564946B1 (ko) * 2014-07-25 2023-08-08 리셉토스 엘엘씨 신규 glp-1 수용체 조절제
JP6870388B2 (ja) * 2016-03-10 2021-05-12 Jnc株式会社 ターシクロヘキシルを有する液晶性化合物、液晶組成物および液晶表示素子
CN110790650B (zh) * 2019-11-14 2023-09-29 西安瑞联新材料股份有限公司 反-4’-(4-烷基苯基)(1,1’-联环己烷)-4-酮的合成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946986A (en) * 1988-02-29 1990-08-07 Dainippon Ink And Chemicals Cyclohexene derivatives
JP2014162752A (ja) * 2013-02-25 2014-09-08 Dic Corp 化合物、液晶組成物、及び表示装置

Also Published As

Publication number Publication date
CN112898133A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2019119934A1 (zh) 一种连续制备2-甲基烯丙醇的方法
TW202035352A (zh) 2,2,4,4-四甲基-1,3-環丁二酮的合成方法
CN101575269A (zh) 一种芳香族甲醚化合物的制备方法
CN112898133B (zh) 一种反式酮类中间体的制备方法
CN111943823A (zh) 一种苯菌酮的制备方法
EP0309226B1 (en) Process for producing P,P&#39;-biphenol
US5831078A (en) Process for the production of arabinitol
CN109499618B (zh) 一种用于制备苯甲酰甲酸及其酯类化合物的催化剂及其制备方法与应用
CN113861034A (zh) 2-氟-3-硝基苯甲酸的制备方法
CN111039917A (zh) 一种1,4-环己二酮单缩酮的制备方法
JP2002179622A (ja) 4−アセトキシスチレンの製造方法
JP3535637B2 (ja) シス−3,3,5−トリメチルシクロヘキサノールの製造方法
CN107032955B (zh) 一种合成3-甲基- 3-丁烯-1-醇的方法
CN113683495B (zh) 一种制备4,4′-二羟基二苯甲酮的方法
CN112209814B (zh) 一种合成维生素k2的新方法
CN115466255B (zh) 一种托品醇及其合成方法
KR890003786B1 (ko) 4-히드록시바이페닐-4-카르복실산의 제조방법
CN115368227B (zh) 一种生产2-乙基蒽醌的方法
CN113666814B (zh) 一种高纯度覆盆子酮的合成方法
CN112645800B (zh) 一种间苯二酚合成工艺
CN113372208A (zh) 一种反-4-(反-4-烷环己基)环己烷甲醛的制备方法
Fuson et al. A comparison of certain dimesitylmethyl derivatives with the corresponding triarylmethyl compounds
JP3191333B2 (ja) 3,4−ジヒドロクマリンの製造方法
CN117326908A (zh) (反,反)-4-乙基-4’-(2-丙烯)-1,1’-双环己烷的合成方法
CN115124409A (zh) 一种盐酸普罗帕酮中间体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A preparation method for trans ketone intermediates

Granted publication date: 20221115

Pledgee: Bank of China Limited Xingtang Branch

Pledgor: HEBEI MILESTONE ELECTRONIC MATERIAL Co.,Ltd.

Registration number: Y2024130000005

PE01 Entry into force of the registration of the contract for pledge of patent right