CN112517038B - 一种铁基介孔石墨相氮化碳光催化剂的制备方法 - Google Patents

一种铁基介孔石墨相氮化碳光催化剂的制备方法 Download PDF

Info

Publication number
CN112517038B
CN112517038B CN202011433425.3A CN202011433425A CN112517038B CN 112517038 B CN112517038 B CN 112517038B CN 202011433425 A CN202011433425 A CN 202011433425A CN 112517038 B CN112517038 B CN 112517038B
Authority
CN
China
Prior art keywords
iron
carbon nitride
phase carbon
porcelain boat
cyanamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011433425.3A
Other languages
English (en)
Other versions
CN112517038A (zh
Inventor
刘志英
徐炎华
任斌
张潇
李溪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202011433425.3A priority Critical patent/CN112517038B/zh
Publication of CN112517038A publication Critical patent/CN112517038A/zh
Application granted granted Critical
Publication of CN112517038B publication Critical patent/CN112517038B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明属于材料制备和光催化技术领域,涉及一种铁基介孔石墨相氮化碳光催化剂的制备方法。铁基介孔石墨相氮化碳是以氰胺的聚合物为前驱体,碳酸亚铁为致孔剂,在氮气的气氛下,通过热聚合方法制备得到。一方面碳酸亚铁受热分解产生大量气体使得氰胺的聚合物在热缩聚形成石墨相氮化碳过程中生成丰富的介孔结构,提高了催化剂的比表面积,另一方面在致孔的同时进行了铁的负载,铁可以作为电子的捕获剂,提高电子‑空穴的分离程度,进一步增强光催化的效果。本发明涉及的铁基介孔石墨相氮化碳具有优秀的光催化活性,且制备简单,成本低,具有巨大的环境和经济效益。

Description

一种铁基介孔石墨相氮化碳光催化剂的制备方法
技术领域
本发明属于材料制备和光催化技术领域,尤其涉及一种铁基介孔石墨相氮化碳光催化剂的制备方法。
背景技术
目前,抗生素(如氧氟沙星、诺氟沙星、,四环素、阿莫西林等)已被广泛应用于医疗、动植物病虫害防治等方面。然而大多数抗生素被机体吸收后,大部分会以母体形式随粪便排出体外,进入环境。进入环境的抗生素在极低的环境浓度下不仅会杀死环境中的许多菌群而且可诱导抗药菌群的产生,对人类健康和整个生态系统造成严重的危害。因此,亟需发展一种对水环境中抗生素有显著去除效果的水处理技术。
半导体光催化技术是以太阳光为能源,可以将有机污染物彻底降解,不会对环境造成二次污染,因此在处理有机污染物方面得到了广泛的应用。石墨相氮化碳(g-C3N4)因其良好的化学稳定性、独特的半导体能带结构、无毒且原料易得、不含金属等优异特性在光催化污染物降解、光解水制氢、光催化有机合成等领域受到人们的广泛关注。但是g-C3N4作为一种光催化剂存在着一些缺点,比如表面积小、光生电子-空穴复合严重等限制了这种材料光催化降解污染物的性能。常见的提高石墨相氮化碳比表面积的方法是模板法。但是,在采用模板法制备石墨相氮化碳光催化剂的过程中,涉及冗繁的前驱体灌注和模板剂去除过程,并且采用了含氟有毒化学试剂,存在污染大、成本高、周期长等问题.因此,开发一种成本低、环境友好、工艺简单的制备大比表面积的石墨相氮化碳的方法具有十分重要的现实意义。本发明利用碳酸亚铁高温受热分解产生大量气体使得氰胺的聚合物在热缩聚形成石墨相氮化碳过程中生成丰富的介孔结构,在提高石墨相氮化碳的比表面积同时进行铁的负载,铁可以作为电子的捕获剂,提高电子-空穴的分离程度,进一步增强光催化的效果。
发明内容
本发明的目的是针对氮化碳光催化剂存在的不足,提供一种铁基介孔氮化碳催化剂的制备方法。
本发明的目的可通过如下技术方案实现:一种铁基介孔石墨相氮化碳光催化剂的制备方法,其具体步骤如下:
步骤A:将氰胺的聚合物和碳酸亚铁放入球磨机中研磨混合,得混合材料;
步骤B:将制备的混合材料放入瓷舟中,然后用锡纸包裹放入管式炉中在氮气的气氛下煅烧,利用质量流量计控制气速;
步骤C:将制备好的材料取出,洗涤,置入烘箱干燥后密封保存备用。
优选步骤A中所述的氰胺的聚合物为三聚氰胺或二聚氰胺。
优选步骤A中氰胺的聚合物和碳酸亚铁的质量比为4~6:1。
优选步骤A中球磨机的转速为400~600rpm/s,球磨时间为2~3h。
优选步骤B中煅烧参数为:升温速率为4℃ ~10℃ /min;煅烧温度为500℃ ~600℃ ,煅烧时间为4~6h。
优选步骤B中气体的流速为0.10~0.20L/min。
优选步骤C中洗涤为:先用去离子水洗涤2~3次,再用无水乙醇洗涤1次。
优选步骤C中得干燥温度为70℃ ~80℃ ,干燥时间为8~12h。
本发明利用热聚 合法一步制备铁基介孔石墨相氮化碳,并用于光催化降解抗生素类废水。
检测本发明提供的方法测定溶液中抗生素去除率:
反应开始前,先进行暗反应吸附实验,吸附平衡后,打开氙灯灯源(波长> 420nm)开始反应,每隔10min取样。将反应后的废水经孔径为0.45μm水系滤膜过滤,测定液体中抗生素剩余浓度。其中剩余抗生素浓度采用液相色谱法测定,测定结果抗生素的去除率能达到90.21%~93.42%。
有益效果:
本发明铁基介孔氮化碳用于可见光光催化降解抗生素废水具有以下的优点:
(1)区别于传统模板法制备介孔氮化碳涉及冗繁的前驱体灌注和模板剂去除过程,本发明通过无模板法制备了介孔氮化碳,制备过程更加的简单绿色,且催化剂的成本很低,可以大规模生产。
(2)在“制孔”的同时进行了铁的负载,铁可以作为电子捕获剂,促进光生空穴-电子的分离,进一步促进光催化的效果。
(3)碳酸亚铁在氮气气氛下会变成四氧化三铁,使得催化剂具有磁性,可以通过磁场作用从水体中分离出来。
具体实施方式
实施例1:
以下实施例使用的催化剂通过以下方法制得:
按照质量比4:1分别称量一定量的三聚氰胺和碳酸亚铁放入球磨机中,以500rpm/s的转速混合2h。将混合均匀的材料放入瓷舟中,用锡纸包裹放入管式炉中在氮气气氛下以4℃ /min的速率升温至500℃ 煅烧5h。煅烧之前先通N230min, 以排出管式炉内存在的空气。利用质量流量计控制气速0.15L/min。自然冷却至室温后将材料取出,用去离子水洗涤2次,无水乙醇洗涤1次,放入干燥箱中在 75℃下干燥8h。将制备好的催化剂研磨成粉密封备用。
将0.05g的催化剂添加到氧氟沙星废水中,其中氧氟沙星废水的浓度为 10mg/L,反应液体积为100mL。反应开始前,先进行40min暗反应吸附实验,取样过0.45μm滤膜,采用液相色谱法测定水中氧氟沙星浓度,测得氧氟沙星被吸附了9.6%。吸附平衡后,开启氙灯光源(波长>420nm),每隔10min取一次样,过滤膜测量氧氟沙星的剩余浓度。计算得到,在90min的光照时间内,氧氟沙星的去除率为90.21%。利用磁场回收该催化剂重复利用5次后,处理效果仍可达80.51%以上。
实施例2:
按照质量比5:1分别称量一定量的三聚氰胺和碳酸亚铁放入球磨机中,以400rpm/s的转速混合3h。将混合均匀的材料放入瓷舟中,用锡纸包裹放入管式炉中在氮气气氛下以5℃ /min的速率升温至550℃ 煅烧6h。煅烧之前先通N230min, 以排出管式炉内存在的空气。利用质量流量计控制气速0.20L/min。自然冷却至室温后将材料取出,用去离子水洗涤2次,无水乙醇洗涤1次,放入干燥箱中在 80℃下干燥10h。将制备好的催化剂研磨成粉密封备用。
将0.04g的催化剂添加到四环素废水中,其中四环素的浓度为10mg/L,反应液体积为100mL。反应开始前,先进行30min暗反应吸附实验,取样过 0.45μm滤膜,采用液相色谱法测定水中四环素的浓度,测得四环素被吸附了 10.15%。吸附平衡后,开启氙灯光源(波长>420nm),每隔10min取一次样,过滤膜测量四环素的剩余浓度。计算得到,在80min的光照时间内,四环素的去除率为91.46%。利用磁场回收该催化剂重复利用5次后,处理效果仍可达85.16%以上。
实施例3:
按照质量比6:1分别称量一定量的二聚氰胺和碳酸亚铁放入球磨机中,以550rpm/s的转速混合2.5h。将混合均匀的材料放入瓷舟中,用锡纸包裹放入管式炉中在氮气气氛下以10℃ /min的速率升温至550℃ 煅烧4h。煅烧之前先通N230min, 以排出管式炉内存在的空气。利用质量流量计控制气速0.10L/min。自然冷却至室温后将材料取出,用去离子水洗涤3次,无水乙醇洗涤1次,放入干燥箱中在 70℃下干燥12h。将制备好的催化剂研磨成粉密封备用。
将0.05g的催化剂添加到诺氟沙星废水中,其中诺氟沙星废水的浓度为 15mg/L,反应液体积为100mL。反应开始前,先进行30min暗反应吸附实验,取样过0.45μm滤膜,采用液相色谱法测定水中诺氟沙星的浓度,测得氧氟沙星被吸附了9.84%。吸附平衡后,开启氙灯光源(波长>420nm),每隔10min取一次样,过滤膜测量氧氟沙星的剩余浓度。计算得到,在90min的光照时间内,诺氟沙星的去除率为92.6%。利用磁场回收该催化剂重复利用5次后,处理效果仍可达81.24%以上。
实施例4:
按照质量比5:1分别称量一定量的二聚氰胺和碳酸亚铁放入球磨机中,以600rpm/s的转速混合2h。将混合均匀的材料放入瓷舟中,用锡纸包裹放入管式炉中在氮气气氛下以8℃ /min的速率升温至600℃ 煅烧5h。煅烧之前先通N230min, 以排出管式炉内存在的空气。利用质量流量计控制气速0.16L/min。自然冷却至室温后将材料取出,用去离子水洗涤3次,无水乙醇洗涤1次,放入干燥箱中在 70℃下干燥10h。将制备好的催化剂研磨成粉密封备用。
将0.06g的催化剂添加到阿莫西林废水中,其中阿莫西林废水的浓度为 20mg/L,反应液体积为100mL。反应开始前,先进行40min暗反应吸附实验,取样过0.45μm滤膜,采用液相色谱法测定水中阿莫西林的浓度,测得阿莫西林被吸附了11.51%。吸附平衡后,开启氙灯光源(波长>420nm),每隔10min取一次样,过滤膜测量阿莫西林的剩余浓度。计算得到,在70min的光照时间内,阿莫西林的去除率为93.42%。利用磁场回收该催化剂重复利用5次后,处理效果仍可达85.16%以上。

Claims (6)

1.一种铁基介孔石墨相氮化碳光催化剂的制备方法,其具体步骤如下:
步骤A:将氰胺的聚合物和碳酸亚铁放入球磨机中研磨混合,得混合材料;其中球磨机的转速为400~600rpm/s,球磨时间为2~3h;
步骤B:将制备的混合材料放入瓷舟中,然后用锡纸包裹放入管式炉中在氮气的气氛下煅烧;其中升温速率为4℃~ 10℃ /min;煅烧温度为500℃~ 600℃ ,煅烧时间为4~6h;
步骤C:将制备好的材料取出,洗涤,置入烘箱干燥。
2.根据权利要求1所述的制备方法,其特征在于:步骤A中所述的氰胺的聚合物为三聚氰胺或二聚氰胺。
3.根据权利要求1所述的制备方法,其特征在于:步骤A中氰胺的聚合物和碳酸亚铁的质量比为4~6:1。
4.根据权利要求1所述的制备方法,其特征在于:步骤B中气体的流速为0.10~0.20L/min。
5.根据权利要求1所述的制备方法,其特征在于:步骤C中洗涤为:先用去离子水洗涤2~3次,再用无水乙醇洗涤1次。
6.根据权利要求1所述的制备方法,其特征在于:步骤C中得干燥温度为70℃~ 80℃ ,干燥时间为8~12h。
CN202011433425.3A 2020-12-10 2020-12-10 一种铁基介孔石墨相氮化碳光催化剂的制备方法 Active CN112517038B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011433425.3A CN112517038B (zh) 2020-12-10 2020-12-10 一种铁基介孔石墨相氮化碳光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011433425.3A CN112517038B (zh) 2020-12-10 2020-12-10 一种铁基介孔石墨相氮化碳光催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN112517038A CN112517038A (zh) 2021-03-19
CN112517038B true CN112517038B (zh) 2023-02-14

Family

ID=74999941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011433425.3A Active CN112517038B (zh) 2020-12-10 2020-12-10 一种铁基介孔石墨相氮化碳光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN112517038B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114620799A (zh) * 2022-05-17 2022-06-14 北京北方宏拓环境科技有限公司 一种光催化去除水中全氟化合物的方法
CN114797942A (zh) * 2022-05-21 2022-07-29 上海第二工业大学 一种多孔金属(铁、镍、钴)掺杂石墨相氮化碳光催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103908977A (zh) * 2013-01-04 2014-07-09 安徽大学 一种基于石墨相氮化碳磁性复合光催化材料的制备方法及应用
CN104888837A (zh) * 2015-06-10 2015-09-09 浙江理工大学 一种具有可见光响应的氮化碳/三氧化二铁纳米复合材料的合成方法及应用
CN111215113A (zh) * 2020-01-20 2020-06-02 暨南大学 一种铁硼共掺杂类石墨相氮化碳光催化剂及其制备方法与应用
CN111453804A (zh) * 2020-03-18 2020-07-28 北京工业大学 一种铁掺杂类石墨相氮化碳/石墨烯多功能纳米复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103908977A (zh) * 2013-01-04 2014-07-09 安徽大学 一种基于石墨相氮化碳磁性复合光催化材料的制备方法及应用
CN104888837A (zh) * 2015-06-10 2015-09-09 浙江理工大学 一种具有可见光响应的氮化碳/三氧化二铁纳米复合材料的合成方法及应用
CN111215113A (zh) * 2020-01-20 2020-06-02 暨南大学 一种铁硼共掺杂类石墨相氮化碳光催化剂及其制备方法与应用
CN111453804A (zh) * 2020-03-18 2020-07-28 北京工业大学 一种铁掺杂类石墨相氮化碳/石墨烯多功能纳米复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ruolin Cheng,et al.visible-light photocatalytic hydrogen evolution.《Carbon》.2016,第101卷 *

Also Published As

Publication number Publication date
CN112517038A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
US20220355284A1 (en) Perylene imide and composite photocatalytic material thereof, preparation method therefor and application thereof in removing organic pollutants from water
US11174164B2 (en) Honeycomb-like homo-type heterojunction carbon nitride composite material and preparation method thereof, and application in catalytic treatment of waste gas
CN112517038B (zh) 一种铁基介孔石墨相氮化碳光催化剂的制备方法
CN105749893A (zh) 一种表面负载纳米二氧化钛的改性活性炭纤维丝的制备方法
WO2017219382A1 (zh) 一种双层ZnO空心球光催化材料及其制备方法
CN109046435A (zh) 一种氮缺陷修饰反蛋白石结构氮化碳的制备方法
CN113262808B (zh) 室温高效去除甲醛的水溶性石墨相氮化碳纳米片催化剂及其制备方法
CN113019415A (zh) 一种铁基超分子石墨相氮化碳光催化剂的制备方法
CN109759082A (zh) 一种氧化铟-硫化铟空心多孔六棱柱复合光催化剂的制备方法
CN113244962A (zh) 一种产生单线态氧的锆卟啉基mof-石墨烯复合光催化剂的制备方法及应用
CN104383945A (zh) 一种黑色溴氧化铋光催化剂及其制备方法
CN108579746B (zh) 一种氧化锌/氧化银复合光催化剂的制备方法及其应用
CN108671956B (zh) 一种离子填充石墨相氮化碳纳米片的制备方法
CN115430451B (zh) 铁钛共掺杂的多孔石墨相氮化碳光芬顿催化剂及其制备方法和应用
CN111604066A (zh) 一种石墨烯修饰Er掺杂CeO2-BiOBr异质结的光催化降解材料
CN107790167B (zh) 一种吸附-光催化双功能分级多孔复合材料及其制备方法
CN111087013A (zh) 一种黑色SnO2及其制备方法和应用
CN113083281B (zh) 一种钼酸铋/碳柔性膜光催化材料及其制备方法与应用
CN111545232B (zh) 一种表面缺陷型Cl掺杂g-C3N4光催化材料的制备方法及其应用
CN109894132B (zh) 以废弃物为碳源制备碳掺杂氧化钛可见光催化剂的方法
Wang et al. Synthesis of mesoporous titania–graphite composite templated by hypocrellins for visible-light photocatalytic degradation of acetaldehyde
CN117299152B (zh) 一种硫掺杂生物炭的制备方法
CN114130412B (zh) 一种复合光触媒及其制备方法
CN108043391B (zh) 一种可见光响应催化剂及其制备方法和应用
CN115872684B (zh) 一种石墨相氮化碳光催化碱激发水泥净浆及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant