CN108273498A - 一种Rh的超薄二维纳米片及其制备方法 - Google Patents

一种Rh的超薄二维纳米片及其制备方法 Download PDF

Info

Publication number
CN108273498A
CN108273498A CN201810133969.4A CN201810133969A CN108273498A CN 108273498 A CN108273498 A CN 108273498A CN 201810133969 A CN201810133969 A CN 201810133969A CN 108273498 A CN108273498 A CN 108273498A
Authority
CN
China
Prior art keywords
ultra
thin
nanometer sheet
dimension nanometer
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810133969.4A
Other languages
English (en)
Other versions
CN108273498B (zh
Inventor
闫旭鹏
刘英桓
黄宏文
曾杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Advanced Technology University of Science and Technology of China
Original Assignee
Institute of Advanced Technology University of Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Advanced Technology University of Science and Technology of China filed Critical Institute of Advanced Technology University of Science and Technology of China
Priority to CN201810133969.4A priority Critical patent/CN108273498B/zh
Publication of CN108273498A publication Critical patent/CN108273498A/zh
Application granted granted Critical
Publication of CN108273498B publication Critical patent/CN108273498B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Rh的超薄二维纳米片,其具有多孔结构;粒径尺寸在50nm‑400nm之间,厚度为0.4nm‑1nm。本发明还提出了一种所述Rh的超薄二维纳米片的制备方法,包括:以铑化合物为原料制备前驱体悬浊液,之后将前驱体悬浊液与capping剂和溶剂混合后进行反应得到所述Rh的超薄二维纳米片。本发明提出的Rh的超薄二维纳米片的制备方法,过程简单,条件温和,得到的纳米片具有连续的网络状孔洞结构,且厚度小,比表面积特别大,暴露的活性位点多,原子的利用率特别高,稳定性较好,在催化之中有着巨大的潜力。

Description

一种Rh的超薄二维纳米片及其制备方法
技术领域
本发明涉及纳米催化剂技术领域,尤其涉及一种Rh的超薄二维纳米片及其制备方法。
背景技术
“纳米科学”最初的设想来自于著名物理学家费曼1959年在加州理工大学的一次演讲,自20世纪90年代兴起。纳米科学被认为是对21世纪一系列高新技术的产生和发展有极为重要影响的一门热点学科,被世界各国列为21世纪的关键技术之一,并投入大量的人力物力进行研究开发。
超薄的二维纳米材料是一类新兴的纳米材料类别,其具有片状结构,水平尺寸超过100nm或几个微米甚至更大,但是厚度只有单个或几个原子厚(典型厚度小于5nm)。尽管对于二维材料的探索可以追溯到几十年前,但2004年才标志着超薄纳米材料的诞生,那年Novoselov和Geim及其合作者成功地使用胶带,也就是现今被称为微机械剥离的方法从石墨上剥离出了石墨烯。由于电子被限制在二维的环境中,因此二维材料表现出了独特的物理、电子和化学特性。现今,诸多类石墨烯的其他材料也已经被研究出来,诸如六方氮化硼(h-BN)、过渡金属硫化物(TMDs)、石墨氮化碳(g-C3N4)、层状金属氧化物和层状双氢氧化物等,但金属超薄二维纳米材料的合成还存在很大挑战。因此,制备金属超薄二维纳米材料意义重大。
发明内容
基于背景技术存在的技术问题,本发明提出了一种Rh的超薄二维纳米片及其制备方法,所述制备方法过程简单,条件温和,得到的纳米片具有连续的网络状孔洞结构,且厚度小,比表面积特别大,暴露的活性位点多,原子的利用率特别高,稳定性较好,在催化之中有着巨大的潜力。
本发明提出的一种Rh的超薄二维纳米片,其具有多孔结构。
优选地,其粒径尺寸在50nm-400nm之间。
优选地,其厚度为0.4nm-1nm。
本发明还提出的一种所述Rh的超薄二维纳米片的制备方法,包括以下步骤:以铑化合物为原料制备前驱体悬浊液,之后将前驱体悬浊液与capping剂和溶剂混合后进行反应得到所述Rh的超薄二维纳米片。
优选地,所述铑化合物为乙酰丙酮铑。
优选地,以铑化合物为原料制备前驱体悬浊液的工艺如下:常温下将乙酰丙酮铑加入油胺之中,使用摇床分散均匀得到前驱体悬浊液。
优选地,乙酰丙酮铑的质量与油胺的体积比为35-45:2-7mg/ml。
优选地,以铑化合物为原料制备前驱体悬浊液的工艺如下:常温下将40mg乙酰丙酮铑加入5ml油胺之中,使用摇床分散30-60min,得到前驱体悬浊液。
优选地,每1ml前驱体悬浊液与25-35mg capping剂和2-6ml溶剂混合后进行反应。
优选地,每1ml前驱体悬浊液与30mg capping剂和4ml溶剂混合后进行反应。
优选地,所述capping剂为羰基钨;所述溶剂为油胺。
优选地,反应的温度为165-185℃,反应的时间为1h-2h。
优选地,所述Rh的超薄二维纳米片的制备方法,包括以下步骤:常温下将40mg乙酰丙酮铑加入5ml油胺之中,使用摇床分散30min,得到前驱体悬浊液;将1ml前驱体悬浊液加入20ml反应容器中,加入30mg的羰基钨与4ml油胺混合均匀,在180℃下反应1.5h得到所述Rh的超薄二维纳米片。
本发明首次制备出铑的超薄二维纳米多孔片,原子利用率极高,有望应用于多种实际催化之中,如汽车尾气处理,一氧化碳处理之中。
附图说明
图1为本发明实施例5所得Rh的超薄二维纳米片的透射电子显微镜像;
图2为本发明实施例5所得Rh的超薄二维纳米片的高分辨透射电子显微镜像;
图3为本发明实施例5所得Rh的超薄二维纳米片的原子力显微镜图像。
具体实施方式
下面,通过具体实施例对本发明的技术方案进行详细说明。
实施例1
本发明提出的一种Rh的超薄二维纳米片,其具有多孔结构。
本发明还提出的一种所述Rh的超薄二维纳米片的制备方法,包括以下步骤:以铑化合物为原料制备前驱体悬浊液,之后将前驱体悬浊液与capping剂和溶剂混合后进行反应得到所述Rh的超薄二维纳米片。
实施例2
本发明提出的一种Rh的超薄二维纳米片,其具有多孔结构,其粒径尺寸在50nm-85nm之间,其厚度为0.6nm-1nm。
本发明还提出的一种所述Rh的超薄二维纳米片的制备方法,包括以下步骤:以铑化合物为原料制备前驱体悬浊液,之后将前驱体悬浊液与capping剂和溶剂混合后进行反应得到所述Rh的超薄二维纳米片;
其中,所述铑化合物为乙酰丙酮铑;
以铑化合物为原料制备前驱体悬浊液的工艺如下:常温下将乙酰丙酮铑加入油胺之中,使用摇床分散均匀得到前驱体悬浊液;其中,乙酰丙酮铑的质量与油胺的体积比为35:7mg/ml;
每1ml前驱体悬浊液与25mg capping剂和6ml溶剂混合后进行反应;
所述capping剂为羰基钨;所述溶剂为油胺;
反应的温度为185℃,反应的时间为1h。
实施例3
本发明提出的一种Rh的超薄二维纳米片,其具有多孔结构,其粒径尺寸在100nm-400nm之间,其厚度为0.4nm-0.7nm。
本发明还提出的一种所述Rh的超薄二维纳米片的制备方法,包括以下步骤:以铑化合物为原料制备前驱体悬浊液,之后将前驱体悬浊液与capping剂和溶剂混合后进行反应得到所述Rh的超薄二维纳米片;
其中,所述铑化合物为乙酰丙酮铑;
以铑化合物为原料制备前驱体悬浊液的工艺如下:常温下将乙酰丙酮铑加入油胺之中,使用摇床分散均匀得到前驱体悬浊液;其中,乙酰丙酮铑的质量与油胺的体积比为45:2mg/ml;
每1ml前驱体悬浊液与35mg capping剂和2ml溶剂混合后进行反应;
所述capping剂为羰基钨;所述溶剂为油胺;
反应的温度为165℃,反应的时间为2h。
实施例4
本发明提出的一种Rh的超薄二维纳米片,其具有多孔结构,其粒径尺寸在50nm-400nm之间,其厚度为0.4nm-1nm。
本发明还提出的一种所述Rh的超薄二维纳米片的制备方法,包括以下步骤:以铑化合物为原料制备前驱体悬浊液,之后将前驱体悬浊液与capping剂和溶剂混合后进行反应得到所述Rh的超薄二维纳米片;
其中,所述铑化合物为乙酰丙酮铑;
以铑化合物为原料制备前驱体悬浊液的工艺如下:常温下将40mg乙酰丙酮铑加入5ml油胺之中,使用摇床分散60min,得到前驱体悬浊液;
每1ml前驱体悬浊液与30mg capping剂和4ml溶剂混合后进行反应;
所述capping剂为羰基钨;所述溶剂为油胺;
反应的温度为180℃,反应的时间为1.5h。
实施例5
本发明提出的一种Rh的超薄二维纳米片,其具有多孔结构,其粒径尺寸在50nm-400nm之间,其厚度为0.4nm-1nm。
本发明提出的所述Rh的超薄二维纳米片的制备方法,包括以下步骤:首先利用铑化合物制备前驱体悬浊液,之后将1ml前驱体悬浊液加入20ml反应瓶中,并加入30mg的capping剂羰基钨与4ml油胺混合均匀,在180℃下反应1.5h,得到所述Rh的超薄二维纳米片;
其中,利用铑化合物制备前驱体悬浊液的工艺为:常温下将40mg乙酰丙酮铑加入到5ml油胺之中,使用摇床分散30min,得到前驱体悬浊液。
图1为本发明实施例5所得Rh的超薄二维纳米片的透射电子显微镜像;由图1可知,该方法制备的铑的超薄二维纳米多孔片尺寸在50-400nm之间。
图2为本发明实施例5所得Rh的超薄二维纳米片的高分辨透射电子显微镜像;由图2可知,在微观层面上,该方法制备的铑的超薄二维纳米多孔片具有明确的多孔结构。
图3为本发明实施例5所得Rh的超薄二维纳米片的原子力显微镜图像;由图3可知,该方法制备的铑的超薄二维纳米多孔片厚度为0.5nm,可认为是单层铑原子构成的。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种Rh的超薄二维纳米片,其特征在于,其具有多孔结构。
2.根据权利要求1所述Rh的超薄二维纳米片,其特征在于,其粒径尺寸在50nm-400nm之间。
3.根据权利要求1或2所述Rh的超薄二维纳米片,其特征在于,其厚度为0.4nm-1nm。
4.一种如权利要求1-3中任一项所述Rh的超薄二维纳米片的制备方法,其特征在于,包括以下步骤:以铑化合物为原料制备前驱体悬浊液,之后将前驱体悬浊液与capping剂和溶剂混合后进行反应得到所述Rh的超薄二维纳米片。
5.根据权利要求4所述Rh的超薄二维纳米片的制备方法,其特征在于,所述铑化合物为乙酰丙酮铑。
6.根据权利要求5或6所述Rh的超薄二维纳米片的制备方法,其特征在于,以铑化合物为原料制备前驱体悬浊液的工艺如下:常温下将乙酰丙酮铑加入油胺之中,使用摇床分散均匀得到前驱体悬浊液;优选地,乙酰丙酮铑的质量与油胺的体积比为35-45:2-7mg/ml;优选地,以铑化合物为原料制备前驱体悬浊液的工艺如下:常温下将40mg乙酰丙酮铑加入5ml油胺之中,使用摇床分散30-60min,得到前驱体悬浊液。
7.根据权利要求4-6中任一项所述Rh的超薄二维纳米片的制备方法,其特征在于,每1ml前驱体悬浊液与25-35mg capping剂和2-6ml溶剂混合后进行反应;优选地,每1ml前驱体悬浊液与30mg capping剂和4ml溶剂混合后进行反应。
8.根据权利要求4-7中任一项所述Rh的超薄二维纳米片的制备方法,其特征在于,所述capping剂为羰基钨;所述溶剂为油胺。
9.根据权利要求4-8中任一项所述Rh的超薄二维纳米片的制备方法,其特征在于,反应的温度为165-185℃,反应的时间为1h-2h。
10.根据权利要求4-9中任一项所述Rh的超薄二维纳米片的制备方法,其特征在于,包括以下步骤:常温下将40mg乙酰丙酮铑加入5ml油胺之中,使用摇床分散30min,得到前驱体悬浊液;将1ml前驱体悬浊液加入20ml反应容器中,加入30mg的羰基钨与4ml油胺混合均匀,在180℃下反应1.5h得到所述Rh的超薄二维纳米片。
CN201810133969.4A 2018-02-09 2018-02-09 一种Rh的超薄二维纳米片及其制备方法 Active CN108273498B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810133969.4A CN108273498B (zh) 2018-02-09 2018-02-09 一种Rh的超薄二维纳米片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810133969.4A CN108273498B (zh) 2018-02-09 2018-02-09 一种Rh的超薄二维纳米片及其制备方法

Publications (2)

Publication Number Publication Date
CN108273498A true CN108273498A (zh) 2018-07-13
CN108273498B CN108273498B (zh) 2020-12-25

Family

ID=62808069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810133969.4A Active CN108273498B (zh) 2018-02-09 2018-02-09 一种Rh的超薄二维纳米片及其制备方法

Country Status (1)

Country Link
CN (1) CN108273498B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111496267A (zh) * 2020-05-12 2020-08-07 中南民族大学 一种折叠型Rh纳米片及其合成方法
CN112795945A (zh) * 2020-12-10 2021-05-14 深圳先进技术研究院 高臭氧催化活性金刚石电极及其制备方法和应用
CN112795951A (zh) * 2020-12-18 2021-05-14 陕西师范大学 一种微米级多孔Rh纳米片的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103896222A (zh) * 2012-12-24 2014-07-02 中国科学技术大学 超薄纳米片半导体材料及其制备方法和应用
CN104549244A (zh) * 2015-02-06 2015-04-29 厦门大学 一种铑纳米催化剂及其制备方法与应用
CN104928518A (zh) * 2015-07-14 2015-09-23 北京航空航天大学 一种超细纳米多孔金属及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103896222A (zh) * 2012-12-24 2014-07-02 中国科学技术大学 超薄纳米片半导体材料及其制备方法和应用
CN104549244A (zh) * 2015-02-06 2015-04-29 厦门大学 一种铑纳米催化剂及其制备方法与应用
CN104928518A (zh) * 2015-07-14 2015-09-23 北京航空航天大学 一种超细纳米多孔金属及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINGJIE GE等: "Ultrathin Palladium Nanomesh for Electrocatalysis", 《ANGEW. CHEM. INT. ED.》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111496267A (zh) * 2020-05-12 2020-08-07 中南民族大学 一种折叠型Rh纳米片及其合成方法
CN111496267B (zh) * 2020-05-12 2022-05-13 中南民族大学 一种折叠型Rh纳米片及其合成方法
CN112795945A (zh) * 2020-12-10 2021-05-14 深圳先进技术研究院 高臭氧催化活性金刚石电极及其制备方法和应用
CN112795945B (zh) * 2020-12-10 2022-03-08 深圳先进技术研究院 高臭氧催化活性金刚石电极及其制备方法和应用
CN112795951A (zh) * 2020-12-18 2021-05-14 陕西师范大学 一种微米级多孔Rh纳米片的制备方法

Also Published As

Publication number Publication date
CN108273498B (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
Zhang et al. CO2 controls the oriented growth of metal-organic framework with highly accessible active sites
Shifa et al. Confined catalysis: progress and prospects in energy conversion
Zhang et al. Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation
Shalaby et al. Structural analysis of reduced graphene oxide by transmission electron microscopy
CN108273498A (zh) 一种Rh的超薄二维纳米片及其制备方法
Sun et al. Noble‐Metal‐Based Hollow Mesoporous Nanoparticles: Synthesis Strategies and Applications
Ballinger et al. Palladium cobalt binary doping of molecular sieving silica membranes
Liu et al. Controlling and formation mechanism of oxygen-containing groups on graphite oxide
CN106457229A (zh) 在沸石和类沸石中引入金属纳米粒子的通用方法
JP3932478B2 (ja) 貴金属細孔体及びその製造方法
CN104085878B (zh) 表面功能化的有序介孔掺氮炭材料的制备方法及产品
Hu et al. Coating strategies for atomic layer deposition
Wen et al. Enhancing the selectivity of hydrogen isotopic water in membrane distillation by using graphene oxide
Potemkin et al. Porous nanocrystalline silicon supported bimetallic Pd-Au catalysts: preparation, characterization, and direct hydrogen peroxide synthesis
Cao et al. Ultra-stable metal nano-catalyst synthesis strategy: a perspective
Wang et al. Fabrication of novel hybrid nanoflowers from boron nitride nanosheets and metal–organic frameworks: a solid acid catalyst with enhanced catalytic performance
Nayak et al. Aqueous sodium borohydride induced thermally stable porous zirconium oxide for quick removal of lead ions
Fu et al. Preparation of halloysite nanotube-supported gold nanocomposite for solvent-free oxidation of benzyl alcohol
Jin et al. In situ assembly of well-dispersed gold nanoparticles on hierarchical double-walled nickel silicate hollow nanofibers as an efficient and reusable hydrogenation catalyst
CN106607018B (zh) 一种低碳烷烃脱氢催化剂及制备方法与应用
Wang et al. Efficient catalysts for cyclohexane dehydrogenation synthesized by Mo-promoted growth of 3D block carbon coupled with Mo2C
Su et al. Self-limiting growth of two-dimensional palladium between graphene oxide layers
Han et al. Synthesis and characterisation of ambient pressure dried composites of silica aerogel matrix and embedded nickel nanoparticles
Odrozek et al. Amine-stabilized small gold nanoparticles supported on AlSBA-15 as effective catalysts for aerobic glucose oxidation
Lan et al. Porous reduced graphene oxide/phenolic nanomesh membranes with ternary channels for ultrafast water purification

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant