CN1126919C - 带隔离传热机理的动态开关的热电冷却设备及其操作方法 - Google Patents

带隔离传热机理的动态开关的热电冷却设备及其操作方法 Download PDF

Info

Publication number
CN1126919C
CN1126919C CN98812042A CN98812042A CN1126919C CN 1126919 C CN1126919 C CN 1126919C CN 98812042 A CN98812042 A CN 98812042A CN 98812042 A CN98812042 A CN 98812042A CN 1126919 C CN1126919 C CN 1126919C
Authority
CN
China
Prior art keywords
thermoelectric element
selective switch
cave
thermoelectric
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN98812042A
Other languages
English (en)
Other versions
CN1281545A (zh
Inventor
尤塔姆·施亚马林杜·高沙尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1281545A publication Critical patent/CN1281545A/zh
Application granted granted Critical
Publication of CN1126919C publication Critical patent/CN1126919C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • F25B2321/0212Control thereof of electric power, current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/023Mounting details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Control Of Temperature (AREA)

Abstract

利用热电元件动力学,并结合脉冲电源和与冷穴的选择性启动的热耦合,进行低温冷却的设备和方法。一种形式下,在对珀尔帖器件温度的动力特性敏感的传导状态之间相对同步地选择性接通或关断珀尔帖器件(1)的冷端和冷穴(4)之间的热通路的同时,利用电源的脉冲动态地启动珀尔帖器件(1)。通过隔离焦耳加热和传输自珀尔帖器件的传导热传递损耗,冷穴(4)和珀尔帖器件之间的热连接的转换耦合显著地提高了效率。优选实现利用MEMS完成选择性热开关,从而通过多个珀尔器件和MEMS开关的并行工作,增大了低温冷却能力。

Description

带隔离传热机理的动态开关的热电冷却设备及其操作方法
本发明涉及冷却系统。更具体地说,本发明的目的在于通过选择性开关电源和选择性开关热耦合原理和结构的应用,获得高的相对热电冷却效率的系统。
通常通过利用氟利昂类型致冷剂实现传热的基于气体/液体蒸气压缩的致冷循环完成低温冷却。这种致冷系统被广泛用于居室致冷,食物致冷和车辆致冷。低温冷却还经常和主要的电子系统,例如主计算机一起使用。虽然蒸气压缩致冷非常有效,但是它确实需要较大的移动硬件,至少包括压缩机,冷凝机,蒸发器及相关的致冷剂输送导管。由于复杂性和相关的高费用的结果,在小型的冷却应用,例如个人计算机中,蒸气压缩致冷未得到实质认可。
至少十年来,众所周知随着温度的降低,CMOS逻辑电路可更快速地工作。例如,如果CMOS逻辑器件在-50℃工作,则和在室温下工作相比,性能提高50%。-196℃量级的液氮工作温度已显示出200%的性能提高。集成电路线路产生类似的好处,和在室温下工作的集成电路相比,在-50℃工作的集成电路的金属线阻降低二分之一。这种改进可与近来在集成电路中使用铜线来降低互连电阻,从而有效地增大可达到的工作频率的技术突破相匹敌。这样,集成电路逻辑器件,例如场效应晶体管,以及互连线路可显著改进集成电路性能,留下在尺寸日益减小,并且费用大大降低的环境内如何实现这种冷却的问题。
热电冷却是已发现可在减小普遍使用的珀尔帖器件的尺寸方面得到某些应用的一种选择方案。珀尔帖器件热电冷却也非常可靠,因为冷却完全以固态方式进行。热电冷却的主要缺点是效率低,其中对于冷穴和环境之间的相当标准的温差,珀尔帖器件冷却系统效率通常仅在20%的范围之内。例如为了在0℃的低温下以1瓦的速率冷却,必须向珀尔帖冷却系统供给5瓦的动力。随着要传输的热量的增大,将散失到环境中的总能源托管(mandate)巨大的对流装置及高输出功率供电线路。于是,珀尔帖器件热电冷却一直未被认为是一种广泛适用的用于改进集成电路性能的技术。
为了理解本发明是如何改进热电冷却效率的,必须理解为什么珀尔帖器件热电冷却效率低。珀尔帖器件由诸如碲化铋或碲化铅之类的半导体材料制成。虽然目前各大学正在评估新的材料,但是这些新材料尚未获得成功。和具有高导电率和导热率的一般金属相反,通常使用的珀尔帖材料表现出很高的导电率和相当低的导热率。操作中,珀尔帖器件把电子从温度T的冷穴迁移到温度T的热穴,以响应穿过珀尔帖器件形成的电场。但是,存在影响珀尔帖器件效率的其它机制,这些机制降低了从冷穴到热穴的热能的净输送量。
图1示意地表示了常规的珀尔帖热电元件(TE)1,它具有在负荷电流3的情况下,产生穿过TE1的电场的直流电源2。所需的传热是从温度T的冷穴到温度T的热穴的传热。如图1的等式中所示,输送的净热能由三部分组成,第一部分代表珀尔帖效应(热电)贡献,第二部分确定负焦耳热效应,第三部分确定负导热效应。热电分量是塞贝克系数α,工作温度(T)和施加的电流的函数。焦耳热分量近似反映到达冷穴并转到热穴的焦耳热的一半。最后,归因于导热的负分量代表穿过珀尔帖器件,从热穴流到冷却的热,由珀尔帖器件的导热率限定。参见等式(1)。
(1)         q=αTI-I2R-KΔT
由于热传导的热电分量与电流成正比,而焦耳热与电流的平方成正比,导热分量正比于热穴与冷穴之间的温差,该等式清楚地反映了珀尔帖器件是如何快速地变得低效率的。
等式(2)定义了珀尔帖器件的性能系数。该系数是低温下输送的净热能与珀尔帖器件中消耗的功率的比值。对于典型的碲化铋材料珀尔帖器件,该性能系数小于0.3。
Figure C9881204200051
注意等式(2)的分子代表珀尔帖器件的净冷却能力。等式(2)的分母代表外部电源2提供的总能量。前面描述了分子的各个部分。分母中的第一项是总焦耳热,而第二项是珀尔帖器件在把能量从T冷穴移到T热穴时所做的热能输送功。基于这种关系,图1的构型中可能的最大性能系数由等式(3)给出。
如等式(4)中所示,参数γ可用塞贝克系数α,导电率σ和导热率λ来表示。
Figure C9881204200062
注意等式(3)中的第一个因子是卡诺效率,这是在两个温度穴井T和T之间工作的任意热泵的可能的最大效率。第二个因子代表非理想热电冷却,它也可由优良指数ZT表征。
注意当γ趋于∞时,ηmax趋于(T/ΔT)
目前为止,一直难以研究出产生高ZT值的热电材料。用于热电冷却器的流行材料一直是碲化铋(Bi2Te3)和碲化铅(PbTe)。室温下,这些材料的ZT值约为0.3。各大学的最近研究表明在碲化铅量子阱和多晶格中,ZT值接近1是可能的。但是,即使使用这些材料,热电冷却也不能和机械蒸气压缩冷却系统竞争。
珀尔帖器件的另一限制是低于可获得的环境温度的有限温度偏移。该限制起因于温度跨距受效率约束的事实,效率是一个随着温差的增大而快速降低的参数。可能的最大温差Tmax由等式(5)给出。
(5)       ΔTmax=ZT2
对于ZT值约为0.3的碲化铋来说,在300°K,Tmax为45°K。
这样,对于限制常规的热电元件在低温冷却应用方面的使用的效率和温度差,存在若干非常基本的制约。
通过对电源和分别使热电元件和电源以及冷穴相连的导热通路的动态调制的应用,本发明克服了常规热电元件冷却的基本制约。
本发明的一方面涉及一种热电冷却设备,包括:第一标称温度的第一热穴;第二标称温度的第二热穴,第二温度相对大于第一标称温度;热电元件,持续热耦合到所述第二热穴;选择性开关热电元件与第一热穴的热耦合的装置;和选择性开关热电元件两端之间电压的装置,其与选择性开关热耦合的装置独立操作。
本发明的另一方面涉及一种操作热电冷却设备的方法,该热电冷却设备具有可在第一标称温度下工作的第一热穴,可在相对高于第一标称温度的第二标称温度下工作的第二热穴,及与第二热穴耦接的热电元件,该方法包括下述步骤:通过耦接,把热能从热电元件输送到第二热穴;启动热电元件;其特征在于选择性接通或关断热电元件和第一热穴之间的热能传输。
就本发明的一种特殊形式而论,掺杂(complementing impurity)型热电元件被电串联,并由开关电压的脉冲供给动力。热电元件与一侧的各个电隔离的热穴热耦合,并自它们的相应冷端的公用连接与热开关热耦合,该热开关选择性地建立到达冷穴的热通路。电开关和热开关的选择性、但是同步的操作以超过这种热电元件的静态操作的效率提供从冷穴开始,通过热开关,通过该对热电元件,到达相应热穴的热能输送。瞬态原理的应用使得能够相对地把热电热传递机理和热传导及焦耳加热机理隔离开。性能系数预计接近卡诺效率。
下面将参考附图,说明本发明的实施例,其中:
图1示意地描绘了常规的静操作珀尔帖器件冷却系统。
图2示意地描绘了本发明的单开关,单热电元件实施例。
图3示意地描绘了本发明的单热开关,双热电元件实施例。
图4示意地描绘了图3中实施例的电源和热能输送的相关时间曲线图
图5示意地描绘了图3中的单热开关构型的闭环实现。
图6示意地描绘了微机电系统(MEMS)器件。
图7是MEMS器件阵列和珀尔帖热电元件的示意横截面图。
图8示意描绘了在可用于低温冷却集成电路和电子组件情况下的热电冷却器。
图9示意描绘了本发明用于食物冷藏系统的扩展应用。
图10示意描绘了当被应用于各种住宅和运输工具时,本发明的潜在应用和好处。
图11示意描绘了把小型的热电冷却器应用于局部冷却集电路芯片的选定部分的情况。
本发明的概念性基础包括导热率和导电率之间相关性的分离,迄今,导热率和导电率之间的相关性限制了温差以及常规的热电元件传热的效率。数学上来说,目标是通过热电开关的应用,以便在使焦耳热和传导传热降至最小时,动态地使热电传热达到最大,有效地分离图1中说明的影响净热传递关系的部分。通过使在热电元件两端之间施加的脉冲电压和热电元件的冷端与冷穴之间的开关热导率耦合同步,热电元件瞬态效应被用于增大效率。在一个优选实施例中,通过利用微机电系统(MEMS)热开关,实现热导率的转换,其中几排多个微型热电元件和相关的MEMS热导率开关被用于增大传热能力。
图2示意地描绘了本发明的最低限度元件构型。热电元件1通过具有热传递q的热通路无间断地耦接热穴6。从电压施加和响应的热传递的角度来看,热电元件1的反向端通过热开关7和冷穴4耦接。如图2中表现的一样,开关7还传导电流,当闭合开关7时,使得可在热电元件1的两端之间施加电压2。在循环开始时,借助与热穴6的热耦合,热电元件1处于T。当脉冲闭合开关7时,热电元件1在热端8和冷端9之间快速建立相对温差,该温差允许通过热开关7自冷穴4的热传递。但是,随着时间的增加,热电元件1内的焦耳热效应升高热电元件1的平均温度,以致通过热电元件1的净热传递开始降低。这时,打开开关7,同时断开电源和热耦合。打开开关时,热电元件1中的残余热能把温度升高到足以在热电元件1和热穴6之间形成指数衰减热传递的程度。当热电元件1的温度已降低到接近热穴6的温度时,重复该循环。该操作的瞬态特征依赖于当收到相对电压时,立即发生热电传热,而焦耳加热和随后的热电元件传导损耗是延迟效应的事实。这样,本发明依赖于电传导和热传导的不同时标和时间常数。
正如参考图2说明的一样,用于改进效率的基本原理表现出不太明显,但是仍然重大的低效率原因。最明显的原因是开关7被闭合时,开关7中的焦耳加热,开关处于打开状态时,通过开关7的热传导损耗,以及归因于热电元件1的热容量的热损耗。
瞬态的详细分析表明归因于热电元件的热容量的热损耗近似等于傅里叶传导项(Fourier conductance term)。因此,前面如等式2表述的性能系数的表达式由等式(6)更充分地描述。
Figure C9881204200081
等式(6)中,项Rs和Ks是开关的ON电阻和OFF热导率。通过增大OFF热导率Ks,通常可使开关的ON电阻Rs变小。
图3中的实施例表示了改进性能系数的一种途径,其中通过审慎的布置以及n型和p型热电元件的连接,电开关被布置在热穴附近。从而,作为对性能系数影响因素之一的与电开关相关的加热被消除。在数学上,这使得能够如等式(7)中表述的那样,重写性能系数。
效果是最大性能系数稍高于如等式(3)数学描述的与图2中的单开关实现相关的最大性能系数,一般高20%。参见等式(8)。
Figure C9881204200092
虽然性能系数的提高不是惊人的,但是对于局部冷却应用来说,该差别具有特殊的意义。在这方面,注意由等式(9)的分子表示的热电冷却器的净冷却能力表明最大温度事实上是不受限制的。
于是,通过增大电流,并在产生实用于硅片上的小型传感器和专用电路的热电冷却的情况下,可显著增大最大温差。这种定域或局部冷却应用在压控振荡器,鉴相器,混频器,低噪声放大器,激光器,光电二极管及不同材料类型光电电路中特别有用。至少在理论上,局部低温热电冷却在受限应用中是可能的。多个杂质型热电元件和独立电开关的使用提供了关于效率和温度范围的重大潜能。
图3中的实施例引入了若干相互关连的精心改进。首先,使用了多个热电元件。其次,当施加在热电元件上时的电力的计时和使热电元件的冷端和冷穴耦合的热开关的计时分开。最后,连接热电元件的冷端和冷穴的开关只是一个热开关,消除了任意电导需要,及与流过该开关的电流相关的焦耳损耗。图3中的实施例使用了两个热电元件,n杂质型热电元件11和p杂质型热电元件12。当使各个热电元件11和12的冷端16和17通过热开关18与冷穴4热耦合时,在通过电开关14启动单个电压源13时,这种构型允许共同使用该单个电压源13。使各个热电元件11和12的热端19和21热连接和电连接相应的热穴22和23,这些热穴被电分离,以便实现共享电压源13的使用。
虽然图3中的两个热电元件实施例的操作类似于图2中单一热电元件实施例的操作,但是热开关和电开关的分离在确定相应的工作循环和开关同步方面提供了更大的灵活性。虽然电开关14和热开关18都将在很短的工作周期下工作,并且相互之间表现出相对的同步操作,闭合循环和打开循环的计时可能不同,取决于热电元件和与热穴及冷穴耦合的传导通路的瞬态特征。例如,改进的热耦合将建议首先关闭电开关14,之后即刻关闭热开关18,稍迟打开电开关14,并在打开电开关14稍后,打开热开关18。开关操作的根本目的是使从冷穴4到热穴23和24的热传层的效率最大。
图4用曲线图示意地描绘了与图3中的实施例的操作相关的说明性电压波形和热能输送波形。第一个曲线图表示了施加在热电元件两端之间的电压的脉冲性质。第二个曲线图图解说明了耗散到热穴中的热能的热瞬态和相关的衰耗。最后一个曲线图图解说明了通过热开关从冷穴吸收的热能。图4中的曲线是示意性的,因为这些曲线是用来图解说明一般概念,而不是描绘特殊化的时间相关量值。
图5示意地图解说明了图3中的优选实施例的发展,其中响应来自于温度传感器24的输入,执行电开关14和热开关18的启动(enablement)。温度传感器24响应热电元件的热端,冷端或者这两端的温度,向同步控制机构26提供操作开关14和18的输入。虽然开关14和18的同步和工作循环特征比较类似于图3中实施例中的同步和工作循环特征,但是通过使用实际的热特性,而不是估计的热特性来操作开关14和18,传感温度的应用使效率最优化。图5中的实现允许调节开关计时,以补偿诸如同一冷却设备环境内,较高的热穴温度或较低的冷穴温度之类的效果。
图6示意地图解说明了特别适合于本发明的代表性微机电系统(MEMS)热开关的结构。由于MEMS技术仍处于萌芽状态,图6中描绘的开关仅仅举例说明了适于在热电元件和冷穴之间提供选择性热耦合的许多可能的热开关构型中的一种。利用常规的集成电路技术制造图6中所示的热开关,以便在硅基片27的表面上形成适合于薄的柔性薄膜29处的移动引起的轻微偏移的镍磁体28阵列。在螺旋形线圈29中引入电流将产生足以沿垂直于硅基片平面的方向移动磁体阵列的力。当打开时,图6中的MEMS开关应具有相当低的热导率,而当借助启动被关闭时,应具有相当高的热导率。如果图6中的MEMS器件要完成电开关和热开关,则可能必须进行精心改进,以降低开关的“on”电阻。
图7图解说明了用MEMS器件的阵列在珀尔帖热电器件和冷穴之间选择性建立热连接的应用。珀尔帖器件32和33由铜导体34电连接,以重复与图3中的描述相关的功能。铜层34和MEMS开关36和37的磁体阵列28之间的间距应该在半微米的标准范围内。该尺寸预计允许标称大小的导电线圈31(图6)引发开关结构的启动。由于预计开关周期约为几秒,涉及MEMS器件的千赫兹频率开关的可靠性应该不是一个问题。
参考图6和7中的例图描述的MEMS型热开关仅仅是许多可能的热开关构型中的一种。例如,在电容开关结构中产生的静电力可用于实现类似的目的。所有开关的根本目的是使开关位置(switch position)的热导率极限值达到最大,以致当开关被关闭时,热电元件和冷穴之间的热通路具有最大的热传导,而当开关被打开时,可获得最小的热传导。
图7中的描述表明本发明的热电冷却系统最好由多个热电元件和呈阵列配置的MEMS器件组成。大量的热电元件和开关确保在热电元件和开关材料的尺寸范围内可获得构成本发明基础的瞬态特征。另外,预计利用相当小的热容量热电元件,一般为珀尔帖器件,及相应的较小的MEMS型热开关,可最有效地实现热电热传递与焦耳加热和传导分量的隔离。
图8示意地描绘了本发明的热电冷却器的一个应用。这种情况下,该冷却器位于把能量消散到空气环境中的热穴和具有电子组件及与之相连的集成电路的冷穴之间。
图9示意地表示了使用呈扩展阵列形式的热电冷却器有效并且清洁地操纵食物冷藏柜。高效率和缺少主要移动部件(这是本发明的两个特征)便于把热电冷却从高度选择性,并且受限的应用,例如小的便携冷却器转移到基本上每个家庭中的主要用具中。
在构成本发明基础的原理被进一步精心改进,并且规模被扩大到包含主要的热传递应用,包括住宅致冷和办公区致冷,食品运输系统和小型车辆致冷的情况下,图10中示意地描绘了其它应用。
图11示意地表示了在该领域另一端的一个应用,这里微小尺寸的热电冷却器被有选择地结合到集成电路芯片的各个部分,以便选择性地冷却这样的选择区域,从而控制集成电路参数。
本发明具有很宽的适用性,部分原因在于本发明不受特定热电材料或电子构型的约束。本发明利用脉冲操作的热电元件的热动力学以及微型热开关,分离热传递特征,并获得较高的冷却效率。
可看出虽然本发明的实施例描述的是与热穴持续连接的热电元件,但是借助结构类似于热开关18的开关,与热穴相连的热电元件,也在本发明的范围内。

Claims (17)

1.一种热电冷却设备,包括:
第一标称温度的第一热穴;
第二标称温度的第二热穴,第二温度相对大于第一标称温度;
热电元件,持续热耦合到所述第二热穴;
选择性开关热电元件与第一热穴的热耦合的装置;和
选择性开关热电元件两端之间电压的装置,其与选择性开关热耦合的装置独立操作。
2.按照权利要求1所述的设备,其中第二热穴由第一和第二电分离部分组成。
3.按照权利要求2所述的设备,其中第一和第二电分离部分通过选择性开关电压的装置与电源耦接。
4.按照权利要求1-3中任一项所述的设备,其中选择性开关电压的装置的工作周期类似于选择性开关热耦合的装置的工作周期。
5.按照权利要求1-3中任一项所述的设备,其中选择性开关热耦合的装置是微机电系统器件。
6.按照权利要求4所述的设备,其中选择性开关热耦合的装置是微机电系统器件。
7.按照权利要求1所述的设备,还包括:
第二标称温度的第三热穴,第三热穴与第二热穴电隔离;
与第三热穴热耦合的第二热电元件;
其中选择性开关热耦合的所述装置包含选择性开关提及的第一热电元件及第二热电元件和第一热穴的热耦合的装置;
所述选择性开关热电元件两端电压的装置包含选择性开关提及的第一热电元件和第二热电元件间的电压的装置。
8.按照权利要求1-3和7中任一项所述的设备,其中选择性开关热耦合的装置和选择性开关电压的装置适于功能同步地工作。
9.按照权利要求4所述的设备,其中选择性开关热耦合的装置和选择性开关电压的装置适于功能同步地工作。
10.按照权利要求7所述的设备,其中第一和第二热电元件是珀尔帖器件。
11.按照权利要求10所述的设备,其中第一和第二热电元件是相反的杂质型热电元件。
12.按照权利要求1的所述的设备,其中该设备可在环境温度下工作,所述第一热穴装置适于在低于环境温度的温度下吸收热能;所述第二热穴装置适于在高于环境温度的温度下散失热能;所述热电元件适于在所述两个热穴之间输送热能;所述选择性开关热耦合的装置适于接通或关断第一热电元件和第一热穴之间耦合的热传导;所述选择性开关热电元件两端电压的装置适于启动该热电元件,使之与选择性开关热传导的装置在功能上相对同步。
13.按照权利要求12所述的设备,其中选择性开关热电元件两端电压的装置的工作周期相对小于选择性开关装置的工作周期。
14.按照权利要求2所述的设备,还包含第二热电元件,第一热电元件与第一热穴装置的第一部分耦合,第二热电元件与第二热电元件的第二部分耦合,第二热电元件还与选择性开关热耦合的装置耦接。
15.按照权利要求14所述的设备,其中选择性开关热电元件两端电压的装置适于选择性开关在第一热穴的第一和第二部分间跨接的电源。
16.按照权利要求12所述的设备,其中热能的散失是进入环境中,热能的吸收是来自食物冷藏系统或车辆乘客致冷系统或电子集成电路器件之一。
17.一种操作热电冷却设备的方法,该热电冷却设备具有可在第一标称温度下工作的第一热穴,可在相对高于第一标称温度的第二标称温度下工作的第二热穴,及与第二热穴耦接的热电元件,该方法包括下述步骤:
通过耦接,把热能从热电元件输送到第二热穴;
启动热电元件;其特征在于
选择性接通或关断热电元件和第一热穴之间的热能传输。
CN98812042A 1997-12-10 1998-11-12 带隔离传热机理的动态开关的热电冷却设备及其操作方法 Expired - Fee Related CN1126919C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/988,621 1997-12-10
US08/988,621 US5966941A (en) 1997-12-10 1997-12-10 Thermoelectric cooling with dynamic switching to isolate heat transport mechanisms

Publications (2)

Publication Number Publication Date
CN1281545A CN1281545A (zh) 2001-01-24
CN1126919C true CN1126919C (zh) 2003-11-05

Family

ID=25534323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98812042A Expired - Fee Related CN1126919C (zh) 1997-12-10 1998-11-12 带隔离传热机理的动态开关的热电冷却设备及其操作方法

Country Status (14)

Country Link
US (1) US5966941A (zh)
EP (1) EP1066489B1 (zh)
JP (1) JP3672240B2 (zh)
KR (1) KR100351650B1 (zh)
CN (1) CN1126919C (zh)
BR (1) BR9813558A (zh)
CZ (1) CZ20002131A3 (zh)
DE (1) DE69811739T2 (zh)
HK (1) HK1030808A1 (zh)
HU (1) HUP0100405A3 (zh)
MY (1) MY115607A (zh)
PL (1) PL341158A1 (zh)
TW (1) TW421984B (zh)
WO (1) WO1999030090A1 (zh)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6161388A (en) * 1998-12-28 2000-12-19 International Business Machines Corporation Enhanced duty cycle design for micro thermoelectromechanical coolers
DE19945434A1 (de) * 1999-09-22 2001-04-05 Infineon Technologies Ag Selektive Kühlung von Teilflächen eines flächigen elektronischen Bauteils
US6282907B1 (en) 1999-12-09 2001-09-04 International Business Machines Corporation Thermoelectric cooling apparatus and method for maximizing energy transport
US6222113B1 (en) 1999-12-09 2001-04-24 International Business Machines Corporation Electrically-isolated ultra-thin substrates for thermoelectric coolers
US6535342B1 (en) 1999-12-09 2003-03-18 International Business Machines Corporation Apparatus, system and method for writing information onto magnetic media field of the invention
US6256996B1 (en) 1999-12-09 2001-07-10 International Business Machines Corporation Nanoscopic thermoelectric coolers
US6614109B2 (en) 2000-02-04 2003-09-02 International Business Machines Corporation Method and apparatus for thermal management of integrated circuits
US6437981B1 (en) 2000-11-30 2002-08-20 Harris Corporation Thermally enhanced microcircuit package and method of forming same
US6384312B1 (en) 2000-12-07 2002-05-07 International Business Machines Corporation Thermoelectric coolers with enhanced structured interfaces
US6467275B1 (en) 2000-12-07 2002-10-22 International Business Machines Corporation Cold point design for efficient thermoelectric coolers
US6608250B2 (en) 2000-12-07 2003-08-19 International Business Machines Corporation Enhanced interface thermoelectric coolers using etched thermoelectric material tips
US6403876B1 (en) 2000-12-07 2002-06-11 International Business Machines Corporation Enhanced interface thermoelectric coolers with all-metal tips
US6588217B2 (en) 2000-12-11 2003-07-08 International Business Machines Corporation Thermoelectric spot coolers for RF and microwave communication integrated circuits
US6597544B2 (en) 2000-12-11 2003-07-22 International Business Machines Corporation Thermoelectric microcoolers for cooling write coils and GMR sensors in magnetic heads for disk drives
US6637210B2 (en) 2001-02-09 2003-10-28 Bsst Llc Thermoelectric transient cooling and heating systems
US6959555B2 (en) * 2001-02-09 2005-11-01 Bsst Llc High power density thermoelectric systems
US7942010B2 (en) 2001-02-09 2011-05-17 Bsst, Llc Thermoelectric power generating systems utilizing segmented thermoelectric elements
US6672076B2 (en) 2001-02-09 2004-01-06 Bsst Llc Efficiency thermoelectrics utilizing convective heat flow
US7946120B2 (en) 2001-02-09 2011-05-24 Bsst, Llc High capacity thermoelectric temperature control system
US7231772B2 (en) * 2001-02-09 2007-06-19 Bsst Llc. Compact, high-efficiency thermoelectric systems
US7273981B2 (en) * 2001-02-09 2007-09-25 Bsst, Llc. Thermoelectric power generation systems
US6539725B2 (en) * 2001-02-09 2003-04-01 Bsst Llc Efficiency thermoelectrics utilizing thermal isolation
US8490412B2 (en) * 2001-08-07 2013-07-23 Bsst, Llc Thermoelectric personal environment appliance
CN100419347C (zh) * 2001-08-07 2008-09-17 Bsst公司 热电个人环境装置
US6812395B2 (en) 2001-10-24 2004-11-02 Bsst Llc Thermoelectric heterostructure assemblies element
US6712258B2 (en) 2001-12-13 2004-03-30 International Business Machines Corporation Integrated quantum cold point coolers
US20040018729A1 (en) * 2002-02-11 2004-01-29 Ghoshal Uttam Shyamalindu Enhanced interface thermoelectric coolers with all-metal tips
US6494048B1 (en) 2002-04-11 2002-12-17 International Business Machines Corporation Assembly of quantum cold point thermoelectric coolers using magnets
US6588216B1 (en) * 2002-04-19 2003-07-08 International Business Machines Corporation Apparatus and methods for performing switching in magnetic refrigeration systems
JP3701302B2 (ja) * 2003-01-30 2005-09-28 松下電器産業株式会社 熱スイッチ素子およびその製造方法
GB2406212B (en) * 2003-09-16 2008-04-23 Agilent Technologies Inc Optoelectronic component with thermoelectric temperature control
US20050150536A1 (en) * 2004-01-13 2005-07-14 Nanocoolers, Inc. Method for forming a monolithic thin-film thermoelectric device including complementary thermoelectric materials
US20050150537A1 (en) * 2004-01-13 2005-07-14 Nanocoolers Inc. Thermoelectric devices
US20050150535A1 (en) * 2004-01-13 2005-07-14 Nanocoolers, Inc. Method for forming a thin-film thermoelectric device including a phonon-blocking thermal conductor
US20050150539A1 (en) * 2004-01-13 2005-07-14 Nanocoolers, Inc. Monolithic thin-film thermoelectric device including complementary thermoelectric materials
US7380586B2 (en) 2004-05-10 2008-06-03 Bsst Llc Climate control system for hybrid vehicles using thermoelectric devices
US20060075758A1 (en) 2004-10-07 2006-04-13 Tigerone Development, Llc; Air-conditioning and heating system utilizing thermo-electric solid state devices
US20060076046A1 (en) * 2004-10-08 2006-04-13 Nanocoolers, Inc. Thermoelectric device structure and apparatus incorporating same
US7743614B2 (en) 2005-04-08 2010-06-29 Bsst Llc Thermoelectric-based heating and cooling system
US7847179B2 (en) 2005-06-06 2010-12-07 Board Of Trustees Of Michigan State University Thermoelectric compositions and process
WO2007032801A2 (en) 2005-06-28 2007-03-22 Bsst Llc Thermoelectric power generator for variable thermal power source
US8783397B2 (en) 2005-07-19 2014-07-22 Bsst Llc Energy management system for a hybrid-electric vehicle
US8447234B2 (en) * 2006-01-18 2013-05-21 Qualcomm Incorporated Method and system for powering an electronic device via a wireless link
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US7870745B2 (en) * 2006-03-16 2011-01-18 Bsst Llc Thermoelectric device efficiency enhancement using dynamic feedback
US7952015B2 (en) 2006-03-30 2011-05-31 Board Of Trustees Of Michigan State University Pb-Te-compounds doped with tin-antimony-tellurides for thermoelectric generators or peltier arrangements
US20100155018A1 (en) 2008-12-19 2010-06-24 Lakhi Nandlal Goenka Hvac system for a hybrid vehicle
US7779639B2 (en) 2006-08-02 2010-08-24 Bsst Llc HVAC system for hybrid vehicles using thermoelectric devices
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
WO2008148042A2 (en) 2007-05-25 2008-12-04 Bsst Llc System and method for distributed thermoelectric heating and colling
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
JP5697979B2 (ja) 2007-08-09 2015-04-08 クゥアルコム・インコーポレイテッドQualcomm Incorporated ワイヤレスに電力供給および充電するためのシステムおよび方法
KR20100063756A (ko) * 2007-09-13 2010-06-11 퀄컴 인코포레이티드 무선 전력 자기 공진기로부터 산출된 전력의 최대화
CN101828300A (zh) * 2007-09-17 2010-09-08 高通股份有限公司 用于无线能量转移的发射器和接收器
EP2208279A4 (en) 2007-10-11 2016-11-30 Qualcomm Inc WIRELESS POWER TRANSFER USING MAGNETO-MECHANICAL SYSTEMS
US8629576B2 (en) 2008-03-28 2014-01-14 Qualcomm Incorporated Tuning and gain control in electro-magnetic power systems
US20090277608A1 (en) * 2008-05-07 2009-11-12 Kamins Theodore I Thermal Control Via Adjustable Thermal Links
CN102105757A (zh) 2008-06-03 2011-06-22 Bsst有限责任公司 热电热泵
US9555686B2 (en) 2008-10-23 2017-01-31 Gentherm Incorporated Temperature control systems with thermoelectric devices
US9447994B2 (en) 2008-10-23 2016-09-20 Gentherm Incorporated Temperature control systems with thermoelectric devices
EP2349753B1 (en) 2008-10-23 2016-11-23 Gentherm Incorporated Multi-mode hvac system with thermoelectric device
CN102576232B (zh) 2009-05-18 2015-05-06 Bsst有限责任公司 带有热电装置的温度控制系统
EP2433321B1 (en) 2009-05-18 2014-10-22 Bsst Llc Battery thermal management system
US8193439B2 (en) * 2009-06-23 2012-06-05 Laird Technologies, Inc. Thermoelectric modules and related methods
TWI426219B (zh) * 2010-10-15 2014-02-11 Grand Mate Co Ltd Power supply system and its method for storm type gas appliance
US8904809B2 (en) * 2011-03-17 2014-12-09 The Aerospace Corporation Methods and systems for solid state heat transfer
EP2505913B1 (en) * 2011-03-30 2016-03-23 Nxp B.V. An active thermal management device and thermal management method
WO2012170443A2 (en) 2011-06-06 2012-12-13 Amerigon Incorporated Cartridge-based thermoelectric systems
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
JP6203175B2 (ja) 2011-07-11 2017-09-27 ジェンサーム インコーポレイテッドGentherm Incorporated 電気装置の熱電ベースの熱管理
US9010409B2 (en) * 2011-11-18 2015-04-21 Palo Alto Research Center Incorporated Thermal switch using moving droplets
US8659903B2 (en) * 2011-12-06 2014-02-25 Palo Alto Research Center Incorporated Heat switch array for thermal hot spot cooling
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
KR102253247B1 (ko) 2013-01-30 2021-05-17 젠썸 인코포레이티드 열전-기반 열 관리 시스템
US9601267B2 (en) 2013-07-03 2017-03-21 Qualcomm Incorporated Wireless power transmitter with a plurality of magnetic oscillators
GB2521354A (en) * 2013-12-17 2015-06-24 Ibm Thermoelectric device
ES2610507B1 (es) * 2017-02-23 2018-02-08 Nabla Thermoelectrics, S.L. Generador termoeléctrico y aparato de calefacción que comprende dicho generador termoeléctrico
US11075331B2 (en) 2018-07-30 2021-07-27 Gentherm Incorporated Thermoelectric device having circuitry with structural rigidity
KR20210095206A (ko) 2018-11-30 2021-07-30 젠썸 인코포레이티드 열전 공조 시스템 및 방법
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
CN112333978B (zh) * 2020-10-19 2023-06-06 Oppo广东移动通信有限公司 散热组件及电子设备、散热控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304294A (en) * 1978-08-17 1981-12-08 Ford Aerospace & Communications Corp. Thermal energy switch
JPH05168846A (ja) * 1990-10-30 1993-07-02 Nippondenso Co Ltd 除湿装置
US5130276A (en) * 1991-05-16 1992-07-14 Motorola Inc. Method of fabricating surface micromachined structures
JPH0539966A (ja) * 1991-08-07 1993-02-19 Matsushita Electric Ind Co Ltd ヒートポンプデバイス
JP2924369B2 (ja) * 1991-11-20 1999-07-26 松下電器産業株式会社 ヒートポンプデバイス
RU2034207C1 (ru) * 1992-11-05 1995-04-30 Товарищество с ограниченной ответственностью компании "Либрация" Способ охлаждения объекта каскадной термоэлектрической батареей
AU6859294A (en) * 1993-05-25 1994-12-20 Industrial Research Limited A peltier device
US5720171A (en) * 1996-06-11 1998-02-24 Atoma International, Inc. Device for heating and cooling a beverage

Also Published As

Publication number Publication date
JP3672240B2 (ja) 2005-07-20
HUP0100405A3 (en) 2001-08-28
KR100351650B1 (ko) 2002-09-05
HUP0100405A2 (hu) 2001-06-28
CN1281545A (zh) 2001-01-24
BR9813558A (pt) 2000-10-10
US5966941A (en) 1999-10-19
KR20010032740A (ko) 2001-04-25
DE69811739D1 (de) 2003-04-03
HK1030808A1 (en) 2001-05-18
JP2001526374A (ja) 2001-12-18
EP1066489A1 (en) 2001-01-10
EP1066489B1 (en) 2003-02-26
CZ20002131A3 (cs) 2001-12-12
MY115607A (en) 2003-07-31
WO1999030090A1 (en) 1999-06-17
TW421984B (en) 2001-02-11
DE69811739T2 (de) 2003-10-23
PL341158A1 (en) 2001-03-26

Similar Documents

Publication Publication Date Title
CN1126919C (zh) 带隔离传热机理的动态开关的热电冷却设备及其操作方法
CN1110666C (zh) 热电冷却设备和操作该设备的方法
US6338251B1 (en) Mixed thermoelectric cooling apparatus and method
Mao et al. Thermoelectric cooling materials
US6161388A (en) Enhanced duty cycle design for micro thermoelectromechanical coolers
US6266962B1 (en) Highly reliable thermoelectric cooling apparatus and method
US6000225A (en) Two dimensional thermoelectric cooler configuration
US6662570B2 (en) Cascade cryogenic thermoelectric cooler for cryogenic and room temperature applications
Xuan et al. A general model for studying effects of interface layers on thermoelectric devices performance
Crane et al. Progress towards maximizing the performance of a thermoelectric power generator
US6065293A (en) Thermoelectric cooling system
US20060137360A1 (en) Thermoelectric configuration employing thermal transfer fluid flow(s) with recuperator
US20060137359A1 (en) Counterflow thermoelectric configuration employing thermal transfer fluid in closed cycle
EP1579512A4 (en) TRANS-THERMOELECTRIC DEVICE
Xuan et al. Optimization of a combined thermionic–thermoelectric generator
Dongare et al. Design and development of thermoelectric refrigerator
Winkler et al. Potential benefits of thermoelectric element used with air-cooled heat exchangers
JPH05315657A (ja) 熱電変換素子と熱電変換装置
Manikandan et al. Thermodynamic modelling and analysis of thermoelectric cooling system
MXPA00005692A (en) Thermoelectric cooling apparatus with dynamic switching to isolate heat transport mechanisms
Bierschenk Optimized thermoelectrics for energy harvesting applications
Fukutani et al. Optimization of bulk thermoelectric modules for chip cooling applications
Bulat et al. Thermoelectric Refrigeration-Environment Friendly Method of Cooling
Kaushik et al. Thermoelectric Cooling Systems
RU2033583C1 (ru) Термоэлектрический модуль

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20031105

Termination date: 20111112