CN112670496A - 一种铁掺杂二氧化锰复合还原氧化石墨烯材料及制备和应用 - Google Patents

一种铁掺杂二氧化锰复合还原氧化石墨烯材料及制备和应用 Download PDF

Info

Publication number
CN112670496A
CN112670496A CN201910981632.3A CN201910981632A CN112670496A CN 112670496 A CN112670496 A CN 112670496A CN 201910981632 A CN201910981632 A CN 201910981632A CN 112670496 A CN112670496 A CN 112670496A
Authority
CN
China
Prior art keywords
manganese dioxide
iron
graphene oxide
reduced graphene
doped manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910981632.3A
Other languages
English (en)
Inventor
王二东
张强
孙公权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201910981632.3A priority Critical patent/CN112670496A/zh
Publication of CN112670496A publication Critical patent/CN112670496A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明是一种铁掺杂α‑二氧化锰复合还原氧化石墨烯材料的制备及其在锌离子电池正极应用的通用方法。本发明使用两步水热合成的方法得到铁掺杂二氧化锰复合还原氧化石墨烯材料,通过将铁元素掺杂进入二氧化锰晶格中来取代部分锰元素的位置,在晶体中引入缺陷弱化锌离子与二氧化锰基体之间作用力,使锌离子更容易嵌入/脱出基体,同时铁元素的掺杂能够增加二氧化锰中载流子浓度,增强材料导电性;通过与还原氧化石墨烯复合来增强材料导电性及抑制Mn2+的溶解,从而得到了一种具有高比容量及良好循环稳定性的锌离子电池正极材料。

Description

一种铁掺杂二氧化锰复合还原氧化石墨烯材料及制备和应用
技术领域
本发明涉及一种铁掺杂二氧化锰复合还原氧化石墨烯材料的制备及其作为锌离子电池正极的应用,属于无机纳米材料及电化学领域。
背景技术
锌离子电池是一种基于锌离子在正负电极间传输的新型可充放电池,锌负极具有容量高,安全性好且来源广泛价格便宜的特点;同时锌离子电池具有环境友好性,安全性,低成本等特点。基于上述优点,锌离子电池未来有望应用于电网储能系统,同时也非常有可能替代目前使用有毒铅化合物的铅酸电池。因此锌离子电池及其电极材料的研究日益受到人们的关注。
目前研究较广泛的锌离子电池正极材料主要有以下几类,其一是钒氧化物,包括五氧化二钒、二氧化钒等,但是它们具有较低的能量密度;另一类是锰氧化物,例如二氧化锰、四氧化三锰等,虽然它们具有较高的理论比容量,但是导电性差和循环稳定性不好等限制了它们的应用。因此,探索具有高比容量和良好循环稳定性的正极材料是目前锌离子电池的研究重点。目前锌离子电池正极材料探索及改性研究采用的常用方法包括复合方法,如二氧化锰与聚吡咯复合等,通过增强材料导电性进而提高其放电比容量;晶型控制也是常用的方法,如Β-二氧化锰,通过控制材料的晶型来获取大孔道结构,使得锌离子更容易嵌入/脱出来获取更优的性能。
目前锰氧化物锌离子电池正极材料的研究主要集中在制备具有多孔结构、高性价比及具有良好循环稳定性的材料上。在各种锰基材料中,二氧化锰具有理论容量高,合成工艺简单且价格便宜等特点,是理想的锌离子电池正极材料候选。
发明内容
本发明的目的是为了避免上述现有技术所存在的不足之处,提供一种二氧化锰复合材料锌离子电池正极材料及其制备方法。使用两步水热合成的方法得到铁掺杂二氧化锰复合还原氧化石墨烯材料,通过将铁元素掺杂进入二氧化锰晶格中来取代部分锰元素的位置,在晶体中引入缺陷弱化锌离子与二氧化锰基体之间作用力,使其更容易嵌入/脱出基体,同时铁元素的掺杂能够增加二氧化锰中载流子浓度,增强材料导电性;通过将铁掺杂进入二氧化锰晶格中来增强其导电性,并通过与还原氧化石墨烯复合来增强材料导电性及抑制Mn2+的溶解,从而得到了一种具有高比容量及良好循环稳定性的锌离子电池正极材料。
一种铁掺杂二氧化锰复合还原氧化石墨烯材料,所述二氧化锰为α相二氧化锰;通过第一步水热合成法使Fe取代二氧化锰晶格中部分Mn的位置;通过第二步水热反应,使所述铁掺杂的二氧化锰担载于石墨烯片层上。
所述铁元素与锰元素的原子比为0.005~0.1:1;所述石墨烯的质量占复合材料总质量的2%~5%。
通过控制水热反应时的反应时长控制制备得到的铁掺杂二氧化锰的形貌和结构,使所述铁掺杂二氧化锰复合氧化石墨烯材料是由石墨烯包覆的长径比为10~25:1,直径为30~50纳米的纳米线状铁掺杂二氧化锰构成。这种结构具有较大的比表面积,有利于电解液与复合材料之间的接触,从而增大其放电容量;同时这种结构有利于增强复合材料的结构稳定性,从而增强其循环稳定性。
所包覆的还原氧化石墨烯层的厚度为4-5纳米。
所述铁掺杂二氧化锰复合还原氧化石墨烯材料的制备方法,其中关键在于第一步水合成过程中控制铁元素的掺杂比例及反应时间,及复合材料中石墨烯的使用量,
1)铁掺杂二氧化锰制备;
将硫酸锰和硝酸铁溶解在水中,滴加稀硫酸,搅拌至均匀后,滴加高锰酸钾溶液,搅拌一段时间后将反应物进行超声处理,将所得溶液转移到反应釜中,于100℃~150℃反应温度下进行水热反应反应时间为8~15h,得到铁掺杂二氧化锰;
2)铁掺杂二氧化锰复合还原氧化石墨烯制备;
将铁掺杂二氧化锰用水和乙醇依次洗涤2次以上除去杂质,然后真空干燥;
将干燥的铁掺杂二氧化锰溶解在水中,添加氧化石墨,搅拌至均匀后将所得溶液转移到反应釜中,水热反应得到铁掺杂二氧化锰复合还原氧化石墨烯材料。
所述硫酸锰和高锰酸钾的质量比为1:0.5~1:0.8;硫酸锰和硝酸铁的质量比为1:0.01~1:0.2,所用稀硫酸的浓度为0.3mol/mL~0.6mol/mL,稀硫酸的加入量为20mL/L;硫酸锰在水里的浓度为6mg/mL~10mg/mL。
步骤1)中所述的超声处理时间为5~15min;步骤2)中所述的真空干燥温度为60~80℃,干燥时间为8~12h。
步骤2)所述铁掺杂二氧化锰与氧化石墨的质量比为1:0.01~1:0.03;所述铁掺杂二氧化锰在水中的浓度为6mg/mL~10mg/mL。
步骤2)所述水热反应温度为100~150℃;反应时间为8~15个小时。
锌离子电池正极电极材料包括质量比8:1:1~7:1.5:1.5的铁掺杂二氧化锰复合还原氧化石墨烯材料、导电碳黑和粘结剂聚偏二氟乙烯。
称取一定量得到的铁掺杂二氧化锰复合还原氧化石墨烯材料,并将其与导电碳黑和粘结剂聚偏二氟乙烯按质量比8:1:1的比例混合并充分研磨后,用滴管滴加适量N-甲基-2-吡咯烷酮,充分搅拌后,将混匀的电极材料涂在泡沫镍上,使用真空干燥箱在60~80℃下干燥8~12h。之后使用金属锌片作对电极和玻璃纤维膜(GF/D)作为隔膜,以2mol/l的硫酸锌和0.2mol/l的硫酸锰混合溶液作为电解液组装成2032型纽扣电池。然后将制备好的电池使用LAND-CT2001A电池测试系统在1.0~1.8V的电压范围内进行电化学性能测试。
测试结果表明,本发明所得的铁掺杂二氧化锰复合还原氧化石墨烯材料具有优异的放电性能,即使在高电流密度下其放电比容量仍然得到很好的保持。当选用100mA g-1电流密度作为测试电流,充放电循环50圈后,正极电极材料放电比容量仍达到410.9mAh g-1
本发明所得的铁掺杂二氧化锰复合还原氧化石墨烯材料的特征体现在:具有由还原氧化石墨烯包覆的铁掺杂二氧化锰纳米线构成;所包覆的还原氧化石墨烯层的厚度为4~5纳米;纳米线的长径比为10~25:1,直径为30~50纳米;铁元素与锰元素的原子比为0.005~0.1:1;具有较大的比表面积和良好循环稳定性。
与现有技术相比,本发明的有益效果体现在:
(1)本发明采用的原料是硫酸锰和硝酸铁及高锰酸钾和少量氧化石墨,材料来源简单,绿色安全,价格低廉,可以实现大规模生产。
(2)采用水热合成的方法,可以得到的具有还原氧化石墨烯包覆的铁掺杂二氧化锰纳米线状材料,其循环稳定性良好。
(3)本发明方法获得的电极材料放电比容量高,并且其容量得到很好的保持。
本发明使用两步水热合成的方法得到铁掺杂二氧化锰复合还原氧化石墨烯材料,通过将铁元素掺杂进入二氧化锰晶格中来取代部分锰元素的位置,在晶体中引入缺陷弱化锌离子与二氧化锰基体之间作用力,使锌离子更容易嵌入/脱出基体,同时铁元素的掺杂能够增加二氧化锰中载流子浓度,增强材料导电性;通过与还原氧化石墨烯复合来增强材料导电性及抑制Mn2+的溶解,从而得到了一种具有高比容量及良好循环稳定性的锌离子电池正极材料。所生成的复合材料具有均匀纳米线状状结构,同时展示了非常优异的电化学性能。作为锌离子电池正极材料时,在100mA g-1的电流密度下循环50次后,其放电比容量仍能达到410.9mAh g-1;在1A g-1的电流密度下,循环200次后放电比容量仍保持在90.7mAh g-1。在较高电流密度下材料放电比容量依然较高,这表明它作为大容量的锌离子电池正极活性材料具有非常大的应用前景。同时,由于原料使用的是硫酸锰、硝酸铁、高锰酸钾和少量氧化石墨等,来源广泛,价格便宜,而且这种电极材料制备工艺简单可控,设备简易,是一种易于进行大规模生产的方法。
附图说明
图1为3%铁掺杂二氧化锰复合还原氧化石墨烯(8mg)材料的扫描电镜照片。
图2为3%铁掺杂二氧化锰复合还原氧化石墨烯(8mg)材料的XRD图片。
图3为3%铁掺杂二氧化锰复合还原氧化石墨烯(8mg)材料的在100mA g-1的电流密度下的放电曲线。
图4为1%铁掺杂二氧化锰复合还原氧化石墨烯(8mg)材料的在100mA g-1的电流密度下的放电曲线。
图5为3%铁掺杂二氧化锰复合还原氧化石墨烯(5mg)材料的在100mA g-1的电流密度下的放电曲线。
图6为3%铁掺杂二氧化锰复合还原氧化石墨烯(8mg)材料,3%铁掺杂二氧化锰和二氧化锰在1A g-1的电流密度下的放电曲线。
具体实施方式
以下将结合附图和实例对本发明做进一步的详细说明。
本发明是一种铁掺杂二氧化锰复合还原氧化石墨烯锌离子电池电极材料的制备,包括有下列步骤:
步骤一,铁掺杂二氧化锰制备;
将硫酸锰和硝酸铁溶解在水中,滴加少量稀硫酸,搅拌数分钟至均匀后,逐滴滴加高锰酸钾溶液,搅拌一段时间后将反应物进行超声处理数分钟,之后将所得溶液转移到反应釜中,并在一定的反应温度,反应一段时间得到铁掺杂二氧化锰;
所述硫酸锰和高锰酸钾的质量比为1:0.5~1:0.8;硫酸锰和硝酸铁的质量比为1:0.01~1:0.2,所用稀硫酸的浓度为0.3mol/ml~0.6mol/ml,硫酸锰在水里的浓度为6mg/mL~10mg/mL。
所述的超声处理时间为5~15Min,水热反应温度为100℃~150℃;反应时间为8~15h。
步骤二,铁掺杂二氧化锰复合还原氧化石墨烯材料制备;
将铁掺杂二氧化锰用水和乙醇依次洗涤2次以上除去杂质,然后真空干燥。
所述的真空干燥温度为60~80℃,干燥时间为8~12h;
之后称取一定量的干燥的铁掺杂二氧化锰溶解在水中,之后添加一定量氧化石墨,搅拌一段时间后将所得溶液转移到反应釜中,并在一定的反应温度,反应一段时间得到铁掺杂二氧化锰复合还原氧化石墨烯材料。
所述铁掺杂二氧化锰与氧化石墨的质量比为1:0.01~1:0.03;所述铁掺杂二氧化锰在水中的浓度为6mg/ml~10mg/mL。
所述的反应温度为100~150℃;反应时间为8~15个小时。
步骤三,锌离子电池正极制备;
称取一定量的得到的铁掺杂二氧化锰复合还原氧化石墨烯材料,并将其与导电碳黑和粘结剂聚偏二氟乙烯按质量比8:1:1的比例混合并充分研磨后,用滴管滴加适量N-甲基-2-吡咯烷酮,充分搅拌后,将混匀的电极材料涂在泡沫镍上,使用真空干燥箱在60~80℃下干燥8~12h。之后使用金属锌片作对电极和玻璃纤维膜(GF/D)作为隔膜,以2mol/l的硫酸锌和0.2mol/l的硫酸锰混合溶液作为电解液组装成2032型纽扣电池。然后将制备好的电池使用LAND-CT2001A电池测试系统在1.0~1.8V的电压范围内进行电化学性能测试。
实施例1
步骤一,铁掺杂二氧化锰制备;
称取0.608g硫酸锰和0.072g硝酸铁溶解在水中,滴加2ml浓度为0.6mol/l的稀硫酸,搅拌数分钟至均匀后,逐滴滴加20ml浓度为18.5mg/ml的高锰酸钾溶液,搅拌一段时间后将反应物进行超声处理10分钟,之后将所得溶液转移到反应釜中,并在120℃反应12h得到铁掺杂二氧化锰;
步骤二,铁掺杂二氧化锰复合还原氧化石墨烯材料制备;
将铁掺杂二氧化锰用水和乙醇依次洗涤2次以上除去杂质,然后以60℃进行真空干燥,时间为10h。
之后称取0.4g的干燥的铁掺杂二氧化锰溶解在水中,之后添加8mg氧化石墨,搅拌10Min后将所得溶液转移到反应釜中,并在120℃下反应10h得到铁掺杂二氧化锰复合还原氧化石墨烯材料。
步骤三,锌离子电池正极制备;
称取80mg得到的铁掺杂二氧化锰复合还原氧化石墨烯材料,并将其与导电碳黑和粘结剂聚偏二氟乙烯按质量比8:1:1的比例混合并充分研磨后,用滴管滴加3滴N-甲基-2-吡咯烷酮,充分搅拌后,将混匀的电极材料涂在泡沫镍上,使用真空干燥箱在60℃下干燥8h。之后使用金属锌片作对电极和玻璃纤维膜(GF/D)作为隔膜,以2mol/l的硫酸锌和0.2mol/l的硫酸锰混合溶液作为电解液组装成2032型纽扣电池。然后将制备好的电池使用LAND-CT2001A电池测试系统在1.0~1.8V的电压范围内进行电化学性能测试。
图1为这种铁掺杂二氧化锰复合还原氧化石墨烯材料的扫描电镜照片,可以看出,这种材料具有纳米线状结构,且尺寸比较均一。从图中可以看出纳米线的直径约30~50纳米,且被还原氧化石墨烯包覆。
图2为得到的铁掺杂二氧化锰复合还原氧化石墨烯材料的XRD图片。图中显示样品具有二氧化锰典型的特征峰(110)、(200)、(310)、(211)、(301)等,证明合成的样品为二氧化锰;并且没有铁氧化物的特征峰出现,证明铁元素掺杂进入二氧化锰晶格中。
图3为在100mA g-1的电流密度下,所制备材料的放电曲线图。从图中可以明显看到所制备的材料具有良好的循环稳定性,经过50次充放电循环后,其放电比容量依然能够保持在410.9mAh g-1
实施例2
步骤一,铁掺杂二氧化锰制备;
称取0.608g硫酸锰和0.024g硝酸铁溶解在水中,滴加2ml浓度为0.6mol/l的稀硫酸,搅拌数分钟至均匀后,逐滴滴加20ml浓度为18.5mg/ml的高锰酸钾溶液,搅拌一段时间后将反应物进行超声处理10分钟,之后将所得溶液转移到反应釜中,并在120℃反应12h得到铁掺杂二氧化锰;
步骤二,铁掺杂二氧化锰复合还原氧化石墨烯材料制备;
将铁掺杂二氧化锰用水和乙醇依次洗涤2次以上除去杂质,然后以60℃进行真空干燥,时间为10h。
之后称取0.4g的干燥的铁掺杂二氧化锰溶解在水中,之后添加8mg氧化石墨,搅拌10Min后将所得溶液转移到反应釜中,并在120℃下反应10h得到铁掺杂二氧化锰复合还原氧化石墨烯材料。
步骤三,锌离子电池正极制备;
称取80mg得到的铁掺杂二氧化锰复合还原氧化石墨烯材料,并将其与导电碳黑和粘结剂聚偏二氟乙烯按质量比8:1:1的比例混合并充分研磨后,用滴管滴加3滴N-甲基-2-吡咯烷酮,充分搅拌后,将混匀的电极材料涂在泡沫镍上,使用真空干燥箱在60℃下干燥8h。之后使用金属锌片作对电极和玻璃纤维膜(GF/D)作为隔膜,以2mol/l的硫酸锌和0.2mol/l的硫酸锰混合溶液作为电解液组装成2032型纽扣电池。然后将制备好的电池使用LAND-CT2001A电池测试系统在1.0~1.8V的电压范围内进行电化学性能测试。
本发明与实例1中采用的方法基本相同,只是铁掺杂量减少到1%。该电极材料与实例1中制备的材料在100mA g-1的电流密度下的放电曲线显示在图4中,从图中可以看到,在相同的电流密度下,本实例所采用的方法制备的材料的放电比容量要低于实例1。这是由于铁掺杂量对合成二氧化锰的导电性影响明显,进而影响其电化学性能。通过对比可以发现,3%为更好的掺杂比例。
实施例3
步骤一,铁掺杂二氧化锰制备;
称取0.608g硫酸锰和0.07g硝酸铁溶解在水中,滴加2ml浓度为0.6mol/l的稀硫酸,搅拌数分钟至均匀后,逐滴滴加20ml浓度为18.5mg/ml的高锰酸钾溶液,搅拌一段时间后将反应物进行超声处理10分钟,之后将所得溶液转移到反应釜中,并在120℃反应12h得到铁掺杂二氧化锰;
步骤二,铁掺杂二氧化锰复合还原氧化石墨烯材料制备;
将铁掺杂二氧化锰用水和乙醇依次洗涤2次以上除去杂质,然后以60℃进行真空干燥,时间为10h。
之后称取0.4g的干燥的铁掺杂二氧化锰溶解在水中,之后添加5mg氧化石墨,搅拌10Min后将所得溶液转移到反应釜中,并在120℃下反应10h得到铁掺杂二氧化锰复合还原氧化石墨烯材料。
步骤三,锌离子电池正极制备;
称取80mg得到的铁掺杂二氧化锰复合还原氧化石墨烯材料,并将其与导电碳黑和粘结剂聚偏二氟乙烯按质量比8:1:1的比例混合并充分研磨后,用滴管滴加3滴N-甲基-2-吡咯烷酮,充分搅拌后,将混匀的电极材料涂在泡沫镍上,使用真空干燥箱在60℃下干燥8h。之后使用金属锌片作对电极和玻璃纤维膜(GF/D)作为隔膜,以2mol/l的硫酸锌和0.2mol/l的硫酸锰混合溶液作为电解液组装成2032型纽扣电池。然后将制备好的电池使用LAND-CT2001A电池测试系统在1.0~1.8V的电压范围内进行电化学性能测试。
本发明与实例1中采用的方法基本相同,只是使用氧化石墨的量减少到5mg。该电极材料与实例1中制备的材料在100mA g-1的电流密度下的放电曲线显示在图5中,从图中可以看到,在相同的电流密度下,本实例所采用的方法制备的材料的放电比容量要低于实例1。这是由于包覆石墨烯的量会影响合成材料的导电性及二氧化锰中Mn2+的溶解,继而影响其性能。通过对比可以发现,3%为更好的石墨烯包覆量。
对比例1
步骤一,二氧化锰制备;
称取0.608g硫酸锰溶解在水中,滴加2ml浓度为0.6mol/l的稀硫酸,搅拌数分钟至均匀后,逐滴滴加20ml浓度为18.5mg/ml的高锰酸钾溶液,搅拌一段时间后将反应物进行超声处理10分钟,之后将所得溶液转移到反应釜中,并在120℃反应12h得到二氧化锰;
步骤二,锌离子电池正极制备;
称取80mg得到的二氧化锰材料,并将其与导电碳黑和粘结剂聚偏二氟乙烯按质量比8:1:1的比例混合并充分研磨后,用滴管滴加3滴N-甲基-2-吡咯烷酮,充分搅拌后,将混匀的电极材料涂在泡沫镍上,使用真空干燥箱在60℃下干燥8h。之后使用金属锌片作对电极和玻璃纤维膜(GF/D)作为隔膜,以2mol/l的硫酸锌和0.2mol/l的硫酸锰混合溶液作为电解液组装成2032型纽扣电池。然后将制备好的电池使用LAND-CT2001A电池测试系统在1.0~1.8V的电压范围内进行电化学性能测试。
本对比例与实施例1中采用的方法基本相同,只是没有进行铁掺杂及没有与还原氧化石墨烯复合。该电极材料与实施例1中制备的材料在100mA g-1的电流密度下的放电曲线显示在图6中,从图中可以看到,在相同的电流密度下,本对比例所采用的方法制备的材料的放电比容量要远低于实施例1。这是由于铁掺杂和石墨烯会影响二氧化锰材料的导电性及结构稳定性。通过对比可以发现,进行铁掺杂和包覆还原氧化石墨烯得到的材料性能更好。
对比例2
步骤一,铁掺杂二氧化锰制备;
称取0.608g硫酸锰和0.07g硝酸铁溶解在水中,滴加2ml浓度为0.6mol/l的稀硫酸,搅拌数分钟至均匀后,逐滴滴加20ml浓度为18.5mg/ml的高锰酸钾溶液,搅拌一段时间后将反应物进行超声处理10分钟,之后将所得溶液转移到反应釜中,并在120℃反应12h得到铁掺杂二氧化锰;
步骤二,锌离子电池正极制备;
称取80mg得到的铁掺杂二氧化锰材料,并将其与导电碳黑和粘结剂聚偏二氟乙烯按质量比8:1:1的比例混合并充分研磨后,用滴管滴加3滴N-甲基-2-吡咯烷酮,充分搅拌后,将混匀的电极材料涂在泡沫镍上,使用真空干燥箱在60℃下干燥8h。之后使用金属锌片作对电极和玻璃纤维膜(GF/D)作为隔膜,以2mol/l的硫酸锌和0.2mol/l的硫酸锰混合溶液作为电解液组装成2032型纽扣电池。然后将制备好的电池使用LAND-CT2001A电池测试系统在1.0~1.8V的电压范围内进行电化学性能测试。
本对比例与实施例1中采用的方法基本相同,只是没有进行石墨烯包覆。在相同的电流密度下,本对比例所采用的方法制备的材料的放电比容量要远低于实施例1。这是由于石墨烯包覆抑制Mn2+的溶解并进一步增强材料导电性,继而增强其放电比容量。通过对比可以发现,进行石墨烯包覆得到的材料性能更好。
对比例3
步骤一,铁掺杂二氧化锰制备;
称取0.608g硫酸锰和0.144g硝酸铁溶解在水中,滴加2ml浓度为0.6mol/l的稀硫酸,搅拌数分钟至均匀后,逐滴滴加20ml浓度为18.5mg/ml的高锰酸钾溶液,搅拌一段时间后将反应物进行超声处理10分钟,之后将所得溶液转移到反应釜中,并在120℃反应12h得到铁掺杂二氧化锰;
步骤二,铁掺杂二氧化锰复合还原氧化石墨烯材料制备;
将铁掺杂二氧化锰用水和乙醇依次洗涤2次以上除去杂质,然后以60℃进行真空干燥,时间为10h。
之后称取0.4g的干燥的铁掺杂二氧化锰溶解在水中,之后添加8mg氧化石墨,搅拌10Min后将所得溶液转移到反应釜中,并在120℃下反应10h得到铁掺杂二氧化锰复合还原氧化石墨烯材料。
步骤三,锌离子电池正极制备;
称取80mg得到的铁掺杂二氧化锰复合还原氧化石墨烯材料,并将其与导电碳黑和粘结剂聚偏二氟乙烯按质量比8:1:1的比例混合并充分研磨后,用滴管滴加3滴N-甲基-2-吡咯烷酮,充分搅拌后,将混匀的电极材料涂在泡沫镍上,使用真空干燥箱在60℃下干燥8h。之后使用金属锌片作对电极和玻璃纤维膜(GF/D)作为隔膜,以2mol/l的硫酸锌和0.2mol/l的硫酸锰混合溶液作为电解液组装成2032型纽扣电池。然后将制备好的电池使用LAND-CT2001A电池测试系统在1.0~1.8V的电压范围内进行电化学性能测试。
本对比例与实施例1中采用的方法基本相同,只是铁掺杂量增加到6%。该电极材料与实例1中制备的材料相比在相同的电流密度下,本实例所采用的方法制备的材料的放电比容量要低于实例1。这是由于铁掺杂量对合成的二氧化锰中载流子浓度提高有极限值,过多铁的掺入反而会影响其正常晶格结构,进而影响其电化学性能。通过对比可以发现,3%为更好的掺杂比例。
对比例4
步骤一,铁掺杂二氧化锰制备;
称取0.608g硫酸锰和0.07g硝酸铁溶解在水中,滴加2ml浓度为0.6mol/l的稀硫酸,搅拌数分钟至均匀后,逐滴滴加20ml浓度为18.5mg/ml的高锰酸钾溶液,搅拌一段时间后将反应物进行超声处理10分钟,之后将所得溶液转移到反应釜中,并在120℃反应12h得到铁掺杂二氧化锰;
步骤二,铁掺杂二氧化锰复合还原氧化石墨烯材料制备;
将铁掺杂二氧化锰用水和乙醇依次洗涤2次以上除去杂质,然后以60℃进行真空干燥,时间为10h。
之后称取0.4g的干燥的铁掺杂二氧化锰溶解在水中,之后添加15mg氧化石墨,搅拌10Min后将所得溶液转移到反应釜中,并在120℃下反应10h得到铁掺杂二氧化锰复合还原氧化石墨烯材料。
步骤三,锌离子电池正极制备;
称取80mg得到的铁掺杂二氧化锰复合还原氧化石墨烯材料,并将其与导电碳黑和粘结剂聚偏二氟乙烯按质量比8:1:1的比例混合并充分研磨后,用滴管滴加3滴N-甲基-2-吡咯烷酮,充分搅拌后,将混匀的电极材料涂在泡沫镍上,使用真空干燥箱在60℃下干燥8h。之后使用金属锌片作对电极和玻璃纤维膜(GF/D)作为隔膜,以2mol/l的硫酸锌和0.2mol/l的硫酸锰混合溶液作为电解液组装成2032型纽扣电池。然后将制备好的电池使用LAND-CT2001A电池测试系统在1.0~1.8V的电压范围内进行电化学性能测试。
本对比例与实例1中采用的方法基本相同,只是使用氧化石墨的量增加到15mg。该电极材料与实例1中制备的材料在相同的电流密度下,本实例所采用的方法制备的材料的放电比容量要低于实例1。这是由于包覆石墨烯的量会影响合成材料的石墨烯包覆的厚度,过厚反而影响其性能。通过对比可以发现,3%为更好的石墨烯包覆量。
对比例5
步骤一,铁掺杂二氧化锰制备;
称取0.608g硫酸锰和0.072g硝酸铁溶解在水中,滴加2ml浓度为0.6mol/l的稀硫酸,搅拌数分钟至均匀后,逐滴滴加20ml浓度为18.5mg/ml的高锰酸钾溶液,搅拌一段时间后将反应物进行超声处理10分钟,之后将所得溶液转移到反应釜中,并在120℃反应6h得到铁掺杂二氧化锰;
步骤二,铁掺杂二氧化锰复合还原氧化石墨烯材料制备;
将铁掺杂二氧化锰用水和乙醇依次洗涤2次以上除去杂质,然后以60℃进行真空干燥,时间为10h。
之后称取0.4g的干燥的铁掺杂二氧化锰溶解在水中,之后添加8mg氧化石墨,搅拌10Min后将所得溶液转移到反应釜中,并在120℃下反应10h得到铁掺杂二氧化锰复合还原氧化石墨烯材料。
步骤三,锌离子电池正极制备;
称取80mg得到的铁掺杂二氧化锰复合还原氧化石墨烯材料,并将其与导电碳黑和粘结剂聚偏二氟乙烯按质量比8:1:1的比例混合并充分研磨后,用滴管滴加3滴N-甲基-2-吡咯烷酮,充分搅拌后,将混匀的电极材料涂在泡沫镍上,使用真空干燥箱在60℃下干燥8h。之后使用金属锌片作对电极和玻璃纤维膜(GF/D)作为隔膜,以2mol/l的硫酸锌和0.2mol/l的硫酸锰混合溶液作为电解液组装成2032型纽扣电池。然后将制备好的电池使用LAND-CT2001A电池测试系统在1.0~1.8V的电压范围内进行电化学性能测试。
本对比例与实施例1中采用的方法基本相同,第一步水热反应的时间变短。该电极材料与实例1中制备的材料在相同的电流密度下,本实例所采用的方法制备的材料的放电比容量要低于实例1。这是由于水热反应时间会影响合成的二氧化锰的结晶性和直径及长度,反应时间过短会使其结晶性变差既而影响其性能。
对比例6
步骤一,铁掺杂二氧化锰制备;
称取0.608g硫酸锰和0.072g硝酸铁溶解在水中,滴加2ml浓度为0.6mol/l的稀硫酸,搅拌数分钟至均匀后,逐滴滴加20ml浓度为18.5mg/ml的高锰酸钾溶液,搅拌一段时间后将反应物进行超声处理10分钟,之后将所得溶液转移到反应釜中,并在120℃反应18h得到铁掺杂二氧化锰;
步骤二,铁掺杂二氧化锰复合还原氧化石墨烯材料制备;
将铁掺杂二氧化锰用水和乙醇依次洗涤2次以上除去杂质,然后以60℃进行真空干燥,时间为10h。
之后称取0.4g的干燥的铁掺杂二氧化锰溶解在水中,之后添加8mg氧化石墨,搅拌10Min后将所得溶液转移到反应釜中,并在120℃下反应10h得到铁掺杂二氧化锰复合还原氧化石墨烯材料。
步骤三,锌离子电池正极制备;
称取80mg得到的铁掺杂二氧化锰复合还原氧化石墨烯材料,并将其与导电碳黑和粘结剂聚偏二氟乙烯按质量比8:1:1的比例混合并充分研磨后,用滴管滴加3滴N-甲基-2-吡咯烷酮,充分搅拌后,将混匀的电极材料涂在泡沫镍上,使用真空干燥箱在60℃下干燥8h。之后使用金属锌片作对电极和玻璃纤维膜(GF/D)作为隔膜,以2mol/l的硫酸锌和0.2mol/l的硫酸锰混合溶液作为电解液组装成2032型纽扣电池。然后将制备好的电池使用LAND-CT2001A电池测试系统在1.0~1.8V的电压范围内进行电化学性能测试。
本对比例与实施例1中采用的方法基本相同,第一步水热反应的时间变短。该电极材料与实例1中制备的材料在相同的电流密度下,本实例所采用的方法制备的材料的放电比容量要低于实例1。这是由于水热反应时间会影响合成的二氧化锰的直径及长度,反应时间过长会是二氧化锰直径变粗且长度变长既而影响其性能。
对比例7
步骤一,铁掺杂二氧化锰制备;
称取0.608g硫酸锰和0.07g硝酸铁溶解在水中,滴加2ml浓度为0.6mol/l的稀硫酸,搅拌数分钟至均匀后,逐滴滴加20ml浓度为18.5mg/ml的高锰酸钾溶液,搅拌一段时间后将反应物进行超声处理10分钟,之后将所得溶液转移到反应釜中,并在120℃反应12h得到铁掺杂二氧化锰;
步骤二,锌离子电池正极制备;
称取80mg得到的铁掺杂二氧化锰材料与3mg还原氧化石墨烯混合,并将其与导电碳黑和粘结剂聚偏二氟乙烯按质量比8:1:1的比例混合并充分研磨后,用滴管滴加3滴N-甲基-2-吡咯烷酮,充分搅拌后,将混匀的电极材料涂在泡沫镍上,使用真空干燥箱在60℃下干燥8h。之后使用金属锌片作对电极和玻璃纤维膜(GF/D)作为隔膜,以2mol/l的硫酸锌和0.2mol/l的硫酸锰混合溶液作为电解液组装成2032型纽扣电池。然后将制备好的电池使用LAND-CT2001A电池测试系统在1.0~1.8V的电压范围内进行电化学性能测试。
本对比例与实施例1中采用的方法基本相同,只是将铁掺杂二氧化锰与还原氧化石墨烯进行物理混合。在相同的电流密度下,本对比例所采用的方法制备的材料的放电比容量要远低于实施例1。这是由于石墨烯包覆抑制Mn2+的溶解并进一步增强材料导电性,继而增强其放电比容量,物理混合难以起到相同的作用。通过对比可以发现,进行还原氧化石墨烯包覆得到的材料性能更好。

Claims (10)

1.一种铁掺杂二氧化锰复合还原氧化石墨烯材料,其特征在于:所述二氧化锰为α相二氧化锰;铁掺杂二氧化锰是指Fe取代二氧化锰晶格中部分Mn的位置;复合还原氧化石墨烯材料是指铁掺杂的二氧化锰担载于石墨烯片层上。
2.根据权利要求1所述铁掺杂二氧化锰复合还原氧化石墨烯材料,其特征在于:所述铁元素与锰元素的原子比为0.005~0.1:1;所述石墨烯的质量占复合材料总质量的2%~5%。
3.根据权利要求1所述铁掺杂二氧化锰复合还原氧化石墨烯材料,其特征在于:使所述铁掺杂二氧化锰复合氧化石墨烯材料是由石墨烯包覆的长径比为10~25:1,直径为30~50纳米的纳米线状铁掺杂二氧化锰构成。
4.按照权利要求1所述铁掺杂二氧化锰复合还原氧化石墨烯材料,其特征在于:所包覆的还原氧化石墨烯层的厚度为4-5纳米。
5.一种按照权利要求1-4任一所述铁掺杂二氧化锰复合还原氧化石墨烯材料的制备方法,其特征在于:
1)铁掺杂二氧化锰制备;
将硫酸锰和硝酸铁溶解在水中,滴加稀硫酸,搅拌至均匀后,滴加高锰酸钾溶液,搅拌一段时间后将反应物进行超声处理,将所得溶液转移到反应釜中,于100℃~150℃反应温度下进行水热反应反应时间为8~15h,得到铁掺杂二氧化锰;
2)铁掺杂二氧化锰复合还原氧化石墨烯制备;
将铁掺杂二氧化锰用水和乙醇依次洗涤2次以上除去杂质,然后真空干燥;
将干燥的铁掺杂二氧化锰溶解在水中,添加氧化石墨,搅拌至均匀后将所得溶液转移到反应釜中,水热反应得到铁掺杂二氧化锰复合还原氧化石墨烯材料。
6.按照权利要求5所述铁掺杂二氧化锰复合还原氧化石墨烯材料的制备方法,其特征在于:
所述硫酸锰和高锰酸钾的质量比为1:0.5~1:0.8;硫酸锰和硝酸铁的质量比为1:0.01~1:0.2,所用稀硫酸的浓度为0.3mol/mL~0.6mol/mL,稀硫酸的加入量为15~25mL/L;硫酸锰在水里的浓度为6mg/mL~10mg/mL。
7.按照权利要求5所述铁掺杂二氧化锰复合还原氧化石墨烯材料的制备方法,其特征在于:
步骤1)中所述的超声处理时间为5~15min;步骤2)中所述的真空干燥温度为60~80℃,干燥时间为8~12h。
8.按照权利要求5所述铁掺杂二氧化锰复合还原氧化石墨烯材料的制备方法,其特征在于:
步骤2)所述铁掺杂二氧化锰与氧化石墨的质量比为1:0.01~1:0.03;所述铁掺杂二氧化锰在水中的浓度为6mg/mL~10mg/mL。
9.按照权利要求5所述铁掺杂二氧化锰复合还原氧化石墨烯材料的制备方法,其特征在于:
步骤2)所述水热反应温度为100~150℃;反应时间为8~15个小时。
10.按权利要求1-4所述铁掺杂二氧化锰复合还原氧化石墨烯材料作为正极活性材料在锌离子电池正极中的应用;
锌离子电池正极电极材料包括质量比8:1:1~7:1.5:1.5的铁掺杂二氧化锰复合还原氧化石墨烯材料、导电碳黑和粘结剂聚偏二氟乙烯。
CN201910981632.3A 2019-10-16 2019-10-16 一种铁掺杂二氧化锰复合还原氧化石墨烯材料及制备和应用 Pending CN112670496A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910981632.3A CN112670496A (zh) 2019-10-16 2019-10-16 一种铁掺杂二氧化锰复合还原氧化石墨烯材料及制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910981632.3A CN112670496A (zh) 2019-10-16 2019-10-16 一种铁掺杂二氧化锰复合还原氧化石墨烯材料及制备和应用

Publications (1)

Publication Number Publication Date
CN112670496A true CN112670496A (zh) 2021-04-16

Family

ID=75400221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910981632.3A Pending CN112670496A (zh) 2019-10-16 2019-10-16 一种铁掺杂二氧化锰复合还原氧化石墨烯材料及制备和应用

Country Status (1)

Country Link
CN (1) CN112670496A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114649519A (zh) * 2022-03-30 2022-06-21 北京化工大学 一种钼元素单原子层板掺杂的二氧化锰及其制备与用途及包含其的锌离子电池
CN114711252A (zh) * 2022-04-22 2022-07-08 广东轻工职业技术学院 一种抗菌包装材料及其制备方法和应用
CN115000394A (zh) * 2022-05-18 2022-09-02 安徽信息工程学院 一种电化学材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709061A (zh) * 2012-07-03 2012-10-03 电子科技大学 一种石墨烯包覆二氧化锰的复合电极材料及其制备方法
CN103915613A (zh) * 2014-04-10 2014-07-09 山东润昇电源科技有限公司 水热耦合喷雾热解MnO2/石墨烯电极材料的制备方法
CN104261479A (zh) * 2014-09-28 2015-01-07 上海第二工业大学 一种金属掺杂纳米二氧化锰电极材料及其制备方法
CN105552336A (zh) * 2016-01-16 2016-05-04 山东玉皇新能源科技有限公司 一种水热法合成MnO2/NCNTs纳米复合材料及其制备方法
CN108183227A (zh) * 2017-12-30 2018-06-19 桑德集团有限公司 一种掺杂二氧化锰的硫碳正极复合材料及其制备方法和电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709061A (zh) * 2012-07-03 2012-10-03 电子科技大学 一种石墨烯包覆二氧化锰的复合电极材料及其制备方法
CN103915613A (zh) * 2014-04-10 2014-07-09 山东润昇电源科技有限公司 水热耦合喷雾热解MnO2/石墨烯电极材料的制备方法
CN104261479A (zh) * 2014-09-28 2015-01-07 上海第二工业大学 一种金属掺杂纳米二氧化锰电极材料及其制备方法
CN105552336A (zh) * 2016-01-16 2016-05-04 山东玉皇新能源科技有限公司 一种水热法合成MnO2/NCNTs纳米复合材料及其制备方法
CN108183227A (zh) * 2017-12-30 2018-06-19 桑德集团有限公司 一种掺杂二氧化锰的硫碳正极复合材料及其制备方法和电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO CHEN等: "Highly active carbon/α-MnO2 hybrid oxygen reduction reaction electrocatalysts", CHEMELECTROCHEM. *
JIANPENG LI等: "Transition metal doped MnO2 nanosheets grown on internal surface of macroporous carbon for supercapacitors and oxygen reduction reaction electrocatalysts", APPLIED MATERIALS TODAY *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114649519A (zh) * 2022-03-30 2022-06-21 北京化工大学 一种钼元素单原子层板掺杂的二氧化锰及其制备与用途及包含其的锌离子电池
CN114711252A (zh) * 2022-04-22 2022-07-08 广东轻工职业技术学院 一种抗菌包装材料及其制备方法和应用
CN114711252B (zh) * 2022-04-22 2023-10-31 广东轻工职业技术学院 一种抗菌包装材料及其制备方法和应用
CN115000394A (zh) * 2022-05-18 2022-09-02 安徽信息工程学院 一种电化学材料及其制备方法和应用
CN115000394B (zh) * 2022-05-18 2024-04-12 安徽信息工程学院 一种电化学材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN105958131B (zh) 一种长循环寿命和高能量密度的可充水系锌离子电池
CN106450195B (zh) 一种锂硫电池用正极材料及其制备方法和含有该正极材料的锂硫电池
CN105514378B (zh) 一种仿细胞结构锂硫电池正极复合材料及其制备方法
CN112701277A (zh) 一种锂离子电池预锂化添加剂及其应用
CN112670496A (zh) 一种铁掺杂二氧化锰复合还原氧化石墨烯材料及制备和应用
CN109713255B (zh) 一种高性能二维金属元素掺杂SnS2-石墨烯-S复合材料及其制备方法和应用
CN112670495A (zh) 一种铁掺杂二氧化锰复合碳纳米管材料及其制备和应用
CN113410443A (zh) 一种高稳定性铜插层二氧化锰电极材料的制备方法和应用
CN110655114A (zh) 一种提高锌离子电池电压方法
CN115020676A (zh) 一种稳定氧变价的钠离子电池正极材料及其制备方法
CN112151779A (zh) 二元正极复合材料及其制备方法和用途
CN111933904A (zh) 双金属硫化物及其制备方法、复合物及其制备方法、锂硫正极材料及锂硫电池
CN114497537A (zh) 一种无钴高镍三元正极材料及其制备方法
CN114843459B (zh) 一种五硫化二锑基材料及其制备方法和应用
CN113860379A (zh) 正极材料前驱体、正极材料及其制备方法和应用
CN107611420A (zh) 一种锂电池纳米电极材料LiNaV2O6及其制备方法
CN113948669A (zh) 一种金属氧化物-石墨烯量子点复合材料及其制备方法和应用
CN113346081A (zh) 一种炔烃氧化制备碳包覆三元正极纳米材料的方法
CN114551873A (zh) 一种三氧化二铋修饰铟掺杂氧化锌材料及制备和应用
CN112824323A (zh) 一种铟掺杂氧化锌复合还原氧化石墨烯材料及制备和应用
CN110767887A (zh) 一种硼酸钒锰材料、碳包覆硼酸钒锰材料及其制备方法和应用
CN114335552B (zh) 正极材料及其改性工艺、固态电池
CN116062795B (zh) 一种掺杂型的水钠锰矿纳米花球的制备方法、产品及应用
CN114824251B (zh) 一种电池正极材料的快速合成方法、产品及应用
CN115557516B (zh) 一种普鲁士蓝正极材料、制备方法及其在水系锌基电池中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination