CN112723888B - 高熵陶瓷材料及其制备方法 - Google Patents

高熵陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN112723888B
CN112723888B CN202110167968.3A CN202110167968A CN112723888B CN 112723888 B CN112723888 B CN 112723888B CN 202110167968 A CN202110167968 A CN 202110167968A CN 112723888 B CN112723888 B CN 112723888B
Authority
CN
China
Prior art keywords
entropy ceramic
ceramic material
entropy
composite powder
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110167968.3A
Other languages
English (en)
Other versions
CN112723888A (zh
Inventor
林元华
刘超
杨岳洋
南策文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202110167968.3A priority Critical patent/CN112723888B/zh
Publication of CN112723888A publication Critical patent/CN112723888A/zh
Application granted granted Critical
Publication of CN112723888B publication Critical patent/CN112723888B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明公开了一种高熵陶瓷材料及其制备方法,该高熵陶瓷材料的化学式为TiaVbCrcNbdTaeAlC,其中,a+b+c+d+e=2,并且a、b、c、d、e数值不完全相同。由此,该高熵陶瓷材料具有强度高、硬度高、抗氧化性强、热稳定性好等优点,在载人航天、国防军工、汽车制造和微纳电子等领域具有十分广阔的应用前景。

Description

高熵陶瓷材料及其制备方法
技术领域
本发明属于热电材料领域,具体涉及一种高熵陶瓷材料及其制备方法。
背景技术
材料是人类社会赖以生存和发展的物质基础,日新月异的科技发展对材料的需求日益增大,材料科学工作者需要不断设计和研发出新型性能优异的材料体系来满足各个高精尖领域对材料的要求。在这一快速发展的时代浪潮下,高熵合金的概念应运而生,其提出始于大块非晶合金的开发,主要是指由五种或五种以上主导元素组成,每种元素的含量介于5%-35%之间,而且这些新材料具有一些传统合金所无法比拟的优异性能。
近年来,随着高熵合金的快速发展,有研究者将高熵的概念用于陶瓷材料体系的设计与研发。比如2015年,在文献“Entropy-stabilized oxides[J].NatureCommunications,2015,6:8485.”中,Rost等人首次将高熵的设计理念引入陶瓷体系中,设计并成功制备得到了稳定的(Mg0.2Co0.2Ni0.2Zn0.2Cu0.2)O氧化物岩盐相,预期这类新型陶瓷具有很好的应用前景。作为一类全新的陶瓷材料体系,高熵陶瓷材料的研究目前还主要偏重于新体系设计与制备技术的探索阶段。比如在文献“Microstructure of(Hf-Ta-Zr-Nb)Chigh-entropy carbide at micro and nano/atomic level[J].Journal of theEuropean Ceramic Society,2018,38:4303-4307.”中,采用球磨和放电等离子烧结法,利用碳化物原料成功制备得到了组织均匀,致密度较高的碳化物高熵陶瓷,但由于制备工艺过程比较复杂,难以实现高效大量的制备。在文献“Novel processing route for thefabrication of bulk high-entropy metal diborides[J].Scripta Materialia,2019,158:100-104.”中,研究者采用自蔓延高温合成结合放电等离子烧结技术,成功制备得到了致密的(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2硼化物高熵陶瓷,但由于自蔓延高温反应过程难以随意调控,生成的物相中杂质较多,较低的高熵陶瓷纯度会影响其应用效果。
高熵陶瓷材料的研究在近几年越来越受到科研工作者的广泛的关注,它们所具有的高强度、高硬度、抗氧化性、热稳定性等特性使得其具有较大的应用前景,然而在目前关于高熵陶瓷的研究中心,仅有少量的碳化物、氧化物和二硼化物高熵陶瓷被成功合成。现有的材料体系和制备技术发展均受到了很大程度的限制,比如无法实现大量生产、产品纯度不够、制备工艺繁琐等缺点。因此,本领域迫切需要探究新的高熵陶瓷设计体系和制备技术。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种高熵陶瓷材料及其制备方法,该高熵陶瓷材料具有强度高、硬度高、抗氧化性强、热稳定性好等优点,在载人航天、国防军工、汽车制造和微纳电子等领域具有十分广阔的应用前景。
在本发明的一个方面,本发明提出了一种高熵陶瓷材料。根据本发明实施例,所述高熵陶瓷材料的化学式为TiaVbCrcNbdTaeAlC,其中,a+b+c+d+e=2,并且a、b、c、d、e数值不完全相同。
根据本发明实施例的高熵陶瓷材料,通过选择Ti、V、Cr、Nb、Ta为M位元素,可以更好地形成纯度较高的固溶体,并且不同元素的原子半径差异较大,可以引入更多的空位缺陷以改善材料物理和力学性能,并且能降低成本和有利于贮存;选择Al为A位元素,轻元素Al能更好地与M位元素组合,从而降低了高熵陶瓷材料的热导率;C为X位元素,从而得到一种化学式为TiaVbCrcNbdTaeAlC的新型MAX型复合高熵陶瓷材料,且a+b+c+d+e=2,a、b、c、d、e数值不完全相同,可以造成M位元素摩尔比的差异化,比摩尔比均匀化的高熵陶瓷具有更好的综合性能。由此,本发明的高熵陶瓷材料具有强度高、硬度高、抗氧化性强、热稳定性好等优点,在载人航天、国防军工、汽车制造和微纳电子等领域具有十分广阔的应用前景。
另外,根据本发明上述实施例的高熵陶瓷材料,还可以具有如下附加的技术特征:
在本发明的一些实施例中,a取值为0.1~0.4,b取值为0.3~0.4,c取值为0.3~0.4,d取值为0.3~0.4,e取值为0.4~0.7。由此,可以提高高熵陶瓷材料的热学性能。
在本发明的一些实施例中,a<b,c+d>e。由此,可以提高高熵陶瓷材料的热学性能。
在本发明的一些实施例中,所述高熵陶瓷材料为层状结构,并且单层厚度为100~500nm。由此,可以提高高熵陶瓷材料的热学性能。
在本发明的一些实施例中,所述高熵陶瓷材料的粒径为2~15μm。由此,可以提高高熵陶瓷材料的热学性能。
在本发明的第二个方面,本发明提出了一种制备高熵陶瓷材料的方法。根据本发明的实施例,所述方法包括:
(1)将Ti、V、Cr、Nb、Ta、Al和C进行配料,以便得到复合粉末;
(2)将所述复合粉末进行球磨;
(3)将所述球磨后的复合粉末进行真空热压烧结,以便得到高熵陶瓷块体;
(4)将所述高熵陶瓷块体进行破碎,以便得到所述高熵陶瓷材料。
根据本发明实施例的制备高熵陶瓷材料的方法,通过高能球磨将Ti、V、Cr、Nb、Ta、Al和C进行配料后的复合粉末混合配制成分布均匀的预制粉体,然后采用真空热压烧结技术成功制备高熵陶瓷块体,最后破碎成粒径分布均匀的粉体,即高熵陶瓷材料。由此,该制备方法工艺简单、成本低,可适用于新型MAX型复合高熵陶瓷材料的批量化生产,进而实现工程化应用,而且制备得到的工艺基体强度较高,可以适用于苛刻条件下的精细加工,从而可以进一步拓宽了高熵陶瓷材料的应用范围。
另外,根据本发明上述实施例的制备高熵陶瓷材料的方法,还可以具有如下附加的技术特征:
在本发明的一些实施例中,在步骤(1)中,Ti、V、Cr、Nb、Ta、Al和C按照Ti、V、Cr、Nb、Ta摩尔之和与Al的摩尔、C的摩尔之比为2:(1~1.2):1进行混合。由此,可以提高高熵陶瓷材料的热学性能。
在本发明的一些实施例中,在步骤(2)中,所述球磨的转速为100~400rmp,球料比为(2~5):1,球磨时间为1~8h。由此,可以提高复合粉末的均匀程度。
在本发明的一些实施例中,在步骤(3)中,所述真空热压烧结过程包括在真空环境下升温至预定温度,然后加压到预定压力后保压保温预定时间,在所述保温结束后开始降压,以便得到所述高熵陶瓷块体。由此,可以提高高熵陶瓷材料的热学性能。
在本发明的一些实施例中,所述预定升温速率为5~20℃/min,所述预定温度为1300~1600℃,所述预定压力为10~20MPa,所述预定时间为90~180min。由此,可以提高高熵陶瓷材料的热学性能。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的制备高熵陶瓷材料的方法流程示意图;
图2是实施例1得到的高熵陶瓷块体的XRD图谱;
图3是实施例1得到的高熵陶瓷块体的扫描电镜照片;
图4是实施例2得到的高熵陶瓷块体的扫描电镜照片。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的一个方面,本发明提出了一种高熵陶瓷材料。根据本发明实施例,上述高熵陶瓷材料的化学式为TiaVbCrcNbdTaeAlC,其中,a+b+c+d+e=2,并且a、b、c、d、e数值不完全相同。
发明人发现,通过选择Ti、V、Cr、Nb、Ta为M位元素,可以更好地形成纯度较高的固溶体,并且不同元素的原子半径差异较大,可以引入更多的空位缺陷以改善材料物理和力学性能,并且能降低成本和有利于贮存;选择Al为A位元素,轻元素Al能更好地与M位元素组合,从而降低了高熵陶瓷材料的热导率;C为X位元素,从而得到一种化学式为TiaVbCrcNbdTaeAlC的新型MAX型复合高熵陶瓷材料,且a+b+c+d+e=2,a、b、c、d、e数值不完全相同,可以造成M位元素摩尔比的差异化,比摩尔比均匀化的高熵陶瓷具有更好的综合性能。由此,本发明的高熵陶瓷材料具有强度高、硬度高、抗氧化性强、热稳定性好等优点,在载人航天、国防军工、汽车制造和微纳电子等领域具有十分广阔的应用前景。
进一步地,上述高熵陶瓷材料的化学式中,a取值为0.1~0.4,b取值为0.3~0.4,c取值为0.3~0.4,d取值为0.3~0.4,e取值为0.4~0.7,且a<b,c+d>e。发明人发现,a、b、c、d、e数值过高过低或者a、b、c、d、e数值不满足该不等式关系均会造成高熵陶瓷材料中单一固溶相纯度的降低。优选地,本申请的高熵陶瓷材料为层状结构,并且单层厚度为100~500nm,粒径为2~15μm。
在本发明的第二个方面,本发明提出了一种制备上述高熵陶瓷材料的方法。根据本发明的实施例,参考图1,该方法包括:
S100:将Ti、V、Cr、Nb、Ta、Al和C进行配料
该步骤中,将Ti、V、Cr、Nb、Ta、Al和C按照Ti、V、Cr、Nb、Ta摩尔之和与Al的摩尔、C的摩尔之比为2:(1~1.2):1进行配料,由于Al在后续烧结过程会发生流失,因此Al含量稍微过量,其中Ti、V、Cr、Nb、Ta、Al的摩尔数按照上述化学式为TiaVbCrcNbdTaeAlC进行复配。
S200:将复合粉末进行球磨
该步骤中,将上述配料得到的复合粉末在球磨罐中置于氩气保护环境下进行球磨。具体地,球磨的转速为100~400rmp,球料比为(2~5):1,球磨时间为1~8h。发明人发现,当球磨转速、球料比、球磨时间过小时,会造成复合粉末的均匀性降低。由此,采用本申请的球磨条件能够提高复合粉末的均匀性。
S300:将球磨后的复合粉末进行真空热压烧结
该步骤中,将上述球磨后得到的复合粉末进行真空热压烧结,烧结过程中在保温段保证充足的反应时间以形成固溶高熵相,由此,可以得到高熵陶瓷块体。具体地,真空热压烧结过程包括在真空环境下按照5~20℃/min的升温速率升温到1300~1600℃,然后加压到10~20MPa,保压保温90~180min,在保温结束后将外加压力卸载至零,样品随炉自然冷却,以便得到高熵陶瓷块体,上述真空热压烧结过程中发生的化学反应为
Figure BDA0002938141890000051
此外,真空热压烧结由于反应时间比较充足,能够提高高熵陶瓷材料的纯度,而采用放电等离子烧结制备得到的材料有一定的碳化物杂相,从而综合性能较差。
S400:将高熵陶瓷块体进行破碎
该步骤中,对上述高熵陶瓷块体采用常规方式进行破碎,以便得到粒径分布均匀的粉体,即高熵陶瓷材料。
根据本发明实施例的制备高熵陶瓷材料的方法,通过高能球磨将Ti、V、Cr、Nb、Ta、Al和C进行配料后的复合原料粉末混合配制成分布均匀的预制粉体,然后采用真空热压烧结技术成功制备高熵陶瓷块体,最后破碎成粒径分布均匀的粉体,即高熵陶瓷材料。由此,该制备方法工艺简单、成本低,可适用于新型MAX型复合高熵陶瓷材料的批量化生产,进而实现工程化应用,而且制备得到的工艺基体强度较高,可以适用于苛刻条件下的精细加工,从而可以进一步拓宽了高熵陶瓷材料的应用范围。需要说明的是,上述针对高熵陶瓷材料所描述的特征和优点同样适用于该制备高熵陶瓷材料的方法,此处不再赘述。
下面参考具体实施例,对本发明进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本发明。
实施例1
步骤1:将Ti、V、Cr、Nb、Ta、Al和C按照Ti、V、Cr、Nb、Ta摩尔之和与Al的摩尔、C的摩尔之比为2:1.1:1进行混合,其中Ti、V、Cr、Nb、Ta的摩尔数分别为0.1、0.4、0.4、0.4、0.7;
步骤2:将复合粉末在球磨罐中置于氩气保护环境下进行球磨,球磨时间为2h,球磨转速为300rmp,球料比为5:1,混合均匀后将复合粉末取出封存备用;
步骤3:将步骤2所得复合粉末铺设于热压烧结炉中,并对热压烧结炉抽真空,将热压烧结炉按照预定升温速率为10℃/min升温到1500℃,然后加压到10MPa,保压保温90min,保温结束后降压,得到高熵陶瓷块体;
步骤4:将高熵陶瓷块体进行机械破碎,得到高熵陶瓷材料。
该实施例制备得到的高熵陶瓷材料单层厚度为225±10nm,粒径为5~12μm。制备得到的高熵陶瓷块体直径
Figure BDA0002938141890000052
总厚度2.4mm,其XRD图谱参考图2,可以看出物相分布比较均匀,其SEM照片参考图3,可以看出明显的层状结构,其室温热导率约为2.7W·m-1·K-1
实施例2
步骤1:将Ti、V、Cr、Nb、Ta、Al和C按照Ti、V、Cr、Nb、Ta摩尔之和与Al的摩尔、C的摩尔之比为2:1.1:1进行混合,其中Ti、V、Cr、Nb、Ta的摩尔数分别为0.3、0.3、0.4、0.3、0.6;
步骤2:将复合粉末在球磨罐中置于氩气保护环境下进行球磨,球磨时间为2h,球磨转速为300rmp,球料比为5:1,混合均匀后将复合粉末取出封存备用;
步骤3:将步骤2所得复合粉末铺设于热压烧结炉中,并对热压烧结炉抽真空,将热压烧结炉按照预定升温速率为10℃/min升温到1400℃,然后加压到10MPa,保压保温120min,保温结束后降压,得到高熵陶瓷块体;
步骤4:将高熵陶瓷块体进行机械破碎,得到高熵陶瓷材料。
该实施例制备得到的高熵陶瓷材料的单层厚度为190±10nm,粒径为6μm。制备得到的高熵陶瓷块体的直径φ40mm,总厚度2.3mm,其SEM参考图4,可以看出明显的层状结构,其室温热导率约为2.83W·m-1·K-1
对比例1
在该对比例中,按照与实施例1基本相同的方法和条件,区别在于:烧结过程中的保温阶段未加载压力。
其他条件均与实施例1一致,制备得到的块体材料的直径
Figure BDA0002938141890000061
总厚度2.8mm;制备得到的粉状材料的单层厚度为240±10nm,粒径为3~11μm,然而组织中有少量的孔洞,降低了材料的致密度。
对比例2
其方法同于实施例1,其与实施例1的区别在于Cr、V、Ti、Nb和Ta摩尔数相同,均为0.4。制备得到的粉状材料的单层厚度为225±10nm,粒径为5~12μm,室温热导率约为3.6W·m-1·K-1
对比例3
其方法同于实施例2,其与实施例2的区别在于Cr、V、Ti、Nb和Ta摩尔数相同,均为0.4。制备得到的粉状材料的单层厚度为210±10nm,粒径为3~10μm,室温热导率约为3.58W·m-1·K-1
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (3)

1.一种高熵陶瓷材料,其特征在于,所述高熵陶瓷材料的化学式为TiaVbCrcNbdTaeAlC,其中,a+b+c+d+e=2,并且a<b,c+d>e,
其中,a取值为0.1~0.4,b取值为0.3~0.4,c取值为0.3~0.4,d取值为0.3~0.4,e取值为0.4~0.7,
所述高熵陶瓷材料为层状结构,并且单层厚度为100~500nm,所述高熵陶瓷材料的粒径为2~15μm。
2.一种制备权利要求1所述的高熵陶瓷材料的方法,其特征在于,包括:
(1)将Ti、V、Cr、Nb、Ta、Al和C进行配料,以便得到复合粉末;
(2)将所述复合粉末进行球磨;
(3)将所述球磨后的复合粉末进行真空热压烧结,以便得到高熵陶瓷块体;
(4)将所述高熵陶瓷块体进行破碎,以便得到所述高熵陶瓷材料,
其中,在步骤(1)中,Ti、V、Cr、Nb、Ta、Al和C按照Ti、V、Cr、Nb、Ta摩尔之和与Al的摩尔、C的摩尔之比为2:(1~1.2):1进行混合,
在步骤(3)中,所述真空热压烧结过程包括在真空环境下按照5~20℃/min的升温速率升温至1300~1600℃,然后加压到10~20MPa后保压保温90~180min,在所述保温结束后开始降压,以便得到所述高熵陶瓷块体。
3.根据权利要求2所述的方法,其特征在于,在步骤(2)中,所述球磨的转速为100~400rmp,球料比为(2~5):1,球磨时间为1~8h。
CN202110167968.3A 2021-02-07 2021-02-07 高熵陶瓷材料及其制备方法 Expired - Fee Related CN112723888B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110167968.3A CN112723888B (zh) 2021-02-07 2021-02-07 高熵陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110167968.3A CN112723888B (zh) 2021-02-07 2021-02-07 高熵陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112723888A CN112723888A (zh) 2021-04-30
CN112723888B true CN112723888B (zh) 2022-03-15

Family

ID=75596367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110167968.3A Expired - Fee Related CN112723888B (zh) 2021-02-07 2021-02-07 高熵陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112723888B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149659A (zh) * 2021-05-21 2021-07-23 北京航空航天大学 含氮中熵或高熵max相材料及其制备方法和应用
CN115894043B (zh) * 2022-11-08 2023-10-27 深圳市蓝海永兴实业有限公司 一种高熵MAlB陶瓷材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108911751A (zh) * 2018-06-30 2018-11-30 华南理工大学 一种ZrHfTaNbTiC超高温高熵陶瓷材料及其制备方法
CN110116213A (zh) * 2019-06-06 2019-08-13 陕西科技大学 一种(Cr,Mo)2AlC固溶体材料及其制备方法
CN110394449A (zh) * 2019-08-27 2019-11-01 西安交通大学 一种四元max相增强镍基高温抗氧化复合材料及其合成方法
CN111675541A (zh) * 2020-05-10 2020-09-18 华北理工大学 一种含碳max相材料的制备方法
CN111725380A (zh) * 2020-06-12 2020-09-29 清华大学 层状高熵max相陶瓷热电材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI347978B (en) * 2007-09-19 2011-09-01 Ind Tech Res Inst Ultra-hard composite material and method for manufacturing the same
US11168390B2 (en) * 2019-05-22 2021-11-09 City University Of Hong Kong Facile method for the large area synthesis of geometrically two dimensional metals and ceramics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108911751A (zh) * 2018-06-30 2018-11-30 华南理工大学 一种ZrHfTaNbTiC超高温高熵陶瓷材料及其制备方法
CN110116213A (zh) * 2019-06-06 2019-08-13 陕西科技大学 一种(Cr,Mo)2AlC固溶体材料及其制备方法
CN110394449A (zh) * 2019-08-27 2019-11-01 西安交通大学 一种四元max相增强镍基高温抗氧化复合材料及其合成方法
CN111675541A (zh) * 2020-05-10 2020-09-18 华北理工大学 一种含碳max相材料的制备方法
CN111725380A (zh) * 2020-06-12 2020-09-29 清华大学 层状高熵max相陶瓷热电材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAX相金属陶瓷材料研究进展与展望;叶滨等;《西南民族大学学报(自然科学版)》;20210125;第47卷(第1期);第83-96页 *

Also Published As

Publication number Publication date
CN112723888A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
Golla et al. Review on ultra-high temperature boride ceramics
Jia et al. Metastable Si-BCN ceramics and their matrix composites developed by inorganic route based on mechanical alloying: Fabrication, microstructures, properties and their relevant basic scientific issues
Carry et al. Structural superplasticity in single phase crystalline ceramics
CN112723888B (zh) 高熵陶瓷材料及其制备方法
Zhang et al. Understanding the oxidation behavior of Ta–Hf–C ternary ceramics at high temperature
CN109487141B (zh) 一种板状碳化物固溶体增韧混晶Ti(C,N)基金属陶瓷的制备方法
EP2098482A1 (en) Silicon alloy and its powder, production apparatus, production process, and sinter
US5312788A (en) High toughness, high strength sintered silicon nitride
CN109778050B (zh) 一种WVTaTiZr难熔高熵合金及其制备方法
Wang et al. Enhanced thermal conductivity in Si3N4 ceramics prepared by using ZrH2 as an oxygen getter
TW201713606A (zh) 立方晶氮化硼燒結體,立方晶氮化硼燒結體之製造方法,工具及切削工具
CN114959406A (zh) 一种振荡压力烧结超高温中熵陶瓷增强难熔细晶中熵合金复合材料
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
CN105483488B (zh) 微纳米碳化钨/钼/钽固溶复合粉末及其制备方法
Li et al. Effect of Nb addition on the microstructure and mechanical properties of additively manufactured Ti2AlC MAX-phase ceramic matrix composites
JP2001073060A (ja) 高靭性・高強度の高融点金属系合金材料
CN115070042A (zh) 一种稀土氧化物改性硬质合金车刀片及其制备方法
CN114262229B (zh) 一种高强韧二硼化物-碳化物复相高熵陶瓷的制备方法和应用
CN115679282A (zh) 一种钛硅靶材的制备方法
CN112941390B (zh) 一种碳氮化钛基金属陶瓷及其制备方法和应用
CN112941389B (zh) 一种碳氮化钛基金属陶瓷及其制备方法和应用
CN112267048B (zh) 一种含纳米Ti2AlN粒子的铝基合金及其制备方法
CN109175387B (zh) 非晶晶化制备纳米晶WC-Co硬质合金的方法
CN115872749B (zh) 一种高熵硼化物增强b4c复合陶瓷及其原位合成方法
CN111196726A (zh) 一种SiBCN-Ta4HfC5复相陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220315