CN112853375A - 一种烧碱和正磷酸铁的联产方法 - Google Patents

一种烧碱和正磷酸铁的联产方法 Download PDF

Info

Publication number
CN112853375A
CN112853375A CN202110059082.7A CN202110059082A CN112853375A CN 112853375 A CN112853375 A CN 112853375A CN 202110059082 A CN202110059082 A CN 202110059082A CN 112853375 A CN112853375 A CN 112853375A
Authority
CN
China
Prior art keywords
sodium
caustic soda
ferric
ions
ferrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110059082.7A
Other languages
English (en)
Other versions
CN112853375B (zh
Inventor
王永刚
孔涛逸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202110059082.7A priority Critical patent/CN112853375B/zh
Publication of CN112853375A publication Critical patent/CN112853375A/zh
Application granted granted Critical
Publication of CN112853375B publication Critical patent/CN112853375B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • C25B1/16Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于电解技术领域,具体为一种烧碱和正磷酸铁的联产方法。本发明联产方法包括:电解法制备NaOH和三价铁离子,将阳离子交换膜和/或微孔膜作为阴极、阳极的分隔膜,含有钠离子的水溶液作为阴极电解液,含有亚铁离子和钠离子的水溶液作为阳极电解液;化学沉淀法制备正磷酸铁;采用三价铁离子溶液作为原料,添加含有磷酸根离子水溶液作为沉淀剂,生成正磷酸铁。与传统的氯碱工艺,本发明具有以下优点:1该烧碱工艺能够避免氯气生成,克服由于烧碱生产造成的氯气产能过剩;Fe2+的氧化电位(0.771V vs SHE)远低于氯离子(1.36V vs SHE),因此可以减少能耗;所产FePO4可用于制备锂离子或钠离子电池电极材料。

Description

一种烧碱和正磷酸铁的联产方法
技术领域
本发明属于电解技术领域,具体涉及一种烧碱和正磷酸铁的联产方法。
背景技术
由于能耗低,产品质量高,污染少,电解食盐水作为获取氢氧化钠的主要方法已经广泛应用于工业生产之中。然而电解过程中每得到1mol的氢氧化钠,会得到0.5mol 的氯气。尽管氯气在消毒和自来水处理领域有应用价值,但是工业上对氯气的需求远远小于对氢氧化钠的需求,制碱同时往往需要对氯气进行无害化处理以降低对环境危害,因此造成大量产能浪费,所以调控氢氧化钠和氯气的产能成为产业结构升级的重要课题。
作为高效的电化学能量转化和储存装置,二次电池已经成为人类生活的必备用品。其中,具有高能量密度、长循环寿命,无记忆效应的锂离子电池占据主要的电池市场,并被广泛应用于移动电子设备和新能源汽车的电源。此外,锂离子电池在大型储能领域也有着广阔的应用前景。磷酸铁锂作为一种极其稳定并已实现工业化生产的锂离子电池正极材料,由于锂离子电池的发展有着越来越大的工业需求,磷酸铁锂在钠离子电池中的应用也有研究,正磷酸铁作为合成磷酸铁锂的重要前体也拥有了极高的价值。
发明内容
本发明目的在于提供一种能够减少环境污染、降低能耗、优化产能的烧碱(NaOH)和正磷酸铁(FePO4)的联产方法。
本发明提供的烧碱(NaOH)和正磷酸铁(FePO4)的联产方法,具体步骤包括:电解法制备NaOH和三价铁离子(Fe3+),以及化学沉淀法制备正磷酸铁两个步骤:
步骤(1),电解法制备NaOH和三价铁离子(Fe3+),通过电解槽完成;其中,阳离子交换膜和/或微孔膜被用于分隔阴极、阳极,含有钠离子(Na+)的水溶液被用作阴极电解液,含有亚铁离子(Fe2+)和Na+的水溶液被用作阳极电解液。步骤(1)的电解过程中,Fe2+在阳极室被不断电化学氧化成Fe3+,同时水(H2O)在阴极室被电化学还原为氢气(H2)和氢氧根(OH-),Na+则由阳极室通过隔膜扩散到阴极形成烧碱溶液(见图1);
步骤(2),采用步骤(1)产生的Fe3+溶液作为原料,通过添加含有磷酸根离子(PO4 3-)水溶液作为沉淀剂,生成FePO4
本发明中,所述的阴极电解液,以水为溶剂,溶质包括氯化钠、氢氧化钠、硫酸钠、硝酸钠、甲酸钠、乙酸钠中的一种或几种,所含钠盐浓度为0.001~ 10 moL/L。
本发明中,所述的阳极电解液,以水为溶剂,溶质包括钠盐(氯化钠、硫酸钠、硝酸钠、醋酸钠中的一种或几种)和亚铁盐(氯化亚铁、硫酸亚铁、硫酸亚铁铵、硝酸亚铁、醋酸亚铁中的一种或几种)。
本发明中,所述的阳极电解液,所含钠盐的浓度为0.01 ~ 10 mol/L,所含亚铁盐的溶度为0.01~5moL/L。
本发明中,所述的阳极电解液,还包含甘氨酸(Gly)、苹果酸、葡萄糖、磺基水杨酸、乙二胺四乙酸二钠等络合剂中的一种或几种,这些络合剂主要用于以稳定亚铁离子并阻止其通过隔膜扩散到阴极,同时防止水解的发生。
本发明中,所述的电解,采用Nafion膜、微孔膜,或复合Nafion/微孔膜来分隔阳极室和阴极室。
本发明中,所述的电解槽,其所用阴极为镀铂钛网、镀铂不锈钢网、负载铂碳催化剂的碳纸、负载铂碳催化剂的碳毡、负载铂碳催化剂的碳布、负载铂碳催化剂的石墨毡、镍网、泡沫镍中的一种或几种复合电极。
本发明中,所述的电解槽,其所用阳极为钛网、不锈钢网、碳纸、碳毡、碳布、石墨毡中的一种或几种复合电极。
本发明中,所述的沉淀剂,可以选择磷酸、磷酸二氢钠、磷酸二氢铵、磷酸二氢钾、磷酸氢二钠、磷酸氢二钾、磷酸氢二铵、磷酸钠、磷酸钾、磷酸铵中的一种或几种。还可以选择草酸作为共沉淀剂。
本发明所述的产物正磷酸铁FePO4,可以直接用作钠离子电池正极,也可以分别用于制备LiFePO4和NaFeP2O7、Na2FePO4F等电极材料。
本发明在电解制碱的同时,以正磷酸铁取代氯气作为联产物,可以省去氯气储存与处理过程,大大降低氯碱工业对环境的破坏。由于亚铁离子氧化电位远远低于氯离子,因此本发明还可以降低电解制碱的能耗。同时正磷酸铁可以继续用于磷酸铁锂(LiFePO4)、焦磷酸铁钠(NaFeP2O7)和氟磷酸铁钠(Na2FePO4F)的合成,进而应用于锂离子或钠离子电池制备中,可有效优化产能,提高能量利用效率。
本发明的具有以下优点:
1、该烧碱工艺能够避免氯气的生成,克服由于烧碱生产造成的氯气产能过剩,传统的氯碱工艺中烧碱和氯气是按固定比例生产的;
2、Fe2+的氧化电位(0.771V vs SHE)远低于氯离子(1.36V vs SHE),因此可以减少能耗;
3、所产FePO4可以被用于做锂离子或钠离子电池电极材料的原材料。
附图说明
图1为电解法制备NaOH和三价铁离子(Fe3+)图示。
具体实施方式
为进一步清楚地说明本发明的技术方案和优点,本发明用以下具体实施例进行说明,但是本发明并不局限于这些例子。
实施例1
将甘氨酸按照1mol/L的浓度溶解在20mL1mol/L的硫酸钠水溶液中,然后在搅拌下硫酸亚铁按照0.5 mol/L的浓度溶解得到阳极电解液。以20mL1mol/L的硫酸钠水溶液作为阴极电解液。电解液分别存储在两个储罐中。阳极集流体的制备如下:将5 mm 厚的碳毡在400 ℃空气中烧24小时,与石墨板贴合作为阳极集流体。阴极集流体的制备如下:将5mm厚的碳毡在400 ℃空气中烧24小时,将相同面积的镀铂钛网插在中间,整体与石墨板贴合作为阴极集流体。在该实施例中,集流体面积为10 cm2。然后,将10 cm2 Nafion117膜在1 mol/L NaOH中80 ℃处理6小时,作为电池隔膜,组装成液流电池。电解液在电池与储罐之间通过蠕动泵以80mL/min的流速循环。组装好的液流电池在电化学工作站上以100mA/cm2进行电解测试,截止电压为4.5V。电解结束后,记录电解容量为263.8mAh,平均电压3.69V。用60mL水充分洗刷阴极集流体,并与阴极电解液合并,定容至100mL,以酚酞为指示剂,用邻苯二甲酸氢钾对NaOH量进行酸碱滴定,根据突变时邻苯二甲酸氢钾的量计算得到电解后阴极罐中氢氧化钠摩尔量为7.480mmol,电解制碱法拉第效率为76.00%。用60mL水充分洗刷阳极集流体,搅拌滴加10mL1mol/L磷酸,搅拌15min后,过滤得到黄白色沉淀,并用去离子水洗涤到中性,100℃真空干燥,称重,得到1.349g二水磷酸铁,收率为72.22%。将二水磷酸铁与等摩尔量无水醋酸锂,以及质量占比25%的蔗糖,加无水乙醇研磨1小时后,在含5%氢气的氩气中400℃烧4小时,取出再次充分研磨1小时,在含5%氢气的氩气中700℃烧15小时,得到磷酸铁锂LiFePO4。按照活性物质(磷酸铁锂):导电剂(乙炔黑):粘结剂(聚偏二氟乙烯PVDF)= 80:10:10的比例混合浆料,涂在铝箔烘干,裁切后对锂片装成半电池,以0.02、0.04、0.06、0.08、0.1A/g的电流密度(基于正极活性物质的量计算)进行充放电测试,比容量最高达到150mAh/g(见表1)。
实施例2
将甘氨酸按照1mol/L的浓度溶解在20mL1mol/L的硫酸钠水溶液中,然后在搅拌下硫酸亚铁按照0.5 mol/L的浓度溶解得到阳极电解液。以20mL1mol/L的硫酸钠水溶液作为阴极电解液。电解液分别存储在两个储罐中。阳极集流体的制备如下:将5 mm 厚的碳毡在400℃空气中烧24小时,与石墨板贴合作为阳极集流体。阴极集流体的制备如下:将5mm厚的碳毡在400℃空气中烧24小时,将相同面积的镀铂钛网插在中间,整体与石墨板贴合作为阴极集流体。在该实施例中,集流体面积为10 cm2。然后,将10 cm2 Nafion117膜在1 mol/LNaOH中80 ℃处理6小时,作为电池隔膜,组装成液流电池。电解液在电池与储罐之间通过蠕动泵以80mL/min的流速循环。组装好的液流电池在电化学工作站上以10mA/cm2进行电解测试,截止电压为2.5V。电解结束后,记录电解容量为254.0mAh,平均电压1.72V。用60mL水充分洗刷阴极集流体,并与阴极电解液合并,定容至100mL,以酚酞为指示剂,用邻苯二甲酸氢钾对NaOH量进行酸碱滴定,根据突变时邻苯二甲酸氢钾的量计算得到电解后阴极罐中氢氧化钠摩尔量为8.396mmol,电解制碱法拉第效率为88.20%。用60mL水充分洗刷阳极集流体,搅拌滴加10mL1mol/L磷酸,搅拌15min后,过滤得到黄白色沉淀,并用去离子水洗涤到中性,100℃真空干燥,称重,得到1.404g二水磷酸铁,收率为75.16%。将二水磷酸铁与等摩尔量无水醋酸锂,以及质量占比25%的蔗糖,加无水乙醇研磨1小时后,在含5%氢气的氩气中400℃烧4小时,取出再次充分研磨1小时,在含5%氢气的氩气中700℃烧15小时,得到磷酸铁锂LiFePO4。按照活性物质(磷酸铁锂):导电剂(乙炔黑):粘结剂(聚偏二氟乙烯PVDF)= 80:10:10的比例混合浆料,涂在铝箔烘干,裁切后对锂片装成半电池,以0.02、0.04、0.06、0.08、0.1A/g的电流密度(基于正极活性物质的量计算)进行充放电测试,比容量最高达152mAh/g(见表1)。
实施例3
将甘氨酸按照1mol/L的浓度溶解在20mL2mol/L的氯化钠水溶液中,然后在搅拌下氯化亚铁按照0.5 mol/L的浓度溶解得到阳极电解液。以20mL1mol/L的硫酸钠水溶液作为阴极电解液。电解液分别存储在两个储罐中。阳极集流体的制备如下:将5 mm 厚的碳毡在400 ℃空气中烧24小时,与石墨板贴合作为阳极集流体。阴极集流体的制备如下:将5mm厚的碳毡在400 ℃空气中烧24小时,将相同面积的镀铂钛网插在中间,整体与石墨板贴合作为阴极集流体。在该实施例中,集流体面积为10 cm2。然后,将10 cm2 Nafion117膜在1 mol/L NaOH中80 ℃处理6小时,作为电池隔膜,组装成液流电池。电解液在电池与储罐之间通过蠕动泵以80mL/min的流速循环。组装好的液流电池在电化学工作站上以100mA/cm2进行电解测试,截止电压为4.5V。电解结束后,记录电解容量为259.4mAh,平均电压3.64V。用60mL水充分洗刷阴极集流体,并与阴极电解液合并,定容至100mL,以酚酞为指示剂,用邻苯二甲酸氢钾对NaOH量进行酸碱滴定,根据突变时邻苯二甲酸氢钾的量计算得到电解后阴极罐中氢氧化钠摩尔量为7.865mmol,电解制碱法拉第效率为81.26%。用60mL水充分洗刷阳极集流体,搅拌滴加10mL1mol/L磷酸,搅拌15min后,过滤得到黄白色沉淀,并用去离子水洗涤到中性,100℃真空干燥,称重,得到1.385g二水磷酸铁,收率为74.14%。将二水磷酸铁与等摩尔量无水醋酸锂,以及质量占比25%的蔗糖,加无水乙醇研磨1小时后,在含5%氢气的氩气中400℃烧4小时,取出再次充分研磨1小时,在含5%氢气的氩气中700℃烧15小时,得到磷酸铁锂LiFePO4。按照活性物质(磷酸铁锂):导电剂(乙炔黑):粘结剂(聚偏二氟乙烯PVDF)= 80:10:10的比例混合浆料,涂在铝箔烘干,裁切后对锂片装成半电池,以0.02、0.04、0.06、0.08、0.1A/g的电流密度(基于正极活性物质的量计算)进行充放电测试,比容量最高达到155mAh/g(见表1)。
实施例4
将苹果酸按照1mol/L的浓度溶解在20mL1mol/L的硫酸钠水溶液中,然后在搅拌下硫酸亚铁按照0.5 mol/L的浓度溶解得到阳极电解液。以20mL1mol/L的硫酸钠水溶液作为阴极电解液。电解液分别存储在两个储罐中。阳极集流体的制备如下:将5 mm 厚的碳毡在400 ℃空气中烧24小时,与石墨板贴合作为阳极集流体。阴极集流体的制备如下:将5mm厚的碳毡在400 ℃空气中烧24小时,将相同面积的镀铂钛网插在中间,整体与石墨板贴合作为阴极集流体。在该实施例中,集流体面积为10 cm2。然后,将10 cm2 Nafion117膜在1 mol/L NaOH中80 ℃处理6小时,作为电池隔膜,组装成液流电池。电解液在电池与储罐之间通过蠕动泵以80mL/min的流速循环。组装好的液流电池在电化学工作站上以100mA/cm2进行电解测试,截止电压为4.5V。电解结束后,记录电解容量为260mAh,平均电压3.70V。用60mL水充分洗刷阴极集流体,并与阴极电解液合并,定容至100mL,以酚酞为指示剂,用邻苯二甲酸氢钾对NaOH量进行酸碱滴定,根据突变时邻苯二甲酸氢钾的量计算得到电解后阴极罐中氢氧化钠摩尔量为7.480mmol,电解制碱法拉第效率为77.11%。用60mL水充分洗刷阳极集流体,搅拌滴加10mL1mol/L磷酸,搅拌15min后,过滤得到黄白色沉淀,并用去离子水洗涤到中性,100℃真空干燥,称重,得到1.289g二水磷酸铁,收率为69.00%。将二水磷酸铁与等摩尔量无水醋酸锂,以及质量占比25%的蔗糖,加无水乙醇研磨1小时后,在含5%氢气的氩气中400℃烧4小时,取出再次充分研磨1小时,在含5%氢气的氩气中700℃烧15小时,得到磷酸铁锂LiFePO4。按照活性物质(磷酸铁锂):导电剂(乙炔黑):粘结剂(聚偏二氟乙烯PVDF)= 80:10:10的比例混合浆料,涂在铝箔烘干,裁切后对锂片装成半电池,以0.02、0.04、0.06、0.08、0.1A/g的电流密度(基于正极活性物质的量计算)进行充放电测试,比容量最高达到155mAh/g(见表1)。
实施例5
将甘氨酸按照1mol/L的浓度溶解在20mL1mol/L的硫酸钠水溶液中,然后在搅拌下硫酸亚铁按照0.5 mol/L的浓度溶解得到阳极电解液。以20mL1mol/L的硫酸钠水溶液作为阴极电解液。电解液分别存储在两个储罐中。阳极集流体的制备如下:将5 mm 厚的碳毡在400 ℃空气中烧24小时,与石墨板贴合作为阳极集流体。阴极集流体的制备如下:将5mm厚的碳毡在400 ℃空气中烧24小时,将相同面积的镀铂钛网插在中间,整体与石墨板贴合作为阴极集流体。在该实施例中,集流体面积为10 cm2。然后,将10 cm2透析膜(MW=1000)依次在10mmol/L碳酸氢钠、10mmol/LNa2EDTA和蒸馏水80℃下处理各半小时,作为电池隔膜,组装成液流电池。电解液在电池与储罐之间通过蠕动泵以80mL/min的流速循环。组装好的液流电池在电化学工作站上以100mA/cm2进行电解测试,截止电压为4.5V。电解结束后,记录电解容量为265.0mAh,平均电压3.55V。用60mL水充分洗刷阴极集流体,并与阴极电解液合并,定容至100mL,以酚酞为指示剂,用邻苯二甲酸氢钾对NaOH量进行酸碱滴定,根据突变时邻苯二甲酸氢钾的量计算得到电解后阴极罐中氢氧化钠摩尔量为7.070mmol,电解制碱法拉第效率为71.50%。用60mL水充分洗刷阳极集流体,搅拌滴加10mL1mol/L磷酸,搅拌15min后,过滤得到黄白色沉淀,并用去离子水洗涤到中性,100℃真空干燥,称重,得到1.185g二水磷酸铁,收率为63.44%。将二水磷酸铁与等摩尔量无水醋酸锂,以及质量占比25%的蔗糖,加无水乙醇研磨1小时后,在含5%氢气的氩气中400℃烧4小时,取出再次充分研磨1小时,在含5%氢气的氩气中700℃烧15小时,得到磷酸铁锂LiFePO4。按照活性物质(磷酸铁锂):导电剂(乙炔黑):粘结剂(聚偏二氟乙烯PVDF)= 80:10:10的比例混合浆料,涂在铝箔烘干,裁切后对锂片装成半电池,以0.02、0.04、0.06、0.08、0.1A/g的电流密度(基于正极活性物质的量计算)进行充放电测试,比容量最高达到153mAh/g(见表1)。
实施例6
将甘氨酸按照1mol/L的浓度溶解在20mL1mol/L的硫酸钠水溶液中,然后在搅拌下硫酸亚铁按照0.5 mol/L的浓度溶解得到阳极电解液。以20mL1mol/L的硫酸钠水溶液作为阴极电解液。电解液分别存储在两个储罐中。阳极集流体的制备如下:将5 mm 厚的碳毡在400 ℃空气中烧24小时,与石墨板贴合作为阳极集流体。阴极集流体的制备如下:将5mm厚的碳毡在400 ℃空气中烧24小时,将相同面积的镀铂钛网插在中间,整体与石墨板贴合作为阴极集流体。在该实施例中,集流体面积为10 cm2。然后,将10 cm2 Nafion117膜在1 mol/L NaOH中80 ℃处理6小时,作为电池隔膜,组装成液流电池。电解液在电池与储罐之间通过蠕动泵以80mL/min的流速循环。组装好的液流电池在电化学工作站上以100mA/cm2进行电解测试,截止电压为4.5V。电解结束后,记录电解容量为264mAh,平均电压3.69V。用60mL水充分洗刷阴极集流体,并与阴极电解液合并,定容至100mL,以酚酞为指示剂,用邻苯二甲酸氢钾对NaOH量进行酸碱滴定,根据突变时邻苯二甲酸氢钾的量计算得到电解后阴极罐中氢氧化钠摩尔量为7.590mmol,电解制碱法拉第效率为77.05%。用60mL水充分洗刷阳极集流体,搅拌滴加10mL1mol/L磷酸二氢铵,搅拌15min后,过滤得到黄白色沉淀,并用去离子水洗涤到中性,100℃真空干燥,称重,得到1.378g二水磷酸铁,收率为73.77%。将二水磷酸铁与等摩尔量无水醋酸锂,以及质量占比25%的蔗糖,加无水乙醇研磨1小时后,在含5%氢气的氩气中400℃烧4小时,取出再次充分研磨1小时,在含5%氢气的氩气中700℃烧15小时,得到磷酸铁锂LiFePO4。按照活性物质(磷酸铁锂):导电剂(乙炔黑):粘结剂(聚偏二氟乙烯PVDF)=80:10:10的比例混合浆料,涂在铝箔烘干,裁切后对锂片装成半电池,以0.02、0.04、0.06、0.08、0.1A/g的电流密度(基于正极活性物质的量计算)进行充放电测试,比容量最高达到152mAh/g。(见表1)。
表1不同电极组装的电解槽电解性能比较
Figure RE-758343DEST_PATH_IMAGE001

Claims (9)

1.一种烧碱和正磷酸铁的联产方法, 其特征在于,具体步骤为:
步骤(1),电解法制备NaOH和三价铁离子;通过电解槽完成;其中,将阳离子交换膜和/或微孔膜作为阴极、阳极的分隔膜,含有钠离子的水溶液作为阴极电解液,含有亚铁离子和钠离子的水溶液作为阳极电解液;电解过程中,亚铁离子在阳极室被不断电化学氧化成三价铁离子,同时水在阴极室被电化学还原为氢气和氢氧根,钠离子由阳极室通过隔膜扩散到阴极形成烧碱溶液;
步骤(2),化学沉淀法制备正磷酸铁;采用步骤(1)产生的三价铁离子溶液作为原料,通过添加含有磷酸根离子水溶液作为沉淀剂,生成正磷酸铁。
2. 根据权利要求1所述的烧碱和正磷酸铁的联产方法, 其特征在于,所述的阴极电解液,以水为溶剂,溶质为氯化钠、氢氧化钠、硫酸钠、硝酸钠、甲酸钠、乙酸钠中的一种或几种,所含钠盐浓度为0.001~ 10 moL/L。
3. 根据权利要求1所述的烧碱和正磷酸铁的联产方法, 其特征在于,所述的阳极电解液,以水为溶剂,溶质为钠盐和亚铁盐;钠盐为氯化钠、硫酸钠、硝酸钠、醋酸钠中的一种或几种,所含钠盐的浓度为0.01 ~ 10 mol/L;亚铁盐为氯化亚铁、硫酸亚铁、硫酸亚铁铵、硝酸亚铁、醋酸亚铁中的一种或几种, 所含亚铁盐的溶度为0.01~5moL/L。
4. 根据权利要求3所述的烧碱和正磷酸铁的联产方法, 其特征在于,所述的阳极电解液,还包含甘氨酸、苹果酸、葡萄糖、磺基水杨酸、乙二胺四乙酸二钠等络合剂中的一种或几种。
5. 根据权利要求1所述的烧碱和正磷酸铁的联产方法, 其特征在于,所述的电解,采用Nafion膜、微孔膜,或复合Nafion/微孔膜来分隔阳极室和阴极室。
6.根据权利要求1所述的烧碱和正磷酸铁的联产方法, 其特征在于,所述的电解槽,其所用阴极为镀铂钛网、镀铂不锈钢网、负载铂碳催化剂的碳纸、负载铂碳催化剂的碳毡、负载铂碳催化剂的碳布、负载铂碳催化剂的石墨毡、镍网、泡沫镍中的一种或其中的几种。
7. 据权利要求1所述的烧碱和正磷酸铁的联产方法, 其特征在于,所述的电解槽,其所用阳极为钛网、不锈钢网、碳纸、碳毡、碳布、石墨毡中的一种或其中的几种。
8.根据权利要求1所述的烧碱和正磷酸铁的联产方法, 其特征在于,所述的沉淀剂,选自磷酸、磷酸二氢钠、磷酸二氢铵、磷酸二氢钾、磷酸氢二钠、磷酸氢二钾、磷酸氢二铵、磷酸钠、磷酸钾、磷酸铵中的一种或几种。
9. 根据权利要求8所述的烧碱和正磷酸铁的联产方法, 其特征在于,还选择草酸作为共沉淀剂。
CN202110059082.7A 2021-01-18 2021-01-18 一种烧碱和正磷酸铁的联产方法 Active CN112853375B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110059082.7A CN112853375B (zh) 2021-01-18 2021-01-18 一种烧碱和正磷酸铁的联产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110059082.7A CN112853375B (zh) 2021-01-18 2021-01-18 一种烧碱和正磷酸铁的联产方法

Publications (2)

Publication Number Publication Date
CN112853375A true CN112853375A (zh) 2021-05-28
CN112853375B CN112853375B (zh) 2021-11-19

Family

ID=76005947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110059082.7A Active CN112853375B (zh) 2021-01-18 2021-01-18 一种烧碱和正磷酸铁的联产方法

Country Status (1)

Country Link
CN (1) CN112853375B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981433A (zh) * 2021-02-04 2021-06-18 中南大学 一种阳离子膜矿浆电解回收废旧磷酸铁锂正极材料的方法及回收得到的氢氧化锂
CN113896181A (zh) * 2021-10-09 2022-01-07 四川裕宁新能源材料有限公司 一种生产低成本纳米电池级磷酸铁的方法
CN114784331A (zh) * 2022-05-18 2022-07-22 西安交通大学 锌溴液流电池的酸碱调控系统及其工作方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170281A (ja) * 1983-03-18 1984-09-26 Permelec Electrode Ltd 希薄苛性アルカリ水溶液の電解方法
US4608137A (en) * 1983-05-23 1986-08-26 Chevron Research Company Production of hydrogen at the cathode of an electrolytic cell
JPH0681182A (ja) * 1992-08-28 1994-03-22 Asahi Glass Co Ltd 水酸化アルカリの製造方法
CN1699629A (zh) * 2004-05-20 2005-11-23 石油大学(北京) 低电耗水电解制氢联产氢氧化物的方法
CN101241987A (zh) * 2008-01-04 2008-08-13 深圳大学 一种锂离子电池正极材料磷酸铁锂的电化学合成方法
CN102304723A (zh) * 2011-09-20 2012-01-04 福建师范大学 一种基于阴阳离子交换膜与双极膜构成的三膜四室无氯产碱电解槽
CN105821436A (zh) * 2016-05-09 2016-08-03 复旦大学 一种基于三电极体系的双电解槽两步法氯碱电解方法及装置
CN106048641A (zh) * 2016-07-06 2016-10-26 扬州大学 一种成对电化学制备Fe3+和H2的工艺方法
CN108134079A (zh) * 2017-12-27 2018-06-08 东莞理工学院 磷酸铁及磷酸铁复合材料作为负极在双离子电池中的应用
CN111533104A (zh) * 2020-06-23 2020-08-14 王家祥 一种制备电池级磷酸铁的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170281A (ja) * 1983-03-18 1984-09-26 Permelec Electrode Ltd 希薄苛性アルカリ水溶液の電解方法
US4608137A (en) * 1983-05-23 1986-08-26 Chevron Research Company Production of hydrogen at the cathode of an electrolytic cell
JPH0681182A (ja) * 1992-08-28 1994-03-22 Asahi Glass Co Ltd 水酸化アルカリの製造方法
CN1699629A (zh) * 2004-05-20 2005-11-23 石油大学(北京) 低电耗水电解制氢联产氢氧化物的方法
CN101241987A (zh) * 2008-01-04 2008-08-13 深圳大学 一种锂离子电池正极材料磷酸铁锂的电化学合成方法
CN102304723A (zh) * 2011-09-20 2012-01-04 福建师范大学 一种基于阴阳离子交换膜与双极膜构成的三膜四室无氯产碱电解槽
CN105821436A (zh) * 2016-05-09 2016-08-03 复旦大学 一种基于三电极体系的双电解槽两步法氯碱电解方法及装置
CN106048641A (zh) * 2016-07-06 2016-10-26 扬州大学 一种成对电化学制备Fe3+和H2的工艺方法
CN108134079A (zh) * 2017-12-27 2018-06-08 东莞理工学院 磷酸铁及磷酸铁复合材料作为负极在双离子电池中的应用
CN111533104A (zh) * 2020-06-23 2020-08-14 王家祥 一种制备电池级磷酸铁的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEICHUN HE ET AL: "Novel KOH electrolyte for one-step electrochemical synthesis of high purity solid K2FeO4: Comparison with NaOH", 《ELECTROCHEMISTRY COMMUNICATIONS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981433A (zh) * 2021-02-04 2021-06-18 中南大学 一种阳离子膜矿浆电解回收废旧磷酸铁锂正极材料的方法及回收得到的氢氧化锂
CN113896181A (zh) * 2021-10-09 2022-01-07 四川裕宁新能源材料有限公司 一种生产低成本纳米电池级磷酸铁的方法
CN113896181B (zh) * 2021-10-09 2023-02-10 四川裕宁新能源材料有限公司 一种生产低成本纳米电池级磷酸铁的方法
CN114784331A (zh) * 2022-05-18 2022-07-22 西安交通大学 锌溴液流电池的酸碱调控系统及其工作方法
CN114784331B (zh) * 2022-05-18 2023-09-22 西安交通大学 锌溴液流电池的酸碱调控系统及其工作方法

Also Published As

Publication number Publication date
CN112853375B (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
CN112853375B (zh) 一种烧碱和正磷酸铁的联产方法
CN110117794B (zh) 一种电还原co2制甲酸盐的三室型电解池装置及其电解方法
WO2016078491A1 (zh) 一种长寿命锌溴液流电池
CN112786938B (zh) 具有双溶解沉积反应的酸碱混合高电压水系锌电池和锌液流电池
CN113764714A (zh) 一种水系液流电池的电解液、全铁水系液流电池及应用
CN108475802A (zh) 再生燃料电池
CN110265656A (zh) 一种以硫单质或硫化物为正极的水系锌离子二次电池
CN111816890B (zh) 一种流体海水电池及制备方法
CN108963267A (zh) 用于锂金属负极的三维多孔碳包覆氧化锌集流体的制备方法
CN111477872A (zh) 一种以铁掺杂磷酸钛钠作为负极活性材料的水系锂/钠离子电池及其制备方法
CN109252181B (zh) 一种电解制备六氟铁酸钠的方法
CN106745538A (zh) 一种从次磷酸盐废水中回收单质磷的方法
CN220246280U (zh) 一种用于连续制备磷酸铁锂前驱体或氢气的装置
CN111244516A (zh) 一种添加剂在碱性锌镍液流电池负极电解液中的应用
CN113690397A (zh) 一种锌负极极片及其制备方法和应用
CN103515572A (zh) 一种石墨烯/硫复合正极的制备方法
CN111509307A (zh) 一种水系锌离子电池无机胶体电解质的制备方法及其应用
CN113249737B (zh) 一种用金属制氢的电池
CN114976299A (zh) 水系锌离子电池用湿砂电解液及其制备方法、水系锌离子电池
CN110034319A (zh) 一种锌-水燃料电池及其在发电产氢中的应用
CN114059086A (zh) 一种基于酸性电解质两步电解制氢的装置和方法
CN110289464B (zh) 一种水系空气电池及利用其分离回收钴酸锂中锂钴元素的方法、应用
CN110482516B (zh) 一种用于可充锌基电池的正极及可充锌基电池
CN111180774B (zh) 一种中性铁硫双液流电池的制备方法
CN113363597A (zh) 水系离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant