CN112795945B - 高臭氧催化活性金刚石电极及其制备方法和应用 - Google Patents

高臭氧催化活性金刚石电极及其制备方法和应用 Download PDF

Info

Publication number
CN112795945B
CN112795945B CN202011434980.8A CN202011434980A CN112795945B CN 112795945 B CN112795945 B CN 112795945B CN 202011434980 A CN202011434980 A CN 202011434980A CN 112795945 B CN112795945 B CN 112795945B
Authority
CN
China
Prior art keywords
boron
electrode
doped diamond
layer
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011434980.8A
Other languages
English (en)
Other versions
CN112795945A (zh
Inventor
杨扬
李东
唐永炳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN202011434980.8A priority Critical patent/CN112795945B/zh
Publication of CN112795945A publication Critical patent/CN112795945A/zh
Application granted granted Critical
Publication of CN112795945B publication Critical patent/CN112795945B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • A61L2/202Ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/003Wastewater from hospitals, laboratories and the like, heavily contaminated by pathogenic microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Electrochemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种高臭氧催化活性金刚石电极及其制备方法和应用,包括电极基底,所述电极基底表面设有第一硼掺杂金刚石层,或所述电极基底表面设有过渡层,所述过渡层表面设有第一硼掺杂金刚石层;所述第一硼掺杂金刚石层的表面设有第二硼掺杂金刚石层,所述第二硼掺杂金刚石层具有多孔多通道的结构。本发明高臭氧催化活性金刚石电极具有多孔多通道结构的第二硼掺杂金刚石层,由于电极的多孔多通道原因,可以发生毛细现象,在液面以上产生臭氧,解决了金刚石催化时臭氧产率低,消毒、灭菌效率低的问题。

Description

高臭氧催化活性金刚石电极及其制备方法和应用
技术领域
本发明属于电化学技术领域,具体涉及一种高臭氧催化活性金刚石电极及其制备方法和应用。
背景技术
医疗废水的处理一直是个热门话题,医疗废水中不仅有各种抗生素有机物,而且含有病毒。目前常用的医疗废水处理方式有加入强氧化剂如含氯消毒剂,过氧化物消毒剂等。这些降解方式大多含有化学物质,对某些病菌也达不到灭活的效果。而臭氧被公认为是一种有效的杀菌消毒剂,被广泛应用于医疗护理、家具卫生清洁、病毒防控等场景。
掺硼金刚石(BDD)是医疗废水处理的常用电极,掺硼金刚石处理废水时,大多是利用电极表面产生的强氧化性的羟基自由基离子对废水中成分进行氧化分解。但是医疗废水成分十分复杂,多数含有盐离子(如Cl-),由于BDD电解过程中产生的强氧化性离子羟基自由基,会氧化生成高氯酸等有害物质,因此需要降低羟基自由基的产生,提高臭氧产量。
发明内容
为了解决上述背景技术中所提出的问题,本发明的目的在于提供一种高臭氧催化活性金刚石电极及其制备方法和应用。本发明高臭氧催化活性金刚石电极包括多孔多通道结构的第二硼掺杂金刚石层,多孔多通道结构为分子“分子氧锁定效应”提供了通道。
为了达到上述目的,本发明所采用的技术方案为:一方面,本发明提供了一种高臭氧催化活性金刚石电极,包括电极基底,所述电极基底表面设有第一硼掺杂金刚石层,或所述电极基底表面设有过渡层,所述过渡层表面设有第一硼掺杂金刚石层;所述第一硼掺杂金刚石层的表面设有第二硼掺杂金刚石层,所述第二硼掺杂金刚石层具有多孔多通道的结构。
进一步地,所述多孔多通道的结构为表面多孔微孔和内部通道的结构,或,表面纳米孔洞的多级孔洞和内部通道的结构。
进一步地,所述电极基底包括钛、钽、铌、钛、石墨、镍、铜、钼、铬、钨、硅、铝、不锈钢、碳化硅中的一种;
优选地,所述电极基底结构包括片材、网状编织、泡沫中的一种。
进一步地,所述过渡层包括钛、铌中的一种。
另一方面,本发明提供了一种上述任一所述的高臭氧催化活性金刚石电极的制备方法,包括以下步骤:
1)在所述电极基底表面通过热丝化学气相沉积方法制备所述第一硼掺杂金刚石层;
2)在所述第一硼掺杂金刚石层表面通过热丝化学气相沉积方法制备硼掺杂金刚石与碳化硅复合层;
3)通过氢氟酸刻蚀,去除硼掺杂金刚石与碳化硅复合层中的碳化硅,形成多孔多通道结构的第二硼掺杂金刚石层;
或1)在所述电极基底表面通过物理气相沉积或者蒸发镀膜法制备过渡层;在所述过渡层表面通过热丝化学气相沉积方法制备所述第一硼掺杂金刚石层;
2)在所述第一硼掺杂金刚石层表面通过热丝化学气相沉积方法制备硼掺杂金刚石与碳化硅复合层;
3)通过氢氟酸刻蚀,去除硼掺杂金刚石与碳化硅复合层中的碳化硅,形成多孔多通道结构的第二硼掺杂金刚石层;
或1)在所述电极基底表面通过热丝化学气相沉积方法制备所述第一硼掺杂金刚石层;
2)在所述第一硼掺杂金刚石层表面通过热丝化学气相沉积方法制备硼掺杂金刚石与碳化硅复合层;
3)通过氢氟酸刻蚀,去除硼掺杂金刚石与碳化硅复合层中的碳化硅,然后经过退火处理得到多孔多通道结构的第二硼掺杂金刚石层;
或1)在所述电极基底表面通过物理气相沉积或者蒸发镀膜法制备过渡层;在所述过渡层表面通过热丝化学气相沉积方法制备所述第一硼掺杂金刚石层;
2)在所述第一硼掺杂金刚石层表面通过热丝化学气相沉积方法制备硼掺杂金刚石与碳化硅复合层;
3)通过氢氟酸刻蚀,去除硼掺杂金刚石与碳化硅复合层中的碳化硅,然后经过退火处理得到多孔多通道结构的第二硼掺杂金刚石层。
进一步地,包括以下步骤:
1)在所述电极基底表面通过热丝化学气相沉积方法制备所述第一硼掺杂金刚石层;
2)在所述第一硼掺杂金刚石层表面通过热丝化学气相沉积方法制备硼掺杂金刚石与碳化硅复合层;
3)通过氢氟酸刻蚀,去除硼掺杂金刚石与碳化硅复合层中的碳化硅,形成多孔多通道结构的第二硼掺杂金刚石层,所述多孔多通道结构为表面多孔微孔和内部通道的结构;
或1)在所述电极基底表面通过物理气相沉积或者蒸发镀膜法制备过渡层;在所述过渡层表面通过热丝化学气相沉积方法制备所述第一硼掺杂金刚石层;
2)在所述第一硼掺杂金刚石层表面通过热丝化学气相沉积方法制备硼掺杂金刚石与碳化硅复合层;
3)通过氢氟酸刻蚀,去除硼掺杂金刚石与碳化硅复合层中的碳化硅,形成多孔多通道结构的第二硼掺杂金刚石层,所述多孔多通道结构为表面多孔微孔和内部通道的结构;
或1)在所述电极基底表面通过热丝化学气相沉积方法制备所述第一硼掺杂金刚石层;
2)在所述第一硼掺杂金刚石层表面通过热丝化学气相沉积方法制备硼掺杂金刚石与碳化硅复合层;
3)通过氢氟酸刻蚀,去除硼掺杂金刚石与碳化硅复合层中的碳化硅,然后经过退火处理得到多孔多通道结构的第二硼掺杂金刚石层,所述多孔多通道结构为表面纳米孔洞的多级孔洞和内部通道的结构;
或1)在所述电极基底表面通过物理气相沉积或者蒸发镀膜法制备过渡层;在所述过渡层表面通过热丝化学气相沉积方法制备所述第一硼掺杂金刚石层;
2)在所述第一硼掺杂金刚石层表面通过热丝化学气相沉积方法制备硼掺杂金刚石与碳化硅复合层;
3)通过氢氟酸刻蚀,去除硼掺杂金刚石与碳化硅复合层中的碳化硅,然后经过退火处理得到多孔多通道结构的第二硼掺杂金刚石层,所述多孔多通道结构为表面纳米孔洞的多级孔洞和内部通道的结构。
进一步地,所述步骤1)前还包括电极基底的预处理;更优选地,所述电极基底的预处理为将电极基底放入稀硫酸溶液中超声打磨表面,然后分别在丙酮和乙醇中超声清洗,然后将清洗后的电极基底放入金刚石悬浮液中超声,取出后干燥。
进一步地,采用热丝化学气相沉积方法制备第一硼掺杂金刚石层和硼掺杂金刚石与碳化硅复合层中,使用钽丝作为热丝热源,热丝到电极基底的距离为6-25mm,热丝温度2000-2400℃,功率为5000-7000W,基底温度为500-850℃;先沉积第一硼掺杂金刚石层,然后改变气体参数,沉积硼掺杂金刚石与碳化硅复合层。
进一步地,所述退火处理为在加热装置中空气气氛下退火,退火温度为600-700℃。
另一方面,本发明提供了一种电解池,包括电解槽体、工作电极和对电极;
所述工作电极为上述任一所述的高臭氧催化活性金刚石电极。
进一步地,所述工作电极部分浸没在电解质溶液中;
优选地,电解质溶液液面以上工作电极面积占工作电极总面积的20~40%。
进一步地,对电极包括不锈钢片、硼掺杂金刚石、钛、钽、铌中的一种。
进一步地,所述电解槽体为倒梯形结构;
优选地,所述电解槽体包括两个倒梯形结构的槽体;
优选地,两个倒梯形结构的槽体的连通位置设有质子交换膜。
进一步地,还包括气体回流管。
再一方面,本发明提供了一种上述任一所述的高臭氧催化活性金刚石电极或上述任一所述的电解池在臭氧气体发生装置、臭氧水发生装置、消毒灭菌设备、废水污水处理中的应用。
本发明的有益效果是:(1)本发明高臭氧催化活性金刚石电极具有多孔多通道结构的第二硼掺杂金刚石层,由于电极的多孔多通道原因,可以发生毛细现象,在液面以上产生臭氧。在这些相互连接的毛细管中,毛细管内部会导致气体栓塞效应,形成大量的氧气泡来阻挡电解液,这些气-液界面将会增大毛细管内的压力,从而导致了分子氧的溶解增加(“分子氧锁定效应”),使得液面上臭氧的产量大大提高,高于液面以下的产量(臭氧不仅会在浸没的电极部分产生,同时也会产生在液面以上的部分,而现有技术中都是尽可能的将电极浸没,并没有考虑到臭氧在液面上也可以产生),解决了金刚石催化时臭氧产率低,降解效率低的问题。(2)本发明高臭氧催化活性金刚石电极效率高、寿命长,耐受性强,成本低。(3)本发明高臭氧催化活性金刚石电极与部分浸没处理的方式结合,增强了毛细效应。(4)本发明高臭氧催化活性金刚石电极与电解池的倒梯形形状相结合,可以有效的增加毛细效应。(5)本发明电解池设有气体回流管,将溢出的臭氧和氧气导回溶液中,不仅不会排放臭氧到空气中,还提高溶液中的臭氧含量,提高了电解效率;同时提高溶液的含氧量,进一步促进臭氧的产生,可以有效的减少羟基自由基带来的副产物,提高催化的效果,进一步提高降解效率。
附图说明
图1为本发明实施例中电解池的结构示意图;
其中,1.直流电源;2.工作电极;3.对电极;4.气体回流管;5.导气管;6、气压计及放气阀;7.进水口流量计;8.出水口流量计。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明。以下所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
实施例1
步骤一:基底预处理。将尺寸为3.5cm×7cm的双层或三层钛网放入96mL(去离子水90mL、浓硫酸6mL)的稀硫酸溶液,超声30min打磨表面。然后取出钛网,分别在丙酮和乙醇中超声5min清洗,将清洗后的基底放入金刚石悬浮液中超声30min,取出后室温下氮气吹干。
步骤二:沉积硼掺杂金刚石。将钛网基底置于基台上,保持钛网基底在热丝中间且与热丝平行,热丝与基片表面的间距为20mm。将炉内压强抽至0.1Pa以下,然后通入反应混合气体,通入的气体包括甲烷、氢气、三甲基硼烷,甲烷作为金刚石沉积的碳源,三甲基硼烷(TMB)作为掺硼金刚石(BDD)沉积的硼掺杂源。调整沉积压强,开始金刚石薄膜形核和生长。HFCVD沉积硼掺杂金刚石薄膜的的具体参数如下:9根直径为0.5mm的钽丝作为热丝,与样品表面的间距为20mm,CH4/H2/TMB流量为10sccm/450sccm/40sccm,总气体流量为500sccm,沉积压强为1500Pa,热丝功率:6850W,钛网基底温度:~600℃,沉积时间:6小时,得到厚度约为8μm的硼掺杂金刚石薄膜。
步骤三:沉积碳化硅硼掺杂金刚石复合膜(BDD/SiC)。更改气体参数,通入的气体包括甲烷、氢气、氩气、四甲基硅烷、三甲基硼烷。具体参数为CH4/H2/Ar/TMS/TMB流量为10sccm/100sccm/340sccm/10sccm/40sccm。总气量保持500sccm,沉积4h。取出样品,放入100mL(氢氟酸75mL、硝酸25mL)稀氢氟酸溶液中,在80℃浴槽中蚀刻4h。去除SiC,在表面形成微孔和孔道,然后在将样品在去离子水中冲洗,冲洗后在70℃的烘箱中至少干燥2h。制备得到的电极的孔隙率和电化学表面积结果如表1所示。
活化及处理医疗废水,将电极在0.5M H2SO4中使用计时电流法在5V电压下测试5min活化,然后按照图1所示电解池示意图安装好,所述电解池包括直流电源1、工作电极2、对电极3、导气管5、气压计及放气阀6、进水口流量计7、出水口流量计8,其中电极完全浸没,不回收氧气。打开直流电源,打开进水阀门,等到液面将电极浸没后,打开出水口,观察流量计,调制进水出水速率一致,调节电压为7V,电流密度为100mA/cm-2。电解过程中如果气压计数值过高,可通过打开放气阀或者调整进出水速率稳定。取电解后水样,测试COD,并计算产臭氧法拉第效率、降解COD能量效率,结果如表1所示。
电极的臭氧产率通过UV(紫外分光光度计)检测,取2mL水样,加入指示剂(DPD/催化剂)后摇晃,混合均匀后静置反应30分钟,反应后通过UV检测在510nm波长处的吸光度表征其臭氧量。电极的臭氧产率结果如表1所示。
实施例2
步骤一:基底预处理。将尺寸为3.5cm×7cm的双层或三层钛网放入96mL(去离子水90mL、浓硫酸6mL)的稀硫酸溶液,超声30min打磨表面。然后取出钛网,分别在丙酮和乙醇中超声5min清洗,将清洗后的基底放入金刚石悬浮液中超声30min,取出后室温下氮气吹干。
步骤二:沉积硼掺杂金刚石。将钛网基底置于基台上,保持钛网基底在热丝中间且与热丝平行,热丝与基片表面的间距为20mm。将炉内压强抽至0.1Pa以下,然后通入反应混合气体,通入的气体包括甲烷、氢气、三甲基硼烷,甲烷作为金刚石沉积的碳源,三甲基硼烷(TMB)作为BDD沉积的硼掺杂源。调整沉积压强,开始金刚石薄膜形核和生长。HFCVD沉积硼掺杂金刚石薄膜的的具体参数如下:9根直径为0.5mm的钽丝作为热丝,与样品表面的间距为20mm,CH4/H2/TMB流量为10sccm/450sccm/40sccm,总气体流量为500sccm,沉积压强为1500Pa,热丝功率:6850W,钛网基底温度:~600℃,沉积时间:6小时,得到厚度约为8μm的硼掺杂金刚石薄膜。
步骤三:沉积碳化硅硼掺杂金刚石复合膜(BDD/SiC)。更改气体参数,通入的气体包括甲烷、氢气、氩气、四甲基硅烷、三甲基硼烷。具体参数为CH4/H2/Ar/TMS/TMB流量为10sccm/100sccm/340sccm/10sccm/40sccm。总气量保持500sccm,沉积4h。取出样品,放入100mL(氢氟酸75mL、硝酸25mL)稀氢氟酸溶液中,在80℃浴槽中蚀刻4h。去除SiC,在表面形成微孔和孔道,然后在将样品在去离子水中冲洗,冲洗后在70℃的烘箱中至少干燥2h。
步骤四:最后在管式炉中空气气氛下退火,在600℃得到表面纳米孔洞的多级孔洞和内部通道的结构。制备得到的电极的孔隙率和电化学表面积结果如表1所示。
活化及处理医疗废水,将电极在0.5M H2SO4中使用计时电流法在5V电压下测试5min活化,然后按照图1所示电解池示意图安装好,所述电解池包括直流电源1、工作电极2、对电极3、导气管5、气压计及放气阀6、进水口流量计7、出水口流量计8,其中电极完全浸没,不回收氧气。打开直流电源,打开进水阀门,等到液面将电极浸没后,打开出水口,观察流量计,调制进水出水速率一致,调节电压为7V,电流密度为100mA/cm-2。电解过程中如果气压计数值过高,可通过打开放气阀或者调整进出水速率稳定。取电解后水样,测试COD,并计算产臭氧法拉第效率、降解COD能量效率,结果如表1所示。
电极的臭氧产率通过UV(紫外分光光度计)检测,取2mL水样,加入指示剂(DPD/催化剂)后摇晃,混合均匀后静置反应30分钟,反应后通过UV检测在510nm波长处的吸光度表征其臭氧量。电极的臭氧产率结果如表1所示。
实施例3
步骤一:基底预处理。将尺寸为3.5cm×7cm的双层或者三层钛网放入96mL(去离子水90mL、浓硫酸6mL)的稀硫酸溶液,超声30min打磨表面。然后取出钛网,分别在丙酮和乙醇中超声5min清洗,将清洗后的基底放入金刚石悬浮液中超声30min,取出后室温下氮气吹干。
步骤二:沉积硼掺杂金刚石。将钛网基底置于基台上,保持钛网基底在热丝中间且与热丝平行,热丝与基片表面的间距为20mm。将炉内压强抽至0.1Pa以下,然后通入反应混合气体,通入的气体包括甲烷、氢气、三甲基硼烷,甲烷作为金刚石沉积的碳源,三甲基硼烷(TMB)作为BDD沉积的硼掺杂源。调整沉积压强,开始金刚石薄膜形核和生长。HFCVD沉积硼掺杂金刚石薄膜的的具体参数如下:9根直径为0.5mm的钽丝作为热丝,与样品表面的间距为20mm,CH4/H2/TMB流量为10sccm/440sccm/40sccm,总气体流量为500sccm,沉积压强为1500Pa,热丝功率:6850W,钛网基底温度:~600℃,沉积时间:6小时,得到厚度约为8μm的硼掺杂金刚石薄膜。
步骤三:沉积碳化硅硼掺杂金刚石复合膜(BDD/SiC)。更改气体参数,通入的气体包括甲烷、氢气、氩气、四甲基硅烷、三甲基硼烷。具体参数为CH4/H2/Ar/TMS/TMB流量为10sccm/100sccm/340sccm/10sccm/40sccm。总气量保持500sccm,沉积4h。取出样品,放入100mL(氢氟酸75mL、硝酸25mL)稀氢氟酸溶液中,在80℃浴槽中蚀刻4h。去除SiC,在表面形成微孔和孔道,然后在将样品在去离子水中冲洗,冲洗后在70℃的烘箱中至少干燥2h。
步骤四:最后在管式炉中空气气氛下退火,在600℃得到表面纳米孔洞的多级孔洞和内部通道的结构。制备得到的电极的孔隙率和电化学表面积结果如表1所示。
活化及处理医疗废水,将电极在0.5M H2SO4中使用计时电流法在5V电压下测试5min活化,然后按照图1所示电解池示意图安装好,所述电解池包括直流电源1、工作电极2、对电极3、导气管5、气压计及放气阀6、进水口流量计7、出水口流量计8,其中液面上电极面积~40%,不回收氧气。打开直流电源,打开进水阀门,等到液面达到指定高度后,打开出水口,观察流量计,调制进水出水速率一致,调节电压为7V,电流密度为100mA/cm-2。电解过程中如果气压计数值过高,可通过打开放气阀或者调整进出水速率稳定。取电解后水样,测试COD,并计算产臭氧法拉第效率、降解COD能量效率,结果如表1所示。
电极的臭氧产率通过UV(紫外分光光度计)检测,取2mL水样,加入指示剂(DPD/催化剂)后摇晃,混合均匀后静置反应30分钟,反应后通过UV检测在510nm波长处的吸光度表征其臭氧量。电极的臭氧产率结果如表1所示。
实施例4
步骤一:基底预处理。将尺寸为3.5cm×7cm的双层或者三层钛网放入96mL(去离子水90mL、浓硫酸6mL)的稀硫酸溶液,超声30min打磨表面。然后取出钛网,分别在丙酮和乙醇中超声5min清洗,将清洗后的基底放入金刚石悬浮液中超声30min,取出后室温下氮气吹干。
步骤二:沉积硼掺杂金刚石。将钛网基底置于基台上,保持钛网基底在热丝中间且与热丝平行,热丝与基片表面的间距为20mm。将炉内压强抽至0.1Pa以下,然后通入反应混合气体,通入的气体包括甲烷、氢气、三甲基硼烷,甲烷作为金刚石沉积的碳源,三甲基硼烷(TMB)作为BDD沉积的硼掺杂源。调整沉积压强,开始金刚石薄膜形核和生长。HFCVD沉积硼掺杂金刚石薄膜的的具体参数如下:9根直径为0.5mm的钽丝作为热丝,与样品表面的间距为20mm,CH4/H2/TMB流量为10sccm/440sccm/40sccm,总气体流量为500sccm,沉积压强为1500Pa,热丝功率:6850W,钛网基底温度:~600℃,沉积时间:6小时,得到厚度约为8μm的硼掺杂金刚石薄膜。
步骤三:沉积碳化硅硼掺杂金刚石复合膜(BDD/SiC)。更改气体参数,通入的气体包括甲烷、氢气、氩气、四甲基硅烷、三甲基硼烷。具体参数为CH4/H2/Ar/TMS/TMB流量为10sccm/100sccm/340sccm/10sccm/40sccm。总气量保持500sccm,沉积4h。取出样品,放入100mL(氢氟酸75mL、硝酸25mL)稀氢氟酸溶液中,在80℃浴槽中蚀刻4h。去除SiC,在表面形成微孔和孔道,然后在将样品在去离子水中冲洗,冲洗后在70℃的烘箱中至少干燥2h。
步骤四:最后在管式炉中空气气氛下退火,在600℃得到表面纳米孔洞的多级孔洞和内部通道的结构。制备得到的电极的孔隙率和电化学表面积结果如表1所示。
活化及处理医疗废水,将电极在0.5M H2SO4中使用计时电流法在5V电压下测试5min活化,然后按照如图1所示电解池示意图安装好,所述电解池包括直流电源1、工作电极2、对电极3、气体回流管4、导气管5、气压计及放气阀6、进水口流量计7、出水口流量计8,其中液面上电极面积~40%,回收氧气。打开直流电源,打开进水阀门,等到液面达到指定高度后,打开出水口,观察流量计,调制进水出水速率一致,调节电压约为7V左右,电流密度约为100mA/cm-2。然后通过导气管将液面以上产生的氧气导回至溶液中,电解过程中如果气压计数值过高,可通过打开放气阀或者调整进出水速率稳定,一般的臭氧溶解量随气压增高而增大。取电解后水样,测试COD,并计算产臭氧法拉第效率、降解COD能量效率,结果如表1所示。
电极的臭氧产率通过UV(紫外分光光度计)检测,取2mL水样,加入指示剂(DPD/催化剂)后摇晃,混合均匀后静置反应30分钟,反应后通过UV检测在510nm波长处的吸光度表征其臭氧量。电极的臭氧产率结果如表1所示。
实施例5
步骤一:基底预处理。将尺寸为3.5cm×7cm的双层或者三层钛网放入96mL(去离子水90mL、浓硫酸6mL)的稀硫酸溶液,超声30min打磨表面。然后取出钛网,分别在丙酮和乙醇中超声5min清洗,将清洗后的基底放入金刚石悬浮液中超声30min,取出后室温下氮气吹干。
步骤二:沉积硼掺杂金刚石。将钛网基底置于基台上,保持钛网基底在热丝中间且与热丝平行,热丝与基片表面的间距为20mm。将炉内压强抽至0.1Pa以下,然后通入反应混合气体,通入的气体包括甲烷、氢气、三甲基硼烷,甲烷作为金刚石沉积的碳源,三甲基硼烷(TMB)作为BDD沉积的硼掺杂源。调整沉积压强,开始金刚石薄膜形核和生长。HFCVD沉积硼掺杂金刚石薄膜的的具体参数如下:9根直径为0.5mm的钽丝作为热丝,与样品表面的间距为20mm,CH4/H2/TMB流量为10sccm/440sccm/40sccm,总气体流量为500sccm,沉积压强为1500Pa,热丝功率:6850W,钛网基底温度:~600℃,沉积时间:6小时,得到厚度约为8μm的硼掺杂金刚石薄膜。
步骤三:沉积碳化硅硼掺杂金刚石复合膜(BDD/SiC)。更改气体参数,通入的气体包括甲烷、氢气、氩气、四甲基硅烷、三甲基硼烷。具体参数为CH4/H2/Ar/TMS/TMB流量为10sccm/100sccm/335sccm/15sccm/40sccm。总气量保持500sccm,沉积4h。取出样品,放入100mL(氢氟酸75mL、硝酸25mL)稀氢氟酸溶液中,在80℃浴槽中蚀刻4h。去除SiC,在表面形成微孔和孔道,然后在将样品在去离子水中冲洗,冲洗后在70℃的烘箱中至少干燥2h。
步骤四:最后在管式炉中空气气氛下退火,在600-700℃得到表面纳米孔洞的多级孔洞和内部通道的结构。制备得到的电极的孔隙率和电化学表面积结果如表1所示。
活化及处理医疗废水,将电极在0.5M H2SO4中使用计时电流法在5V电压下测试5min活化,然后按照如图1所示电解池示意图安装好,所述电解池包括直流电源1、工作电极2、对电极3、气体回流管4、导气管5、气压计及放气阀6、进水口流量计7、出水口流量计8,其中液面上电极面积~40%,回收氧气。打开直流电源,打开进水阀门,等到液面达到指定高度后,打开出水口,观察流量计,调制进水出水速率一致,调节电压约为7V左右,电流密度约为100mA/cm-2。电解过程中如果气压计数值过高,可通过打开放气阀或者调整进出水速率稳定,一般的臭氧溶解量随气压增高而增大。取电解后水样,测试COD,并计算产臭氧法拉第效率、降解COD能量效率,结果如表1所示。
电极的臭氧产率通过UV(紫外分光光度计)检测,取2mL水样,加入指示剂(DPD/催化剂)后摇晃,混合均匀后静置反应30分钟,反应后通过UV检测在510nm波长处的吸光度表征其臭氧量。电极的臭氧产率结果如表1所示。
表1
Figure BDA0002828177510000101
实施例6-26:
分别取如下材料作为基底制备得到的电极的孔隙率如表2所示(电极无过渡层的与实施例1中电极的制备过程相同,有过渡层的,过渡层的制备为将基底放入PVD中,在功率30W、气体流量30sccm条件下镀膜60分钟,其余处理过程同实施例1):
表2
Figure BDA0002828177510000102
Figure BDA0002828177510000111
以上所述仅为本发明的具体实施方式,不是全部的实施方式,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。

Claims (18)

1.一种高臭氧催化活性金刚石电极,其特征在于,包括电极基底,所述电极基底表面设有第一硼掺杂金刚石层,或所述电极基底表面设有过渡层,所述过渡层表面设有第一硼掺杂金刚石层;所述第一硼掺杂金刚石层的表面设有第二硼掺杂金刚石层,所述第二硼掺杂金刚石层具有多孔多通道的结构;所述多孔多通道的结构为表面纳米孔洞的多级孔洞和内部通道的结构;
所述高臭氧催化活性金刚石电极由以下制备方法得到,所述制备方法包括以下步骤:
1)在所述电极基底表面通过热丝化学气相沉积方法制备所述第一硼掺杂金刚石层;
2)在所述第一硼掺杂金刚石层表面通过热丝化学气相沉积方法制备硼掺杂金刚石与碳化硅复合层;
3)通过氢氟酸刻蚀,去除硼掺杂金刚石与碳化硅复合层中的碳化硅,然后经过退火处理得到多孔多通道结构的第二硼掺杂金刚石层,所述多孔多通道结构为表面纳米孔洞的多级孔洞和内部通道的结构;
或1)在所述电极基底表面通过物理气相沉积或者蒸发镀膜法制备过渡层;在所述过渡层表面通过热丝化学气相沉积方法制备所述第一硼掺杂金刚石层;
2)在所述第一硼掺杂金刚石层表面通过热丝化学气相沉积方法制备硼掺杂金刚石与碳化硅复合层;
3)通过氢氟酸刻蚀,去除硼掺杂金刚石与碳化硅复合层中的碳化硅,然后经过退火处理得到多孔多通道结构的第二硼掺杂金刚石层,所述多孔多通道结构为表面纳米孔洞的多级孔洞和内部通道的结构;
其中,所述退火处理为在加热装置中空气气氛下退火,退火温度为600-700℃。
2.根据权利要求1所述的高臭氧催化活性金刚石电极,其特征在于,所述电极基底选自钛、钽、铌、石墨、镍、铜、钼、铬、钨、硅、铝、不锈钢、碳化硅中的一种。
3.根据权利要求1所述的高臭氧催化活性金刚石电极,其特征在于,所述电极基底结构选自片材、网状中的一种。
4.根据权利要求1所述的高臭氧催化活性金刚石电极,其特征在于,所述电极基底结构为泡沫。
5.根据权利要求1所述的高臭氧催化活性金刚石电极,其特征在于,所述过渡层选自钛、铌中的一种。
6.根据权利要求1所述的高臭氧催化活性金刚石电极,其特征在于,所述高臭氧催化活性金刚石电极的制备方法中,采用热丝化学气相沉积方法制备第一硼掺杂金刚石层和硼掺杂金刚石与碳化硅复合层中,使用钽丝作为热丝热源,热丝到电极基底的距离为6-25mm,热丝温度2000-2400℃,功率为5000-7000W,基底温度为500-850℃;先沉积第一硼掺杂金刚石层,然后改变气体参数,沉积硼掺杂金刚石与碳化硅复合层。
7.权利要求1-6任一项所述的高臭氧催化活性金刚石电极在臭氧气体发生装置、臭氧水发生装置、消毒灭菌设备、废水污水处理中的应用。
8.一种电解池,其特征在于,包括电解槽体、工作电极和对电极;
所述工作电极为权利要求1-3任一项所述的高臭氧催化活性金刚石电极。
9.根据权利要求8所述的电解池,其特征在于,还包括气体回流管。
10.根据权利要求8所述的电解池,其特征在于,所述工作电极部分浸没在电解质溶液中。
11.根据权利要求10所述的电解池,其特征在于,所述电解质溶液液面以上工作电极面积占工作电极总面积的20~40%。
12.根据权利要求8所述的电解池,其特征在于,所述电解槽体为倒梯形结构。
13.根据权利要求12所述的电解池,其特征在于,所述电解槽体包括两个倒梯形结构的槽体。
14.根据权利要求13所述的电解池,其特征在于,所述两个倒梯形结构的槽体的连通位置设有质子交换膜。
15.根据权利要求10-14任一项所述的电解池,其特征在于,还包括气体回流管。
16.权利要求8所述的电解池在臭氧气体发生装置、臭氧水发生装置、消毒灭菌设备、废水污水处理中的应用。
17.权利要求9-14任一项所述的电解池在臭氧气体发生装置、臭氧水发生装置、消毒灭菌设备、废水污水处理中的应用。
18.权利要求15所述的电解池在臭氧气体发生装置、臭氧水发生装置、消毒灭菌设备、废水污水处理中的应用。
CN202011434980.8A 2020-12-10 2020-12-10 高臭氧催化活性金刚石电极及其制备方法和应用 Active CN112795945B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011434980.8A CN112795945B (zh) 2020-12-10 2020-12-10 高臭氧催化活性金刚石电极及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011434980.8A CN112795945B (zh) 2020-12-10 2020-12-10 高臭氧催化活性金刚石电极及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112795945A CN112795945A (zh) 2021-05-14
CN112795945B true CN112795945B (zh) 2022-03-08

Family

ID=75806291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011434980.8A Active CN112795945B (zh) 2020-12-10 2020-12-10 高臭氧催化活性金刚石电极及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112795945B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124179A (en) * 1990-09-13 1992-06-23 Diamonex, Incorporated Interrupted method for producing multilayered polycrystalline diamond films
CN101250710A (zh) * 2008-03-28 2008-08-27 陕西科技大学 电解式臭氧发生器及其阴极催化层的制备工艺
CN104178745A (zh) * 2013-05-28 2014-12-03 中国科学院金属研究所 一种多孔金刚石或多孔立方碳化硅自支撑膜的制备方法
CN106435518A (zh) * 2016-10-21 2017-02-22 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用
CN106955737A (zh) * 2017-03-28 2017-07-18 陕西师范大学 一种海马尾巴状膦酸功能化Rh纳米晶的制备方法
CN107546109A (zh) * 2017-08-31 2018-01-05 武汉工程大学 一种利用氢等离子体去除在硅衬底上制备的金刚石窗口的表面碳化硅的方法
CN108273498A (zh) * 2018-02-09 2018-07-13 中国科学技术大学先进技术研究院 一种Rh的超薄二维纳米片及其制备方法
CN207646292U (zh) * 2017-11-07 2018-07-24 深圳先进技术研究院 一种硼掺杂金刚石电极
CN109750291A (zh) * 2017-11-07 2019-05-14 深圳先进技术研究院 一种硼掺杂金刚石电极及其制备方法
CN110407299A (zh) * 2018-04-28 2019-11-05 深圳先进技术研究院 一种多孔硼氮镍共掺杂金刚石电极及其制备方法和应用
CN111485223A (zh) * 2020-05-11 2020-08-04 南京岱蒙特科技有限公司 一种超高比表面积硼掺杂金刚石电极及其制备方法和应用
CN111579606A (zh) * 2020-05-11 2020-08-25 中南大学 一种高稳定性金属修饰掺硼金刚石电极及其制备方法和应用
CN111647874A (zh) * 2020-05-11 2020-09-11 南京岱蒙特科技有限公司 一种陶瓷衬底的高比表面积硼掺杂金刚石电极及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3819860B2 (ja) * 2003-03-12 2006-09-13 三洋電機株式会社 オゾン生成装置
US9034200B2 (en) * 2007-01-22 2015-05-19 Element Six Limited Technologies Limited Plasma etching of diamond surfaces
WO2018072367A1 (zh) * 2016-10-21 2018-04-26 中南大学 一种硼掺杂金刚石电极及其制备方法与应用

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124179A (en) * 1990-09-13 1992-06-23 Diamonex, Incorporated Interrupted method for producing multilayered polycrystalline diamond films
CN101250710A (zh) * 2008-03-28 2008-08-27 陕西科技大学 电解式臭氧发生器及其阴极催化层的制备工艺
CN104178745A (zh) * 2013-05-28 2014-12-03 中国科学院金属研究所 一种多孔金刚石或多孔立方碳化硅自支撑膜的制备方法
CN106435518A (zh) * 2016-10-21 2017-02-22 中南大学 一种高比表面积硼掺杂金刚石电极及其制备方法和应用
CN106955737A (zh) * 2017-03-28 2017-07-18 陕西师范大学 一种海马尾巴状膦酸功能化Rh纳米晶的制备方法
CN107546109A (zh) * 2017-08-31 2018-01-05 武汉工程大学 一种利用氢等离子体去除在硅衬底上制备的金刚石窗口的表面碳化硅的方法
CN109750291A (zh) * 2017-11-07 2019-05-14 深圳先进技术研究院 一种硼掺杂金刚石电极及其制备方法
CN207646292U (zh) * 2017-11-07 2018-07-24 深圳先进技术研究院 一种硼掺杂金刚石电极
CN108273498A (zh) * 2018-02-09 2018-07-13 中国科学技术大学先进技术研究院 一种Rh的超薄二维纳米片及其制备方法
CN110407299A (zh) * 2018-04-28 2019-11-05 深圳先进技术研究院 一种多孔硼氮镍共掺杂金刚石电极及其制备方法和应用
CN111485223A (zh) * 2020-05-11 2020-08-04 南京岱蒙特科技有限公司 一种超高比表面积硼掺杂金刚石电极及其制备方法和应用
CN111579606A (zh) * 2020-05-11 2020-08-25 中南大学 一种高稳定性金属修饰掺硼金刚石电极及其制备方法和应用
CN111647874A (zh) * 2020-05-11 2020-09-11 南京岱蒙特科技有限公司 一种陶瓷衬底的高比表面积硼掺杂金刚石电极及其制备方法和应用

Also Published As

Publication number Publication date
CN112795945A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
CN111646611B (zh) 一种超声臭氧耦合光电催化水处理系统和处理水的方法
EP1505038B1 (en) Electrochemical sterilizing and bacteriostatic method
CA2797801C (en) Membrane-electrode assembly, electrolytic cell using the same, method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
JP3689541B2 (ja) 海水電解装置
CN111646632B (zh) 一种绿色节能光电催化水处理系统及其处理水的方法
CN111485223B (zh) 一种超高比表面积硼掺杂金刚石电极及其制备方法和应用
US20230192514A1 (en) High-specific surface area and super-hydrophilic gradient boron-doped diamond electrode, method for preparing same and application thereof
CN108905646B (zh) 石墨烯pvdf复合导电超滤膜及制备和污染物去除方法
CN105692806A (zh) 富氢饮水杯
CN101531411A (zh) 气体扩散电极体系电化学消毒的方法
CN105084648A (zh) 一种难生物降解污水的处理方法
CN103130307A (zh) 一种臭氧、光电化学耦合氧化的水处理装置及方法
CN110407299A (zh) 一种多孔硼氮镍共掺杂金刚石电极及其制备方法和应用
CN107142491A (zh) 一种透气电极及其制备方法
CN112795945B (zh) 高臭氧催化活性金刚石电极及其制备方法和应用
CN111675417B (zh) 一种磁性吸附辅助光电催化氧化水处理系统和处理水的方法
CN107930414B (zh) 一种适用于处理浓盐水的电化学膜、制备方法及反应装置
CN111635067B (zh) 一种紫外辅助超声耦合电催化氧化水处理系统和处理水的方法
CN112723494A (zh) 电活化过硫酸盐促进难降解有机物与氮元素同步去除的水处理技术
JP2008516762A (ja) 電気化学的酸化のために改善されたcod除去法
CN111646633A (zh) 一种高效节能三维电极有机水处理系统及其处理水的方法
JP2004195346A (ja) 電気化学的水処理方法
CN105692816A (zh) 城市屋顶储水装置
CN108383214B (zh) 一种光伏电催化有机废水处理反应器及其阳极制备方法
CN205527893U (zh) 酸性洗浴水制取装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant