CN112457047B - 一种低介电低密度石英质陶瓷材料制备方法 - Google Patents
一种低介电低密度石英质陶瓷材料制备方法 Download PDFInfo
- Publication number
- CN112457047B CN112457047B CN202011477340.5A CN202011477340A CN112457047B CN 112457047 B CN112457047 B CN 112457047B CN 202011477340 A CN202011477340 A CN 202011477340A CN 112457047 B CN112457047 B CN 112457047B
- Authority
- CN
- China
- Prior art keywords
- low
- quartz
- ceramic material
- dielectric
- quartz powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/06—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
- C04B38/063—Preparing or treating the raw materials individually or as batches
- C04B38/0635—Compounding ingredients
- C04B38/0645—Burnable, meltable, sublimable materials
- C04B38/067—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/14—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63448—Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63448—Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63488—Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6023—Gel casting
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种低介电低密度石英质陶瓷材料制备方法,属于陶瓷材料技术领域,以石英粉为原料,结合注凝工艺,采用有机物造孔、低温排胶、高温烧结制备得到目标材料。工艺操作简便,产品性能稳定,介电系数较低能够达到2.0~2.8,产品强度达到20MPa以上,很好地解决了低介电低密度石英陶瓷的制备存在的困难。传统低介电材料多为有机材料,耐高温性能非常有限,本专利提供方法制备产品为陶瓷质材料,很好的解决了有机低介电材料不能耐受500℃以上高温的问题,在高温低介电领域尤其是微波通信领域应用前景非常广阔。
Description
技术领域
本发明涉及陶瓷材料技术领域,具体提供一种低介电低密度石英质陶瓷材料制备方法。
背景技术
伴随着卫星通讯及高马赫飞行物的发展,对低介电、低损耗、高强度、耐温性好等性能稳定的介电材料的需求也越来越迫切。
石英质陶瓷材料具有介电系数低,介电损耗小,介电受温度影响小的特点,并兼具陶瓷材料耐高温、强度高、热性能好、性能稳定等优点,作为一种低介电材料在电子领域,尤其是高温介电材料领域应用较为广泛。
传统的石英质陶瓷材料的方法有为注浆成型和注凝成型两种方法,注浆成型法一般采用多孔石膏为模具,通过对料浆长时间的沉降和吸水而形成一定厚度的沉积滤饼层而成型,制品致密度分布存在一定差异。注凝成型采用在料浆中加入少量的高分子有机物单体,通过有机物的凝胶而成型。上述两种方法成型的石英材料密度都在1.80g/cm3,介电系数在3.0以上,在满足更低介电(2.50左右)的需要方面还是有一定的差距。
发明内容
本发明的技术任务是针对上述存在的问题,提供一种低介电低密度石英质陶瓷材料制备方法。
一种低介电低密度石英质陶瓷材料制备方法,所述方法的实现步骤包括:
(1)石英料浆的制备
采用石英粉为主要原料,加入纯净水、乳酸、聚乙二醇、丙烯酰胺单体和亚甲基双丙烯酰胺,混匀后进行静置陈腐,
陈腐完成再次混匀后加入PMMA有机物作为造孔剂;
进一步混匀后得到注凝用石英料浆;
(2)注凝成型
将混合好的石英料浆进行搅拌抽真空除气泡处理,处理完毕后加入过硫酸铵作为引发剂,进行模具注浆,然后加热固化成型;
(3)坯体的干燥与排胶烧结
固化成型后的坯体脱除模具后经过保湿干燥,烘干,烘干后将坯体进行排胶烧结,即得到制品。
所述石英粉的加入量为80份~85份,纯净水加入量为15份~20份,乳酸的加入量为石英粉与纯净水总重量的0.05~0.3%,聚乙二醇加入量为石英粉与纯净水总重量的0.1%~2%,丙烯酰胺单体加入量为石英粉与纯净水总重量的0.3%~5%,亚甲基双丙烯酰胺加入量为石英粉与纯净水总重量的0.05%~1.2%;PMMA有机物加入量为石英粉与纯净水总重量的0.5%-6.5%;所述过硫酸铵,加入量为每公斤料浆加入0.01g~0.2g。
所述石英粉为熔融石英粉,为5μm~20μm(细粉)和50μm~200μm(粗粉)的混合,加入量分别为:5μm~20μm(细粉)10份~40份,50μm~200μm(粗粉)45份-75份。通过将粗细石英粉混合,可以进一步提高产品的强度。
熔融石英粉,亦称熔融硅微粉,电熔石英粉(Fused silica),通过将天然石英,经高温熔炼,冷却后的非晶态二氧化硅作为主要原料,加工而成的石英微粉。熔融硅微粉(熔融石英粉)纯度高,具有热膨胀系数小,内应力低,高耐湿性,低放射性等优良特性,并具有以下特性:极低的线膨胀系数;良好的电磁辐射性;耐化学腐蚀等稳定的化学特性;合理有序、可控的粒度分布。
所述步骤(1)中的静置陈腐时间
为24h~48h,
陈腐完成后再次混匀时间为5h~10h;
加入PMMA有机物后进一步混匀时间为2h~6h;
进一步混匀后料浆涂-4杯流空时间不大于4min。
所述步骤(2)中在(-0.05~0.095MPa)下进行抽真空,抽真空时间不小于30min。
所述步骤(2)中加热固化成型的温度为50℃~90℃,固化时间30min~120min。
所述步骤(3)中所述的保湿干燥条件为室温(20±5)℃,湿度大于70%,干燥时间为48h~96h。
所述步骤(3)中低温烘干温度为110℃~150℃,烘干时间为24h~48h。
所述步骤(3)中的排胶烧结温度为:排胶温度为200℃~840℃,保温时间30h~60h;
所述步骤(3)中的烧结温度为1000℃~1200℃烧结时间为120min~360min。
与现有技术相比,本发明一种低介电低密度石英质陶瓷材料制备方法具有以下突出的有益效果:
近些年通信行业的快速发展,使得对低介电微波材料的需求越来越大。本发明以石英粉为原料,结合注凝工艺,采用有机物造孔、低温排胶、高温烧结制备得到目标材料。工艺操作简便,产品性能稳定,介电系数较低能够达到2.0~2.8,产品强度达到20MPa以上,很好地解决了低介电低密度石英陶瓷的制备存在的困难。传统低介电材料多为有机材料,耐高温性能非常有限,本专利提供方法制备产品为陶瓷质材料,很好的解决了有机低介电材料不能耐受500℃以上高温的问题,在高温低介电领域尤其是微波通信领域应用前景非常广阔。
本发明方法科学合理,简单易行,制备周期短,制品材质均匀、介电性能优异,可以将产品密度控制在1.0g/cm3-1.7g/cm3,介电系数在2.0-2.8,介电系数小于0.001。经过实践应用,产品具有非常好的性能。
具体实施方式
下面将结合实施例,对本发明作进一步详细说明。
实施例1
(1)石英料浆的制备
6μm石英粉30份,70μm粉53份和纯净水17份混合,并外加石英粉与纯净水重量的0.1%的乳酸,0.5%的聚乙二醇,3.1%的丙烯酰胺单体,0.25%的亚甲基双丙烯酰胺,混匀10h后静置陈腐36h混匀。
混匀后,加入造孔剂PMMA有机物,加入量为石英粉和纯净水总量的2.5%,加入后搅拌均匀3h。
(2)注凝成型
将上述料浆,在压力为-0.085MPa下进行抽真空处理1h。然后按照料浆重量的0.1%的加入过硫酸铵。继续搅拌均匀后,将料浆注入模具。
注浆完毕后,将模具放入烘箱或者水浴锅中70℃下加热固化1h。然后,将产品坯体脱模。
(3)干燥及烧结过程
坯体取出后在室温下,放置在湿度为80%的环境中保湿干燥72h。然后放入烘箱中烘干,烘干过程中烘干温度在110℃,烘干时间48h。
烘干后将坯体进行排胶烧结,排胶过程为按照每分钟1℃升温至450℃,保温15h;按照每分钟1.5℃升温至800℃,保温12h;每分钟1.5℃升温至烧结温度控制在1180℃,烧结时间为240min。
经过烧制后,石英制品密度为(1.55±0.10)g/cm3,介电系数为2.61±0.20,弯曲强度大于28MPa,介电损耗小于0.001。
实施例2
(1)石英料浆的制备
20μm石英粉10份,200μm粉70份和纯净水20份混合,并外加石英粉与纯净水重量的0.3%的乳酸,2%的聚乙二醇,5%的丙烯酰胺单体,1%的亚甲基双丙烯酰胺,混匀10h后静置陈腐48h,再次混匀。
混匀后,加入造孔剂PMMA有机物,加入量为石英粉和纯净水总量的6.5%,加入后搅拌6h,至料浆均匀。
(2)注凝成型
将上述料浆,在压力为-0.05MPa下进行抽真空处理2h。然后按照料浆重量的0.1%加入过硫酸铵。继续搅拌均匀后,将料浆注入模具。
注浆完毕后,将模具放入烘箱或者水浴锅中60℃下加热固化2h。然后,将产品坯体脱模。
(3)干燥及烧结过程
坯体取出后保湿,烘干。
烘干后将坯体进行排胶烧结,排胶过程为按照每分钟1℃升温至450℃,保温24h;按照每分钟1.5℃升温至800℃,保温16h;每分钟1.5℃升温至烧结温度控制在1080℃,烧结时间为360min。
经过烧制后,石英制品密度为(1.15±0.10)g/cm3,介电系数为2.0±0.20,玩去强度大于20MPa,介电损耗小于0.001。
实施例3
(1)石英料浆的制备
6μm石英粉40份,50μm粉45份和纯净水15份混合,并外加石英粉与纯净水重量的0.05%的乳酸,0.1%的聚乙二醇,0.5%的丙烯酰胺单体,0.05%的亚甲基双丙烯酰胺,混匀10h后静置陈腐24h混匀。
混匀后,加入造孔剂PMMA有机物,加入量为石英粉和纯净水总量的0.5%,加入后搅拌均匀2h。
(2)注凝成型
将上述料浆,在压力为-0.085MPa下进行抽真空处理1h。然后按照料浆重量的0.1%加入过硫酸铵。继续搅拌均匀后,将料浆注入模具。
注浆完毕后,将模具放入烘箱或者水浴锅中70℃下加热固化1h。然后,将产品坯体脱模。
(3)干燥及烧结过程
坯体取出后在室温下,放置在湿度为80%的环境中保湿干燥72h。然后放入烘箱中烘干,烘干过程中烘干温度在110℃,烘干时间48h。
烘干后将坯体进行排胶烧结,排胶过程为按照每分钟1℃升温至450℃,保温10h;按照每分钟1.5℃升温至800℃,保温8h;每分钟1.5℃升温至烧结温度控制在1200℃,烧结时间为240min。
经过烧制后,石英制品密度为(1.65±0.10)g/cm3,介电系数为2.80±0.20,弯曲强度大于30MPa,介电损耗小于0.001。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (9)
1.一种低介电低密度石英质陶瓷材料制备方法,其特征在于,所述方法的实现步骤包括:
(1)石英料浆的制备
采用石英粉为主要原料,加入纯净水、乳酸、聚乙二醇、丙烯酰胺单体和亚甲基双丙烯酰胺,混匀后进行静置陈腐,
陈腐完成再次混匀后加入PMMA有机物;
进一步混匀后得到注凝用石英料浆;
(2)注凝成型
将混合好的石英料浆进行搅拌抽真空除气泡处理,处理完毕后加入过硫酸铵,进行模具注浆,然后加热固化成型;
(3)坯体的干燥与排胶烧结
固化成型后的坯体脱除模具后经过保湿干燥,烘干,烘干后将坯体进行排胶烧结,即得到制品;
其中,所述石英粉为熔融石英粉,为5μm~20μm和50μm~200μm的混合,所述石英粉加入量分别为:5μm~20μm熔融石英粉10份~40份,50μm~200μm熔融石英粉45份~75份;
所述低介电低密度石英陶瓷材料的介电系数为2.0~2.8、强度为20MPa以上、密度为1.0g/cm3~1.7 g/cm3。
2.根据权利要求1所述的一种低介电低密度石英质陶瓷材料制备方法,其特征在于,所述石英粉的加入量为80份~85份,纯净水加入量为15份~20份,乳酸的加入量为石英粉与纯净水总重量的0.05%~0.3%,聚乙二醇加入量为石英粉与纯净水总重量的0.1%~2%,丙烯酰胺单体加入量为石英粉与纯净水总重量的0.3%~5%,亚甲基双丙烯酰胺加入量为石英粉与纯净水总重量的0.05%~1.2%;PMMA有机物加入量为石英粉与纯净水总重量的0.5%~6.5%;所述过硫酸铵,加入量为每公斤料浆加入0.01g~0.2g。
3.根据权利要求1所述的一种低介电低密度石英质陶瓷材料制备方法,其特征在于,所述步骤(1)中的静置陈腐时间为24h~48h,
陈腐完成后再次混匀时间为5h~10h;
加入PMMA有机物后进一步混匀时间为2h~6h;
进一步混匀后料浆涂-4杯流空时间不大于4 min。
4.根据权利要求1所述的一种低介电低密度石英质陶瓷材料制备方法,其特征在于,所述步骤(2)中在-0.05~0.095MPa下进行抽真空,抽真空时间不小于30 min。
5.根据权利要求1所述的一种低介电低密度石英质陶瓷材料制备方法,其特征在于,所述步骤(2)中加热固化成型的温度为50℃~90℃,固化时间30min~120min。
6.根据权利要求1所述的一种低介电低密度石英质陶瓷材料制备方法,其特征在于,所述步骤(3)中所述的保湿干燥条件为室温20±5℃,湿度大于70%,干燥时间为48h~96h。
7.根据权利要求1所述的一种低介电低密度石英质陶瓷材料制备方法,其特征在于,所述步骤(3)中低温烘干温度为110℃~150℃,烘干时间为24h~48h。
8.根据权利要求1所述的一种低介电低密度石英质陶瓷材料制备方法,其特征在于,所述步骤(3)中的排胶烧结温度为:排胶温度为200℃~840℃,保温时间30h~60h。
9.根据权利要求1所述的一种低介电低密度石英质陶瓷材料制备方法,其特征在于,所述步骤(3)中的烧结温度为1000℃~1200℃烧结时间为120min~360min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011477340.5A CN112457047B (zh) | 2020-12-15 | 2020-12-15 | 一种低介电低密度石英质陶瓷材料制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011477340.5A CN112457047B (zh) | 2020-12-15 | 2020-12-15 | 一种低介电低密度石英质陶瓷材料制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112457047A CN112457047A (zh) | 2021-03-09 |
CN112457047B true CN112457047B (zh) | 2022-11-11 |
Family
ID=74804294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011477340.5A Active CN112457047B (zh) | 2020-12-15 | 2020-12-15 | 一种低介电低密度石英质陶瓷材料制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112457047B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115340394A (zh) * | 2022-08-10 | 2022-11-15 | 武汉科技大学 | 一种磷酸硼增强石英质材料及其制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101580339A (zh) * | 2009-06-18 | 2009-11-18 | 王迎奎 | 一种制作复合多级熔融石英粉陶瓷坩埚的方法 |
CN103232264B (zh) * | 2013-04-18 | 2014-10-29 | 哈尔滨工业大学 | 一种具有球形气孔结构的BN/Si3N4复合陶瓷的制备方法 |
CN107021743B (zh) * | 2017-04-28 | 2019-09-06 | 山东工业陶瓷研究设计院有限公司 | 熔融石英质陶瓷回转体的制备方法 |
CN111517770A (zh) * | 2020-04-29 | 2020-08-11 | 新沂市正达高新石英材料有限公司 | 一种高致密性熔融石英陶瓷的生产方法 |
-
2020
- 2020-12-15 CN CN202011477340.5A patent/CN112457047B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN112457047A (zh) | 2021-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102898141B (zh) | 一种高导热氮化铝陶瓷异形件的制备方法 | |
CN108002843B (zh) | 一种基于膏体的高精度多孔氮化硅复杂形状件的制备方法 | |
CN103664190B (zh) | 一种多孔氮化硅陶瓷的制备方法 | |
CN112077318B (zh) | 一种金属-碳化硅多孔复合材料及制备方法 | |
CN104496480A (zh) | 碳化硅陶瓷预制体、铝基碳化硅陶瓷材料及其制备方法 | |
CN105198475A (zh) | 一种制备复杂形状多孔氮化硅陶瓷制品的方法 | |
CN105384441A (zh) | 一种纳米二氧化钛增韧的高致密度氮化铝-碳化硅复合电路板基板材料及其制备方法 | |
CN112457047B (zh) | 一种低介电低密度石英质陶瓷材料制备方法 | |
CN104496484A (zh) | 一种制备Si3N4/BAS复合陶瓷材料的方法 | |
CN109650902A (zh) | 一种高韧性仿生结构石墨烯基陶瓷复合材料的制备方法 | |
CN109761614A (zh) | 一种AlON陶瓷的凝胶注模成型方法 | |
CN104108938A (zh) | 一种制备Sialon陶瓷的方法 | |
CN101734920B (zh) | 一种氮化钛多孔陶瓷及其制备方法 | |
CN106893303A (zh) | 一种高介电常数轻质介质基材及其制备方法 | |
CN104693688A (zh) | Pcb基板用微波介质陶瓷/树脂双连续复合材料的制备方法 | |
CN107619282B (zh) | 一种高韧性钛碳化硅-碳化硅复相陶瓷异形件的制备方法 | |
CN107759240B (zh) | 一种Si3N4/BAS复相陶瓷材料的制备方法 | |
CN101700676B (zh) | 一种凝胶注模技术中控制坯体变形性的方法 | |
CN1275905C (zh) | 一种制备高热导率和高尺寸精度氮化铝陶瓷零部件的方法 | |
JP2002037682A (ja) | 多孔質炭化珪素焼結体の製造方法 | |
CN101318818B (zh) | 一种高纯氧化铌、氧化钽陶瓷坩埚的制造方法及所制得的产品 | |
CN113087501A (zh) | 一种高强度石英陶瓷辊及其制备工艺 | |
CN106565222A (zh) | 利用琼脂糖原位凝固制备氧化铝陶瓷的方法 | |
CN106495703A (zh) | 一种氮化硅密封环的制备方法 | |
CN107573076B (zh) | 一种高韧性钛碳化硅-碳化硅复相陶瓷异形件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |