CN112642412A - 一步双乳液模板法制备冠醚功能化多孔微球吸附剂的方法 - Google Patents
一步双乳液模板法制备冠醚功能化多孔微球吸附剂的方法 Download PDFInfo
- Publication number
- CN112642412A CN112642412A CN202011504172.4A CN202011504172A CN112642412A CN 112642412 A CN112642412 A CN 112642412A CN 202011504172 A CN202011504172 A CN 202011504172A CN 112642412 A CN112642412 A CN 112642412A
- Authority
- CN
- China
- Prior art keywords
- crown ether
- pmcb
- water
- adsorbent
- double
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000839 emulsion Substances 0.000 title claims abstract description 50
- 239000004005 microsphere Substances 0.000 title claims abstract description 32
- 239000003463 adsorbent Substances 0.000 title claims abstract description 30
- 150000003983 crown ethers Chemical class 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 42
- 238000002360 preparation method Methods 0.000 claims abstract description 13
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 11
- 238000003756 stirring Methods 0.000 claims abstract description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 24
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 19
- 239000004094 surface-active agent Substances 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 claims description 9
- 239000008367 deionised water Substances 0.000 claims description 8
- 229910021641 deionized water Inorganic materials 0.000 claims description 8
- LCEFEIBEOBPPSJ-UHFFFAOYSA-N phenyl selenohypobromite Chemical compound Br[Se]C1=CC=CC=C1 LCEFEIBEOBPPSJ-UHFFFAOYSA-N 0.000 claims description 8
- 229920003228 poly(4-vinyl pyridine) Polymers 0.000 claims description 8
- 125000003700 epoxy group Chemical group 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 5
- 239000012467 final product Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000000047 product Substances 0.000 claims description 3
- 238000001291 vacuum drying Methods 0.000 claims description 2
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 abstract description 32
- 229920001400 block copolymer Polymers 0.000 abstract description 6
- 238000000926 separation method Methods 0.000 abstract description 5
- 230000000977 initiatory effect Effects 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 3
- 238000013459 approach Methods 0.000 abstract description 2
- 239000008204 material by function Substances 0.000 abstract description 2
- 238000012986 modification Methods 0.000 abstract description 2
- 239000012267 brine Substances 0.000 abstract 1
- 229920001184 polypeptide Polymers 0.000 abstract 1
- 102000004196 processed proteins & peptides Human genes 0.000 abstract 1
- 108090000765 processed proteins & peptides Proteins 0.000 abstract 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 abstract 1
- 238000011282 treatment Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 22
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 13
- 229910052744 lithium Inorganic materials 0.000 description 13
- 229910001416 lithium ion Inorganic materials 0.000 description 11
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 10
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 8
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 6
- 239000012071 phase Substances 0.000 description 5
- 239000012085 test solution Substances 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 4
- -1 nuclear power Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 230000002860 competitive effect Effects 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000009775 high-speed stirring Methods 0.000 description 3
- 229910001425 magnesium ion Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XQQZRZQVBFHBHL-UHFFFAOYSA-N 12-crown-4 Chemical compound C1COCCOCCOCCO1 XQQZRZQVBFHBHL-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 229920000469 amphiphilic block copolymer Polymers 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000011592 zinc chloride Substances 0.000 description 2
- NQFAWSJOGAAZHT-UHFFFAOYSA-N C1(=CC=CC=C1)Br[SeH] Chemical compound C1(=CC=CC=C1)Br[SeH] NQFAWSJOGAAZHT-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- SMBQBQBNOXIFSF-UHFFFAOYSA-N dilithium Chemical compound [Li][Li] SMBQBQBNOXIFSF-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000000703 high-speed centrifugation Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004094 preconcentration Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/268—Polymers created by use of a template, e.g. molecularly imprinted polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28016—Particle form
- B01J20/28021—Hollow particles, e.g. hollow spheres, microspheres or cenospheres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/305—Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
- B01J20/3057—Use of a templating or imprinting material ; filling pores of a substrate or matrix followed by the removal of the substrate or matrix
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3085—Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B26/00—Obtaining alkali, alkaline earth metals or magnesium
- C22B26/10—Obtaining alkali metals
- C22B26/12—Obtaining lithium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/22—Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
- C22B3/24—Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明属于化工分离功能材料制备技术领域,涉及一种冠醚修饰的多孔吸附剂微球的制备方法。本发明动态调节嵌段共聚物两亲性一步搅拌制备的水包油包水双乳液为模板结合紫外光引发聚合途径得到多孔多腔室微球,并通过界面后修饰策略制备表面富含冠醚活性位点的多孔微球;进行一系列处理后得到功能吸附剂,并将用于盐湖卤水中Li+选择性的吸附分离;本发明制备的冠醚修饰的多孔多腔室微球吸附剂,具有快速的吸附动力学和稳定的热力学性能,且有优异的酸碱响应特性。
Description
技术领域
本发明属于化工分离功能材料制备技术领域,涉及一步双乳液模板法制备冠醚功能化多孔微球吸附剂的方法。
背景技术
锂(Lithium)作为一种有价值的碱金属,因其广泛应用于陶瓷,飞机合金,润滑剂,核能,制药以及特别是在电存储领域而广为人知。近年来新能源的热潮带动了全球锂消费的迅速增长,如何高效提取原材料锂的话题引起了广泛的关注。然而锂作为重要的商业产品和战略资源,除了少部分以化合物形式存在于矿产资源中,大部分已知的锂资源主要以相对较低的浓度存在于盐湖和其他具有众多干扰离子的复杂环境中。众所周知,中国是锂储量大国,其中西藏和青海地区的盐湖存储着超过83%的锂资源。因此,开发出高效、低成本且环境友好的策略从盐湖中提取锂已成为化学工程和分离科学领域的迫切研究课题之一。在众多的已开发出的提锂途径中,吸附法因其吸附效率高,成本低,操作简单,产生的二次污染低,已被证明是提取Li+的有效策略。然而中国的盐湖与美国、阿根廷和智利等国的盐湖相比,除了Na+、K+、Ca2+、Mg2+等数量众多的干扰阳离子,特别是镁离子(Mg2+)浓度高,锂离子(Li+)浓度相对较低。因此,迫切需要具有锂离子优异选择性的吸附剂来从盐湖中捕获锂。
双乳液是一个复杂的多相系统,指的是液滴包含另一种与之不相容的液滴。常用的双乳液类型主要分为水包油包水(W/O/W)和油包水包油(O/W/O)两种。近年来以双乳液液滴为模板制备的多孔聚合物在药物输送等领域得到了广泛应用。与具有单个油/水界面的乳液相比,双乳液具有两个完全相反的油/水界面,这使稳定性因子更加复杂。传统的双乳液通常在两步法下获得,方法是在低机械能环境下,将高能环境下预形成的单乳液添加到另一种含有相反乳化剂的水或油相中。然而,两步法不可避免地会产生较大的液滴尺寸分布,高能量输入以及亲水性和疏水性表面活性剂的相互影响,这可能会导致双乳液体系的破乳。最新的研究表明采用单一步骤制备的双乳液可以避免这种不稳定的现象,并且显著降低乳液制备过程中能量的输入。双乳液的成功制备需要适当的两亲性乳化剂来同时稳定内外截然不同的油水界面曲率,已经报道的有甲基丙烯酸甲酯-并-二甲基氨基丙基甲基丙烯酸胺,聚丙烯十二烷基酯-并-丙烯酸和聚(乙二醇-并-聚苯乙烯)等。但是,上述两亲性嵌段共聚物的两亲性相对固定的,使得制备的乳液环境无法改变,限制了其潜在应用。最近,研究指出可以通过外加小分子反应来动态调节嵌段共聚物两亲性,实现了双乳液类型的可控制备。例如在苯硒基溴小分子的存在下,通聚苯乙烯-并-聚四乙烯基吡啶嵌段共聚物的吡啶基团会与其发生反应生成Se-N共价键来调节嵌段共聚物的两亲性,一步乳化法制备了稳定的双乳液。与此同时,尚未有报道通过一步法双乳液模板制备能够有效提取锂的多孔吸附剂。
冠醚(CEs)是基于环结构的大环配体,它们可以通过“大小匹配”机制选择性地捕获阳离子(Mn+)。在液-液萃取中,冠醚已被广泛用作在复杂环境和生物基质中Mn+的萃取和预浓缩。然而,根据2:1夹心化学理论,Mn+存在于一个冠环的中心外部,而另一侧则被另一环夹在中间,这使得较大的阳离子产生复杂的亲和作用,且萃取效率远低于理论值。因此通过界面后修饰负载冠醚功能基团可以很好的规避上述缺陷。目前12-冠-4已被证明有着高效的识别和捕获锂离子的能力。
光引发聚合与热引发聚合技术相比在乳液为模板制备功能材料的过程中有着聚合速率快,额外产生热量低的优点,可以防止制备过程中液相蒸发损失,造成材料形貌的不可控。
目前已有多种途径用于盐湖提锂,其中吸附法具有广泛的应用前景,但现有的提锂吸附剂往往稳定性差、制备复杂,吸附性能有待改善。通过光引发聚合途径结合一步双乳液模板法制备的多孔微球具有优异的结构和环境稳定性,且制备简单、表面易改性。因此,结合冠醚和聚合物表面改性手段制备的冠醚功能化多孔微球吸附剂可以解决当前提锂吸附剂的缺陷。
发明内容
本发明利用一步法双乳液模板结合紫外光引发聚合的策略制备了表面富含环氧基团的多孔多腔室微球(PMCB),通过界面后修饰方法能实现12冠4冠醚锂识别位点的高密度接枝并用于实现高效选择性分离锂。
首先通过苯基溴化硒与聚苯乙烯-并-聚四乙烯基吡啶(PS-b-P4VP)嵌段共聚物的快速反应形成两亲性表面活性剂,以二氯甲烷和去离子水作为油相和水相,通过一步搅拌得到水包油包水双乳液。其中交联剂乙二醇二甲基丙烯酸脂(EGDMA)、单体甲基丙烯酸缩水甘油酯(GMA)、和光引发剂2-羟基-2-甲基-苯基-丙烷-1-酮(Irgacure-1173)预先溶解在在油相中,随后在紫外光照环境下制备了表面富含环氧基团的多孔多腔室微球(PMCB)。最后,PMCB与氨基苯并12冠4冠醚(B12C4-NH2)反应合成了具有识别与捕获锂离子能力的微球(PMCB-B12C4)。
一步双乳液模板法制备冠醚功能化多孔微球吸附剂的方法,包括如下步骤:
(1)首先将苯基溴化硒和PS-b-P4VP加入到二氯甲烷溶液中超声混合均匀反应生成两亲性表面活性剂;
(2)取适量步骤(1)配置好的表面活性剂溶液,加入EGDMA、GMA、Irgacure-1173光引发剂,高速搅拌下逐滴加入去离子水,时间维持2-3min,得到水包油包水(W/O/W)双乳液;
(3)将步骤(2)得到的W/O/W双乳液置于紫外光环境下聚合2-3h,将聚合产物通过乙醇和水润洗数次,真空干燥,得到表面富含环氧基团的多孔多腔室微球(PMCB);
(4)将步骤(3)所得PMCB加入到N,N二甲基甲酰胺(DMF)中,随后加入B12C4-NH2冠醚超声混合均匀,并在70℃的恒温水浴锅中加热反应10-24h得到最终产物PMCB-B12C4,即冠醚功能化多孔微球吸附剂。
步骤(1)中,所述的苯基溴化硒,PS-b-P4VP,二氯甲烷的比例为:(4-6)mg:(5-7)mg:(5-6)mL;
步骤(2)中,表面活性剂溶液,GMA,EGDMA,Irgacure-1173光引发剂,去离子水的比例为(400)μL:(5-10)μL:(20-30)μL:(5-10)μL:(400-2000)μL。
步骤(3)中,真空干燥的温度为45℃,时间为6-7h。
步骤(4)中,PMCB,B12C4-NH2、DMF的用量比例为(200-500)mg:(200-750)mg::(40-50)mL。
将本发明制备的冠醚功能化多孔微球吸附剂用于吸附Li+的用途。
本发明的有益效果:
该产品首先制备稳定的水包油包水(W/O/W)双乳液,通过紫外光环境下引发聚合得到可修饰多孔多腔室微球(PMCB),随后通过酰胺化反应引入冠醚吸附位点,制备出功能化吸附剂(PMCB-B12C4),材料具有多孔结构,具有优良的热力学、机械传质动力学性能,此外材料还具有pH响应功能可以简化吸附脱附操作。
附图说明
图1为实施例1中的W/O/W双乳液的显微镜图像。
图2为实施例1中的PMCB的SEM图像。
图3为实施例1中的PMCB和PMCB-B12C4的红外谱图。
图4为实施例1中的PMCB和PMCB-B12C4的13C NMR谱图。
图5为实验例1中的PMCB-B12C4的吸附动力学曲线图。
图6为实验例2中的PMCB-B12C4的等温吸附平衡曲线图。
图7为实验例3中的PMCB和PMCB-B12C4竞争吸附图。
具体实施方式
下面结合具体实施实例和说明书附图对本发明做进一步说明。
实施例1:
表面富含环氧基团的多孔多腔室微球(PMCB)和具有识别与捕获锂离子能力的微球(PMCB-B12C4)的制备
(1)首先,分别将5mg苯基溴化硒和6mg PS-b-P4VP加入到5mL二氯甲烷溶液中超声2min均匀溶解反应得到两亲性表面活性剂溶液;
(2)在离心管中依次加入上述配置好的400μL两亲性表面活性剂溶液,10μL甲基丙烯酸缩水甘油酯,20μL乙二醇二甲基丙烯酸脂,10μL Irgacure-1173光引发剂,然后在1200r的高速搅拌下逐滴加入1600μL去离子水,2min后将制得的水包油包水(W/O/W)双乳液;
(3)将(2)所得水包油包水(W/O/W)双乳液置于紫外灯光下聚合2h,最后用乙醇和蒸馏水清洗多次,置于45℃真空烘箱内干燥6h得到PMCB。
(4)500mgPMCB和750mgB12C4-NH2冠醚混合并加入到50mLDMF溶液中,用超声波均匀分散4分钟,在70℃下水浴反应24h得到最终产物PMCB-B12C4。
实施例2:
(1)首先,分别将5mg苯基溴化硒和6mg PS-b-P4VP加入到5mL二氯甲烷溶液中超声2min均匀溶解反应得到两亲性表面活性剂溶液;
(2)在离心管中依次加入上述配置好的400μL两亲性表面活性剂溶液,10μL甲基丙烯酸缩水甘油酯,20μL乙二醇二甲基丙烯酸脂,10μL Irgacure-1173光引发剂,然后在1200r的高速搅拌下逐滴加入1600μL去离子水,2min后将制得的水包油包水(W/O/W)双乳液;
(3)将(2)所得水包油包水(W/O/W)双乳液置于紫外灯光下聚合2h,最后用乙醇和蒸馏水清洗多次,置于45℃真空烘箱内干燥6h得到PMCB。
(4)500mgPMCB和500mgB12C4-NH2冠醚混合并加入到50mLDMF溶液中,用超声波均匀分散4分钟,在70℃下水浴反应24h得到最终产物PMCB-B12C4。
实施例3:
表面富含环氧基团的多孔多腔室微球(PMCB)和具有识别与捕获锂离子能力的微球(PMCB-B12C4)的制备
(1)首先,分别将5mg苯基溴化硒和6mg PS-b-P4VP加入到5mL二氯甲烷溶液中超声2min均匀溶解反应得到两亲性表面活性剂溶液;
(2)在离心管中依次加入上述配置好的400μL两亲性表面活性剂溶液,10μL甲基丙烯酸缩水甘油酯,20μL乙二醇二甲基丙烯酸脂,10μL Irgacure-1173光引发剂,然后在1200r的高速搅拌下逐滴加入1600μL去离子水,2min后将制得的水包油包水(W/O/W)双乳液;
(3)将(2)所得水包油包水(W/O/W)双乳液置于紫外灯光下聚合2h,最后用乙醇和蒸馏水清洗多次,置于45℃真空烘箱内干燥6h得到PMCB。
(4)500mgPMCB和200mgB12C4-NH2冠醚混合并加入到50mLDMF溶液中,用超声波均匀分散4分钟,在70℃下水浴反应24h得到最终产物PMCB-B12C4。
本发明具体实施方式中识别性能评价按照下述方法进行:利用动态吸附实验完成。将10mL一定浓度的LiCl溶液加入到离心管中,分别加入一定量的PMCB和PMCB-B12C4吸附剂放在25℃恒温水浴箱中水浴震荡若干小时,吸附后Li+含量用ICP-OES测定,并根据结果计算出吸附容量;饱和吸附后,用高速离心机5000-8000r离心分离并干燥,选择几种结构和性质类似的金属离子溶液,作为竞争吸附物,参与研究聚合物的识别性能。证明冠醚的吸附效果。
试验例1:
取10mL初始浓度为100mg/L的LiCl溶液加入到离心管中,分别加入10mg实施例1中的PMCB-B12C4吸附剂,把测试液放在25℃的水浴振荡器中,分别在10min,20min,30min,60min,120min,180min,360min,480min,540min,600min,660min和720min的时候取出;通过高速离心机将PMCB-B12C4吸附剂和溶液分离开,残留溶液中的Li+浓度由ICP-OES测定,并根据结果计算出吸附容量;从图5中可以得出结果,PMCB-B12C4的吸附过程在前180min有个快速吸附阶段由于快速的吸附动力学,而180min到300min吸附减慢由于吸附位点的减少,当在360min吸附达到平衡证明了冠醚结合位点对吸附的影响,拥有快速吸附动力学。
试验例2:
在吸附动力学和吸附平衡的研究中,研究了PMCB-B12C4吸附剂的吸附能力。在吸附平衡实验中,将10mg PMCB-B12C4放入离心管中,制备不同浓度(20mgL-1,30mgL-1,50mgL-1,100mgL-1,200mgL-1,400mgL-1,500mgL-1,700mgL-1,800mgL-1)的pH=5的LiCl溶液。然后将10mL Li+测试溶液加入离心管中,将混合物转移到25℃的恒温水浴震荡箱中6.0小时。震荡合适的时间后,通过高速离心收集PMCB-B12C4并将残留溶液通过微孔硝酸纤维素过滤膜(孔径为0.22μm)过滤除去悬浮PMCB-B12C4颗粒。通过ICP-OES测量所得滤液中Li+浓度。整个过程应重复至少三次,从图6中可以得出结果,随着Li+升高,吸附剂的实际吸附效果与拟合结果相近。
试验例3:
选择LiCl、KCl、MgCl2、NaCl、CaCl2、CuCl2、ZnCl2为竞争吸附的金属化合物,分别配置LiCl、KCl、MgCl2、NaCl、CaCl2、CuCl2、ZnCl2以上水溶液,每种竞争吸附剂的浓度都为100mg/L,取10mL配置好的溶液加入到离心管中,分别加入10mg实施例1中的PMCB-B12C4吸附剂,把测试液放在25℃的恒温水浴震荡箱中震荡6.0h,吸附时间完成后,用高速离心机分离收集,未吸附的各种竞争吸附金属离子浓度用由ICP-OES测定,从图7中可以得出结果,PMCB-B12C4吸附剂对Li+、Na+、K+、Ca2+、Mg2+、Cu2+、Zn2+的在酸碱度值为5的情况下的吸附容量分别为12.6mg/g,4.2mg/g,3.8mg/g,3.2mg/g,4.1mg/g,3.2mg/g,3.6mg/g。表明PMCB-B12C4对Li+比其他的竞争物有显著的专一识别性,吸附容量高于其它金属离子。同时酸碱度值为5时候,PMCB-B12C4对Li+有更加优异的吸附效果因此可以证明冠醚修饰的多孔多空腔微球吸附剂(PMCB-B12C4)的合成成功。
由图1的图像可以观察到通过调节油水比得到的不同形貌的水包油包水(W/O/W)双乳液显微镜图。证明了双乳液制备成功。
由图2可见,通过不同油水比得到的双乳液在紫外光引发下聚合得到形貌不同的SEM图。从图中可以看出,PMCB表面有着大量的微孔,同时内部为大量空腔相连的结构,证明多孔多空腔微球(PMCB)的成功制备。
由图3,图4可以观察到,红外和固体核磁的谱图发现PMCB-B12C4表面含有环氧基开环产生的羟基峰和冠醚多元环的特征峰,B12C4-NH2冠醚已经成功接枝到多孔多空腔微球(PMCB-B12C4)的表面。
Claims (6)
1.一步双乳液模板法制备冠醚功能化多孔微球吸附剂的方法,其特征在于,包括如下步骤:
(1)首先将苯基溴化硒和PS-b-P4VP加入到二氯甲烷溶液中超声混合均匀反应生成两亲性表面活性剂;
(2)取适量步骤(1)配置好的表面活性剂溶液,加入EGDMA、GMA、Irgacure-1173光引发剂,高速搅拌下逐滴加入去离子水,时间维持2-3min,得到水包油包水W/O/W双乳液;
(3)将步骤(2)得到的W/O/W双乳液置于紫外光环境下聚合2-3h,将聚合产物通过乙醇和水润洗数次,真空干燥,得到表面富含环氧基团的多孔多腔室微球PMCB;
(4)将步骤(3)所得PMCB加入到N,N二甲基甲酰胺DMF中,随后加入B12C4-NH2冠醚超声混合均匀,恒温水浴锅中加热反应后,得到最终产物PMCB-B12C4,即冠醚功能化多孔微球吸附剂。
2.如权利要求1所述的一步双乳液模板法制备冠醚功能化多孔微球吸附剂的方法,其特征在于,步骤(1)中,所述的苯基溴化硒,PS-b-P4VP,二氯甲烷的比例为:(4-6)mg:(5-7)mg:(5-6)mL。
3.如权利要求1所述的一步双乳液模板法制备冠醚功能化多孔微球吸附剂的方法,其特征在于,步骤(2)中,表面活性剂溶液,GMA,EGDMA,Irgacure-1173光引发剂,去离子水的比例为(400)μL:(5-10)μL:(20-30)μL:(5-10)μL:(400-2000)μL。
4.如权利要求1所述的一步双乳液模板法制备冠醚功能化多孔微球吸附剂的方法,其特征在于,步骤(3)中,真空干燥的温度为45℃,时间为6-7h。
5.如权利要求1所述的一步双乳液模板法制备冠醚功能化多孔微球吸附剂的方法,其特征在于,步骤(4)中,PMCB,B12C4-NH2、DMF的用量比例为(200-500)mg:(200-750)mg::(40-50)mL;加热反应的温度为70℃,时间为10-24h。
6.将权利要求1~5任一项所述制备方法制得的冠醚功能化多孔微球吸附剂用于吸附Li+的用途。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011504172.4A CN112642412A (zh) | 2020-12-18 | 2020-12-18 | 一步双乳液模板法制备冠醚功能化多孔微球吸附剂的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011504172.4A CN112642412A (zh) | 2020-12-18 | 2020-12-18 | 一步双乳液模板法制备冠醚功能化多孔微球吸附剂的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112642412A true CN112642412A (zh) | 2021-04-13 |
Family
ID=75355178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011504172.4A Pending CN112642412A (zh) | 2020-12-18 | 2020-12-18 | 一步双乳液模板法制备冠醚功能化多孔微球吸附剂的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112642412A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113634239A (zh) * | 2021-07-23 | 2021-11-12 | 江苏大学 | 一步Pickering双乳液法制备冠醚功能化纳米片的方法及其提锂应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1256700A (zh) * | 1997-04-03 | 2000-06-14 | 吉尔福德药物有限公司 | 生物降解对苯二甲酸酯聚酯-聚磷酸酯聚合物、组合物、制品及其制备和使用方法 |
CN101274270A (zh) * | 2007-03-30 | 2008-10-01 | 中国科学院大连化学物理研究所 | 一种采用click chemistry反应制备键合型环糊精固定相的方法 |
CN110079823A (zh) * | 2019-05-15 | 2019-08-02 | 中山大学 | 电极材料、应用及其制备方法 |
CN111229183A (zh) * | 2020-01-19 | 2020-06-05 | 江苏大学 | 冠醚功能化多孔多空腔微球吸附剂的制备方法及其应用于锂离子吸附 |
-
2020
- 2020-12-18 CN CN202011504172.4A patent/CN112642412A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1256700A (zh) * | 1997-04-03 | 2000-06-14 | 吉尔福德药物有限公司 | 生物降解对苯二甲酸酯聚酯-聚磷酸酯聚合物、组合物、制品及其制备和使用方法 |
CN101274270A (zh) * | 2007-03-30 | 2008-10-01 | 中国科学院大连化学物理研究所 | 一种采用click chemistry反应制备键合型环糊精固定相的方法 |
CN110079823A (zh) * | 2019-05-15 | 2019-08-02 | 中山大学 | 电极材料、应用及其制备方法 |
CN111229183A (zh) * | 2020-01-19 | 2020-06-05 | 江苏大学 | 冠醚功能化多孔多空腔微球吸附剂的制备方法及其应用于锂离子吸附 |
Non-Patent Citations (1)
Title |
---|
GUANG YANG等: ""Capturing lithium using functional macroporous microspheres with multiple chambers from one-step double emulsion via a tailoring supramolecular route and postsynthetic interface modification"", 《CHEMICAL ENGINEERING JOURNAL》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113634239A (zh) * | 2021-07-23 | 2021-11-12 | 江苏大学 | 一步Pickering双乳液法制备冠醚功能化纳米片的方法及其提锂应用 |
CN113634239B (zh) * | 2021-07-23 | 2023-05-05 | 江苏大学 | 一步Pickering双乳液法制备冠醚功能化纳米片的方法及其提锂应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111229183B (zh) | 冠醚功能化多孔多空腔微球吸附剂的制备方法及其应用于锂离子吸附 | |
CN104231166B (zh) | 一种仿生青蒿素分子印迹复合膜的制备方法 | |
Yang et al. | Capturing lithium using functional macroporous microspheres with multiple chambers from one-step double emulsion via a tailoring supramolecular route and postsynthetic interface modification | |
CN112023899A (zh) | 一种亲水柔性多孔硼亲和印迹水凝胶吸附剂的制备方法 | |
CN101940883A (zh) | 一种含纳米沸石分子筛反渗透复合膜的制备方法 | |
CN105330780B (zh) | 一种可吸附多环芳烃的苯乙烯基树脂多孔材料及其制备方法 | |
CN112642412A (zh) | 一步双乳液模板法制备冠醚功能化多孔微球吸附剂的方法 | |
CN110227424B (zh) | 一种共价修饰高密度冠醚功能化多孔吸附剂的制备方法及其应用 | |
CN1038329C (zh) | 纯化脱水山梨糖醇脂肪酸酯乳化剂的方法 | |
CN106586979A (zh) | 一种氮化硼纳米片及其有机分散液的高效制备方法 | |
CN105294957B (zh) | 一种基于木质素制备高醛基含量高分子微球的方法 | |
CN111171208A (zh) | 一种用于海水提铀的聚偕胺肟基螯合树脂及制备方法 | |
CN113634238B (zh) | 一种柔性多孔硼亲和共聚物吸附剂及其制备方法和应用 | |
Yang et al. | One-step double emulsion via amphiphilic SeN supramolecular interactions: Towards porous multi-cavity beads for efficient recovery lithium from brine | |
CN107827192B (zh) | 一种MOFs材料用于吸附水体中痕量汞离子的用途及方法 | |
CN112851869B (zh) | 一种基于种子聚合法制备形貌可调的聚离子液体基各向异性复合粒子的方法 | |
Liu et al. | Green construction of eco-friendly hydrophilic porous teamed boronate affinity hydrogels for highly specific separation of naringin under physiological pH | |
CN104004218B (zh) | 一种青蒿素分子印迹膜的制备方法及其应用 | |
CN117101616A (zh) | 一种基于金属有机框架的分子印迹聚合物吸附材料及其制备方法和应用 | |
CN115368510A (zh) | 一种中空多孔高活性硼亲和印迹聚合物吸附剂及其制备方法和应用 | |
Rubio-Martinez et al. | Scalable simultaneous activation and separation of metal–organic frameworks | |
CN105749879B (zh) | 一种孔道填充型分子/离子双位点印迹聚合物的制备方法 | |
CN106512877B (zh) | 一种乙二胺丙酰化壳聚糖微球的制备方法 | |
CN113634239B (zh) | 一步Pickering双乳液法制备冠醚功能化纳米片的方法及其提锂应用 | |
Chen et al. | A COF-coated polyamide membrane fabricated by vapor-assisted conversion for water-in-oil emulsion separation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210413 |