CN112599729B - 一种高循环性能的锂离子电池 - Google Patents

一种高循环性能的锂离子电池 Download PDF

Info

Publication number
CN112599729B
CN112599729B CN202011360225.XA CN202011360225A CN112599729B CN 112599729 B CN112599729 B CN 112599729B CN 202011360225 A CN202011360225 A CN 202011360225A CN 112599729 B CN112599729 B CN 112599729B
Authority
CN
China
Prior art keywords
lithium ion
ion battery
nio
preparation
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011360225.XA
Other languages
English (en)
Other versions
CN112599729A (zh
Inventor
高明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Biao Neng Ruiyuan Energy Storage Technology Research Institute Co.,Ltd.
Original Assignee
Chongqing Biao Neng Ruiyuan Energy Storage Technology Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Biao Neng Ruiyuan Energy Storage Technology Research Institute Co ltd filed Critical Chongqing Biao Neng Ruiyuan Energy Storage Technology Research Institute Co ltd
Priority to CN202011360225.XA priority Critical patent/CN112599729B/zh
Publication of CN112599729A publication Critical patent/CN112599729A/zh
Application granted granted Critical
Publication of CN112599729B publication Critical patent/CN112599729B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种锂离子电池负极材料的制备方法以及锂离子电池,所述负极的制备方法包括如下步骤,将一定量的Ti3AlC2加入用LiF和HCl混合液反应得到手风琴状的Ti3C2;将得到的Ti3C2悬浊液加入Ni盐、丙烯酸,于60Co产生的γ射线中进行辐照;接着将悬浊液倒入液氮进行急速冷冻,随后将得到的产物进行冷冻干燥,最后采用CVD方法在Ti3C2‑NiO外面包覆碳层;本发明制得的复合材料NiO粒子均匀的分散于三维手风琴状Ti3C2片状缝隙之间,有效的缓解了NiO在充放电过程中的体积膨胀效应而导致材料粉化、结构坍塌,Ti3C2和CVD碳层有效的改善了NiO的导电性。

Description

一种高循环性能的锂离子电池
技术领域
本发明涉及一种锂离子电池技术领域,具体涉及一种锂离子电池用负极材料的制备方法以及锂离子电池。
背景技术
随着便携式电子设备以及混合式电动车的发展,对具有高能量高循环性能的电池需求日益迫切,大量的科研人员投入到锂离子电池负极材料的探索和研究。石墨是目前商业化应用最为广泛的锂离子电池负极材料。然而,石墨的理论容量只有375mAh/g,已经不能满足当代社会对电池的应用需求。相比于传统的石墨负极材料,NiO储存相当丰富,且具有较高的理论容量,被认为是一个有前景的锂离子电池负极材料。但NiO导电性差,并且在充放电过程中体积膨胀容易粉化,严重影响NiO负极材料的电化学性能。
为了缓解NiO在充放电过程中因体积膨胀而导致材料粉化,结构坍塌问题,CN111403722A公开了一种具有枣糕结构的NiO/C纳米复合微球材料的制备方法和应用,该方法为:将氯化镍、间苯二酚和甲醛溶于水中制成溶胶,加入浓盐酸以调整pH,然后对溶胶水浴加热,生成凝胶。凝胶经充分干燥后,先在氩氢混合气氛中煅烧碳化,再在空气气氛中煅烧氧化制得产物。所述枣糕结构NiO/C纳米复合微球由NiO球状颗粒镶嵌在C气凝胶微球内部构成。CN111384365A公开了一种碳包覆多层NiO空心球复合材料的制备方法。所述方法以镍盐和络合剂为原料,溶于乙醇和水的混合溶液中,经一步水热反应后,得到的前驱体先在氩气氛围下、400~600℃下进行烧结,再在空气下、300~400℃下烧结,得到碳包覆的多层NiO空心球复合材料,然而,目前材料的结构均容易破坏,对电池的循环倍率性能的提升有限。
发明内容
针对现有技术存在的上述不足,本发明提出一种锂离子电池用负极材料的制备方法,解决现有锂离子电池NiO负极材料导电性差、体积膨胀效应而导致材料粉化,结构坍塌的问题。
一种锂离子电池负极材料的制备方法,其特征在于,包括如下步骤:
(1)将一定量的Ti3AlC2加入用LiF和HCl混合液,40-60℃条件下反应得到手风琴状的Ti3C2;(2)将步骤(1)得到的Ti3C2悬浊液加入Ni盐、丙烯酸,在60Co产生的γ射线中辐照;(3)将步骤(2)中悬浊液中倒入液氮进行急速冷冻,随后将得到的产物进行冷冻干燥;(4)采用CVD方法在Ti3C2-NiO外面包覆碳层。
优选的,所述辐照条件具体为于60Co产生的γ射线中,在100~200Gy/min总剂量为300~900KGy的条件下进行辐照。
优选的,所述冻干温度<20℃;冻干时间为24-30h。
优选的,所述CVD包覆碳层的工艺为,以乙炔或者甲烷作为碳源,300-800℃下保温20-80min。
优选的,在CVD包覆碳层之前将步骤3中得到的产物以去离子水和乙醇清洗多次。
有益效果:
通过将Ti3C2与镍盐、丙烯酸进行辐照处理,以生成Ti3C2-NiO的复合材料,并且提高手风琴状Ti3C2的亲水性;将该复合材料急速冷冻后,Ti3C2的片状之间的水迅速转变为冰,体积增大,使得片层之间的间距增大,冷冻干燥后Ti3C2比表面积随之增大,利于电解液的浸润,纳米的NiO粒子均匀的分散于三维手风琴状Ti3C2片状缝隙之间,NiO与Ti3C2二维接触,有利于提高其导电性,同时也能够有效的缓解NiO在充放电过程中的体积膨胀效应而导致材料粉化,结构坍塌,提高材料的稳定性;NiO同时作为催化剂利于CVD方法高效的包覆碳层,包覆的碳层也进一步提高了电极材料的导电性。
具体实施方式
实施例1
(1)将5mL的浓盐酸和0.5g的LiF加入8mL的去离子水中,将100mg的Ti3AlC2加入用LiF和HCl混合液,60℃条件下反应得到手风琴状的Ti3C2;(2)将步骤(1)得到的Ti3C2悬浊液加入80mg的硝酸镍、10mg丙烯酸,于60Co产生的γ射线中,在100Gy/min总剂量为800KGy的条件下进行辐照;(3)将步骤(2)中悬浊液中倒入液氮进行急速冷冻,随后将得到的产物进行冷冻干燥24h,冷冻干燥机的温度为-60℃;(4)将步骤(3)的产物以去离子水和乙醇清洗,随后在甲烷气氛中,600℃下保温40min。
将本实施例制备得到的负极材料制备负极片,以锂片为对电极组装扣式电池,进行恒流充放电测试,充放电的电压为0.01-3V,电流密度为0.2C,充放电100次后,锂离子电池的比容量高达718mAh/g。
实施例2
(1)将8mL的浓盐酸和0.5g的LiF加入10mL的去离子水中,将100mg的Ti3AlC2加入用LiF和HCl混合液,50℃条件下反应得到手风琴状的Ti3C2;(2)将步骤(1)得到的Ti3C2悬浊液加入120mg的硝酸镍、10mg丙烯酸,于60Co产生的γ射线中,在100Gy/min总剂量为900KGy的条件下进行辐照;(3)将步骤(2)中悬浊液中倒入液氮进行急速冷冻,随后将得到的产物进行冷冻干燥20h,冷冻干燥机的温度为-70℃;(4)将步骤(3)的产物以去离子水和乙醇清洗,随后在甲烷气氛中,500℃下保温40min。
将本实施例制备得到的负极材料制备负极片,以锂片为对电极组装扣式电池,进行恒流充放电测试,充放电的电压为0.01-3V,电流密度为0.2C,充放电100次后,锂离子电池的比容量为729mAh/g。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (6)

1.一种锂离子电池负极材料的制备方法,其特征在于,包括如下步骤:
(1)将一定量的Ti3AlC2加入LiF和HCl混合液,40-60℃条件下反应得到手风琴状的Ti3C2;(2)将步骤(1)得到的Ti3C2悬浊液加入Ni盐、丙烯酸,在60Co产生的γ射线中辐照;(3)将步骤(2)中悬浊液中倒入液氮进行急速冷冻,随后将得到的产物进行冷冻干燥;(4)采用CVD方法在Ti3C2-NiO外面包覆碳层。
2.根据权利要求1所述的一种锂离子电池负极材料的制备方法,所述辐照条件具体为于60Co产生的γ射线中,在100~500Gy/min总剂量为500~1500KGy的条件下进行辐照。
3.根据权利要求1所述的一种锂离子电池负极材料的制备方法,所述冻干温度<20℃;冻干时间为24-30h。
4.根据权利要求1所述的一种锂离子电池负极材料的制备方法,所述CVD包覆碳层的工艺为,以乙炔或者甲烷作为碳源,300-800℃下保温20-80min。
5.根据权利要求1所述的一种锂离子电池负极材料的制备方法,在CVD包覆碳层之前将步骤3中得到的产物以去离子水和乙醇清洗多次。
6.一种锂离子电池,包括负极材料,其特征在于,所述负极材料采用权利要求1~5任一项所述的锂离子电池负极材料制备方法制备得到。
CN202011360225.XA 2020-11-27 2020-11-27 一种高循环性能的锂离子电池 Active CN112599729B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011360225.XA CN112599729B (zh) 2020-11-27 2020-11-27 一种高循环性能的锂离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011360225.XA CN112599729B (zh) 2020-11-27 2020-11-27 一种高循环性能的锂离子电池

Publications (2)

Publication Number Publication Date
CN112599729A CN112599729A (zh) 2021-04-02
CN112599729B true CN112599729B (zh) 2021-12-28

Family

ID=75187179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011360225.XA Active CN112599729B (zh) 2020-11-27 2020-11-27 一种高循环性能的锂离子电池

Country Status (1)

Country Link
CN (1) CN112599729B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114944489B (zh) * 2022-06-15 2023-08-01 北京航空航天大学 具有手风琴MXene阵列的薄膜层及其制备方法、集流体、电极和电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104815983A (zh) * 2015-04-20 2015-08-05 齐鲁工业大学 一种碳包覆氧化镍/金属镍及其简单合成方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6843919B2 (en) * 2002-10-04 2005-01-18 Kansas State University Research Foundation Carbon-coated metal oxide nanoparticles
CN104868104A (zh) * 2015-03-27 2015-08-26 浙江工业大学 一种二维层状碳化钛/金属离子复合材料及其应用
CN105470486B (zh) * 2015-12-25 2018-03-06 陕西科技大学 颗粒状二氧化锡/二维纳米碳化钛复合材料的制备方法
CN106299310A (zh) * 2016-09-28 2017-01-04 天津工业大学 一种高效制备石墨烯/金属氧化物复合材料的方法
CN110224127B (zh) * 2019-06-21 2021-05-07 燕山大学 一种锂离子电池负极材料及其制备方法和应用
CN110919026A (zh) * 2019-12-10 2020-03-27 常州工学院 一种Sn@Ti3C2电池负极材料及其制备方法
CN111785534B (zh) * 2020-06-08 2021-12-31 华中科技大学 一种离子液体共价键合固载MXene的方法及其产物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104815983A (zh) * 2015-04-20 2015-08-05 齐鲁工业大学 一种碳包覆氧化镍/金属镍及其简单合成方法

Also Published As

Publication number Publication date
CN112599729A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
CN108899507A (zh) 一种具有核壳结构的双层碳包覆金属硫化物复合电极材料的制备方法
CN108666540B (zh) 一种碳包覆二硫化镍材料及其制备方法和作为钠离子电池负极材料应用
CN106450305B (zh) 一种锂离子电池负极材料CoP/C的制备方法
CN103236547B (zh) 一种锂离子电池铁炭复合负极材料及其制备方法
CN108832114B (zh) 一种石墨烯包覆CuFeO2复合负极材料的制备方法
CN107464938B (zh) 一种具有核壳结构的碳化钼/碳复合材料及其制备方法和在锂空气电池中的应用
CN106340633A (zh) 一种高性能锂离子电池用复合纳米材料及其制备方法
CN112357956B (zh) 碳/二氧化钛包覆氧化锡纳米颗粒/碳组装介孔球材料及其制备和应用
CN104577072A (zh) 一种氧化石墨烯基MoO2高性能锂/钠离子电池电极材料的制备方法
CN115020855A (zh) 一种磷酸铁锂废旧电池的回收利用方法
CN112786865A (zh) 一种MoS2准量子点/氮硫共掺杂生物质碳复合纳米材料的制备方法和应用
CN113451570A (zh) 一种mof衍生核壳结构锂离子电池负极材料及制备方法
CN111403699A (zh) 一种含碳纳米管碳壳包覆的硅负极材料及其制备方法
CN112599729B (zh) 一种高循环性能的锂离子电池
CN107026263A (zh) 海胆状硫化铋/大孔石墨烯复合材料、制备方法及其应用
CN113104896B (zh) 一种纳米片状氧化锰材料的制备方法及其在水系锌离子电池中的应用
CN106450279A (zh) 一种石墨烯包覆镍钴锰锂离子电池正极材料的制备方法
CN112786859A (zh) 一种钽掺杂/多孔金属纳米粒子包覆改性的磷酸铁锂材料的制备方法
CN116936771A (zh) 一种中空球壳结构硫酸铁钠复合正极材料、制备方法及钠离子电池
CN115986090A (zh) 一种氮掺杂的铋/碳复合微球材料及其制备方法和应用
CN112331842B (zh) 二氧化钼纳米颗粒/碳组装锯齿状纳米空心球材料及其制备和应用
CN105762350B (zh) 一种高长径比纳米棒状三氧化钼电极材料及其制备方法
CN114751395A (zh) 一种氮掺杂多孔碳球/s复合材料及其制备方法和在锂硫电池中的应用
CN106784759A (zh) 一种硅/活性炭复合负极材料及其制备方法
CN113471421A (zh) 锂硫电池复合正极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20211208

Address after: 402260 No. 2-6, Fuyun Avenue, Shuangfu street, Jiangjin District, Chongqing (Building 1, experimental building of Chongqing energy Vocational College)

Applicant after: Chongqing Biao Neng Ruiyuan Energy Storage Technology Research Institute Co.,Ltd.

Address before: No.21, culture station, Haihe Road, Zhangzhuang Town, Pei County, Xuzhou City, Jiangsu Province

Applicant before: Peixian Kelu New Energy Technology Service Center

GR01 Patent grant
GR01 Patent grant