CN112553660B - 一种铝合金表面电镀铬与pvd镀膜复合强化方法 - Google Patents

一种铝合金表面电镀铬与pvd镀膜复合强化方法 Download PDF

Info

Publication number
CN112553660B
CN112553660B CN202011533197.7A CN202011533197A CN112553660B CN 112553660 B CN112553660 B CN 112553660B CN 202011533197 A CN202011533197 A CN 202011533197A CN 112553660 B CN112553660 B CN 112553660B
Authority
CN
China
Prior art keywords
aluminum alloy
pvd
chromium
electroplating
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011533197.7A
Other languages
English (en)
Other versions
CN112553660A (zh
Inventor
李聪
肖斌
谢盼
陈荐
邱玮
李微
何建军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingyuan Yuebo Technology Co ltd
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN202011533197.7A priority Critical patent/CN112553660B/zh
Publication of CN112553660A publication Critical patent/CN112553660A/zh
Application granted granted Critical
Publication of CN112553660B publication Critical patent/CN112553660B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/08Deposition of black chromium, e.g. hexavalent chromium, CrVI
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/06Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种铝合金表面电镀铬与PVD镀膜的复合强化方法。首先,对铝合金表面进行清洁、喷砂及烘干;对铝合金进行镀铬处理;对铝合金镀铬表面进行喷砂及超声清洗;放入PVD炉内,进行氩离子清洗,然后打开靶材,通入氮气,沉积PVD硬质膜,沉积PVD硬质膜,工艺参数为:真空度0.2~6 Pa,样品偏压为‑40~‑180 V,通入氮气,气压为2~6 Pa,温度400~480℃,靶材为AlCrN靶,靶材电流70~110 A,沉积3.5~6 h,制得PVD硬质膜层。获得膜基结合性好,表面硬度高达3000HV,耐磨性较普通方法得到的提高了5倍的高耐磨表面的铝合金零件。

Description

一种铝合金表面电镀铬与PVD镀膜复合强化方法
技术领域
本发明涉及激光金属材料加工领域,尤其涉及一种铝合金表面电镀铬与PVD镀膜复合强化方法。
背景技术
铝合金具有轻质、高强等特点,是重要轻质结构材料,被广泛用于航天航空、高速列车、汽车、船舶和建筑等领域。然而,铝合金零件表面硬度较低、耐磨性能较差,在服役过程中易产生磨损、裂纹、疲劳等,导致零件失效,造成经济损失。因此,有必要提升铝合金零件表面力学性能。物理气相沉积(PVD)硬质涂层具有高的表面硬度、稳定的化学惰性、良好的热稳定性和耐腐蚀性,能有效提升铝合金零件的使用寿命、降低生产成本和保证加工产品的质量。然而,直接在铝合金表面沉积PVD硬质涂层,存在膜基结合性差等问题,此外,在重载作用下,涂层易开裂。因此,需要在铝合金基体与PVD硬质涂层之间引入中间硬化层,改善涂层与基体界面结合行为,并提高承载能力。本发明报道一种铝合金表面电镀铬与PVD镀膜复合强化方法,该方法能在保证涂层与基材结合力的情况下,显著提高铝合金表面的硬度、耐磨及耐腐蚀等性能。
发明内容
本发明的目的是提供一种铝合金表面电镀铬与PVD镀膜复合强化方法。
一种铝合金表面电镀铬与PVD镀膜复合强化方法,包括以下步骤:
步骤一:对铝合金表面进行清洁、喷砂及烘干。
步骤二:对铝合金进行镀铬处理,工艺参数如下:电镀中电解液包括200~250 g /L铬酐、2.0~2.5g/L硫酸和3.0~6.0g/L三价铬,电流密度为50~90A/dm2,电镀温度为50~70℃。
步骤三:对铝合金镀铬表面进行喷砂及超声清洗。
步骤四:将镀铬铝合金试样放入PVD炉内,进行氩离子清洗。
步骤五:打开靶材,通入氮气,沉积PVD硬质膜,工艺参数为:真空度调节为0.2~6Pa,样品偏压为-40~-180 V,通入氮气,气压为2~6 Pa,样品温度控制在400~480℃,靶材为AlCrN靶,靶材电流70~110 A,沉积3.5~6 h,制得PVD硬质膜层。
步骤六:进行低温时效处理,时效温度175℃,时效时间24h,获得具有高硬、高耐磨表面的铝合金零件。
在步骤四中,氩离子清洗工艺参数为:当PVD炉腔内真空度为小于5´10-3 Pa时,通入氩气并控制流量在100~300 sccm,气压小于0.3 Pa,样品温度400~550℃,负偏压550V,轰击时间7~12 min;
所述的铝合金,包括2000系、5000系、6000系及7000系铝合金。
本发明通过对镀铬工艺的严格筛选,获得优化的镀铬窗口如下:电镀中电解液包括200~250 g /L铬酐、2.0~2.5g/L硫酸和3.0~6.0g/L三价铬,电流密度为50~90A/dm2,电镀温度为50~70℃;通过对沉积PVD硬质涂层工艺参数的优化,获得优化的PVD工艺参数如下:真空度调节为0.2~6 Pa,样品偏压为-40~-180 V,通入氮气,气压为2~6 Pa,样品温度控制在400~480℃,靶材为AlCrN靶,靶材电流70~110 A,沉积3.5~6 h。最后,按上述工艺参数及方法进行电镀及表面PVD镀膜,铝合金表面获得电镀层样,并在表面获得高性能PVD硬质涂层,有效提高铝合金表面耐磨耐腐蚀性能。
附图说明
图1为采用已有方法所获得的铝合金表面PVD涂层试样;
图2为采用本发明实施例1所获得的铝合金镀铬+PVD涂层强化试样金相图。
具体实施方式
实施例1
以6061铝合金为例。
一种铝合金表面电镀铬与PVD镀膜复合强化方法,包括以下步骤:
步骤一:对6061铝合金表面进行清洁、喷砂及烘干;步骤二:对6061铝合金进行镀铬处理,工艺参数如下:电镀中电解液包括230 g /L铬酐、2.3g/L硫酸和4.0g/L三价铬,电流密度为65A/dm2,电镀温度为62℃;步骤三:对铝合金镀铬表面进行喷砂及超声清洗;步骤四:将镀铬6061铝合金试样放入PVD炉内,进行氩离子清洗;步骤五:打开靶材,通入氮气,沉积PVD硬质膜,工艺参数为:真空度调节为3 Pa,样品偏压为-120 V,通入氮气,气压为4 Pa,样品温度控制在460℃,靶材为AlCrN靶,靶材电流90 A,沉积4 h,制得PVD硬质膜层;步骤六:进行低温时效处理,时效温度175℃,时效时间24h,获得具有高硬、高耐磨表面的6061铝合金零件,膜基结合性好,表面硬度可达3000HV,耐磨性提高约5倍,且试样表现出良好的耐腐蚀性。
图1为采用已有方法所获得的铝合金表面PVD涂层试样压痕形貌。从图中可以看出,加载后铝合金表面PVD涂层压痕周围出现了微裂纹及大量的碎片,这说明直接在铝合金表面沉积PVD硬质涂层,尽管涂层硬度高,但存在膜基结合性差问题。
图2为采用本发明实施例1所获得的铝合金镀铬+PVD涂层强化试样压痕形貌。压痕形状完整,边界清晰,无微观裂纹和碎片产生,说明镀铬层与PVD硬质涂层界面结合良好。上述结果表明镀铬层可以作为良好的过渡层,有效提高基材与PVD涂层的膜基结合能力与承载水平,且表面硬度高达约3000HV,耐磨性提高约5倍。
实施例2
以7075铝合金为例。
一种铝合金表面电镀铬与PVD镀膜复合强化方法,包括以下步骤:
步骤一:对7075铝合金表面进行清洁、喷砂及烘干;步骤二:对7075铝合金进行镀铬处理,工艺参数如下:电镀中电解液包括235 g /L铬酐、2.4g/L硫酸和5.0g/L三价铬,电流密度为85A/dm2,电镀温度为65℃;步骤三:对7075铝合金镀铬表面进行喷砂及超声清洗;步骤四:将镀铬的7075铝合金试样放入PVD炉内,进行氩离子清洗;步骤五:打开靶材,通入氮气,沉积PVD硬质膜,工艺参数为:真空度调节为4.5 Pa,样品偏压为-100 V,通入氮气,气压为3.8 Pa,样品温度控制在450℃,靶材为AlCrN靶,靶材电流90 A,沉积4.6 h,制得PVD硬质膜层;步骤六:进行低温时效处理,时效温度175℃,时效时间24h,获得膜基结合性好,具有高硬、高耐磨表面的7075铝合金零件,表面硬度可达约3000HV,耐磨性提高约5倍。

Claims (3)

1.一种铝合金表面电镀铬与PVD镀膜复合强化方法,其特征在于包括以下步骤:
步骤一:对铝合金表面进行清洁、喷砂及烘干;
步骤二:对铝合金进行镀铬处理,工艺参数如下:电镀中电解液包括200~250 g /L铬酐、2.0~2.5g/L硫酸和3.0~6.0g/L三价铬,电流密度为50~90A/dm2,电镀温度为50~70℃;
步骤三:对铝合金镀铬表面进行喷砂及超声清洗;
步骤四:将镀铬铝合金试样放入PVD炉内,进行氩离子清洗;
步骤五:打开靶材,通入氮气,沉积PVD硬质膜,工艺参数为:真空度调节为0.2~6 Pa,样品偏压为-40~-180 V,通入氮气,气压为2~6 Pa,样品温度控制在400~480℃,靶材为AlCrN靶,靶材电流70~110 A,沉积3.5~6 h,制得PVD硬质膜层;
步骤六:进行低温时效处理,时效温度175℃,时效时间24h,获得具有高硬、高耐磨表面的铝合金零件。
2.根据权利要求1所述的一种铝合金表面电镀铬与PVD镀膜复合强化方法,其特征在于:在步骤四中,氩离子清洗工艺参数为:当PVD炉腔内真空度小于5 × 10 -3 Pa时,通入氩气并控制流量在100~300 sccm,气压小于0.3 Pa,样品温度400~550℃,负偏压550V,轰击时间7~12 min。
3.根据权利要求1所述的一种铝合金表面电镀铬与PVD镀膜复合强化方法,其特征在于:所述的铝合金,包括2000系、5000系、6000系及7000系铝合金。
CN202011533197.7A 2020-12-23 2020-12-23 一种铝合金表面电镀铬与pvd镀膜复合强化方法 Active CN112553660B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011533197.7A CN112553660B (zh) 2020-12-23 2020-12-23 一种铝合金表面电镀铬与pvd镀膜复合强化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011533197.7A CN112553660B (zh) 2020-12-23 2020-12-23 一种铝合金表面电镀铬与pvd镀膜复合强化方法

Publications (2)

Publication Number Publication Date
CN112553660A CN112553660A (zh) 2021-03-26
CN112553660B true CN112553660B (zh) 2021-08-10

Family

ID=75031413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011533197.7A Active CN112553660B (zh) 2020-12-23 2020-12-23 一种铝合金表面电镀铬与pvd镀膜复合强化方法

Country Status (1)

Country Link
CN (1) CN112553660B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913736A (zh) * 2021-09-10 2022-01-11 广东工业大学 一种耐蚀耐磨镀Cr-PVD复合涂层及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196043A (ja) * 2008-02-22 2009-09-03 Mitsubishi Heavy Ind Ltd 電着工具
CN103836186A (zh) * 2013-11-15 2014-06-04 安庆帝伯格茨活塞环有限公司 一种陶瓷薄膜铸铁活塞环及其制备方法
CN105239071A (zh) * 2015-10-26 2016-01-13 维沃移动通信有限公司 电子设备外壳的制备方法及电子设备
CN108505077A (zh) * 2018-05-14 2018-09-07 Oppo广东移动通信有限公司 铝合金件的表面处理方法、电子设备的壳体和电子设备
CN108650826A (zh) * 2018-06-12 2018-10-12 Oppo广东移动通信有限公司 板材及其制备方法、壳体和移动终端
CN108677141A (zh) * 2018-04-13 2018-10-19 精研(东莞)科技发展有限公司 一种铝合金材料表面物理气相沉积工艺
CN111778485A (zh) * 2020-06-16 2020-10-16 广东正德材料表面科技有限公司 一种涂层及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835908B2 (en) * 2002-12-20 2004-12-28 Battelle Memorial Institute Method and apparatus for electrospark deposition
KR101493658B1 (ko) * 2014-09-19 2015-02-13 드 티엔 챠오 플라스틱 기재의 전기 도금 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009196043A (ja) * 2008-02-22 2009-09-03 Mitsubishi Heavy Ind Ltd 電着工具
CN103836186A (zh) * 2013-11-15 2014-06-04 安庆帝伯格茨活塞环有限公司 一种陶瓷薄膜铸铁活塞环及其制备方法
CN105239071A (zh) * 2015-10-26 2016-01-13 维沃移动通信有限公司 电子设备外壳的制备方法及电子设备
CN108677141A (zh) * 2018-04-13 2018-10-19 精研(东莞)科技发展有限公司 一种铝合金材料表面物理气相沉积工艺
CN108505077A (zh) * 2018-05-14 2018-09-07 Oppo广东移动通信有限公司 铝合金件的表面处理方法、电子设备的壳体和电子设备
CN108650826A (zh) * 2018-06-12 2018-10-12 Oppo广东移动通信有限公司 板材及其制备方法、壳体和移动终端
CN111778485A (zh) * 2020-06-16 2020-10-16 广东正德材料表面科技有限公司 一种涂层及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
An investigation on the coating of 3003 aluminum alloy;Ben Luan et al.,;《Surface & Coatings Technology》;20040415;第186卷;431-443 *
直流磁控溅射在铝衬底上沉积(TixAly)N薄膜及其性能研究;王齐伟 等;《真空科学与技术学报》;20080831;第28卷(第4期);351-354 *

Also Published As

Publication number Publication date
CN112553660A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
US20190186034A1 (en) Electrocomposite coatings for hard chrome replacement
CN112553660B (zh) 一种铝合金表面电镀铬与pvd镀膜复合强化方法
CN114293148A (zh) 一种钛合金表面修复与强化功能涂层一体化的涂层材料及其制备方法和应用
CN108611590B (zh) 一种Ti合金工件防咬死的方法
CN105734487A (zh) 一种钛合金齿轮表面制备强韧性钼梯度改性层的方法
CN113512710A (zh) 一种45钢表面CrN-Cr梯度涂层及其制备方法与应用
CN105779999A (zh) 一种高机械强度零件的材料
CN113235051A (zh) 一种纳米双相高熵合金薄膜及其制备方法
CN108070817B (zh) 一种金属模具钢表面复合双重处理方法
JP2564218B2 (ja) チタンをベースとする基板に耐摩耗性コーティングを堆積する方法
CN104264151B (zh) 一种反应等离子熔覆原位合成TiN涂层的制备方法
CN113913736A (zh) 一种耐蚀耐磨镀Cr-PVD复合涂层及其制备方法
CN108998816A (zh) 一种氯化铵助渗的Cr/氮化复合涂层及其制备方法
CN112708860B (zh) 复合涂层材料、其制备方法及应用
US11377729B2 (en) Post-processing method for improving anti-wear and friction-reducing properties of CrN coating
CN110055495B (zh) 一种CrFe+(Cr,Fe)N代铬镀层及其制备方法
CN104372335B (zh) 一种反应等离子熔覆原位合成TiN涂层
CN114059017A (zh) 一种防护涂层及其制备方法和一种制品及其制备方法以及在中温盐雾腐蚀环境中应用
CN116180078B (zh) 一种钢表面耐蚀耐磨复合涂层及其制备方法和应用
CN111850483A (zh) 一种多层梯度硬质涂层及其制备工艺
CN116005156B (zh) 一种耐蚀铝合金板材及其加工工艺
NL2030813B1 (en) Method for Strengthening Aluminum Alloy Surface Coating
CN115233171B (zh) 一种高熵超晶格氮化物涂层及其制备方法
CN116005156A (zh) 一种耐蚀铝合金板材及其加工工艺
CN116657090B (zh) 一种复合防护涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231129

Address after: Floor F04, Headquarters Building, Tian'an Zhigu Science and Technology Industrial Park, No. 18 Chuangxing Avenue, High tech Industrial Development Zone, Qingyuan City, Guangdong Province, 511540

Patentee after: Qingyuan Yuebo Technology Co.,Ltd.

Address before: 410000 No. 45, Chi Ling Road, Tianxin District, Changsha, Hunan

Patentee before: CHANGSHA University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right