CN112456518A - 一种含钠锂卤水的钠锂分离与浓缩的方法 - Google Patents

一种含钠锂卤水的钠锂分离与浓缩的方法 Download PDF

Info

Publication number
CN112456518A
CN112456518A CN202011451702.3A CN202011451702A CN112456518A CN 112456518 A CN112456518 A CN 112456518A CN 202011451702 A CN202011451702 A CN 202011451702A CN 112456518 A CN112456518 A CN 112456518A
Authority
CN
China
Prior art keywords
lithium
sodium
solution
lioh
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011451702.3A
Other languages
English (en)
Other versions
CN112456518B (zh
Inventor
张勇
韩培林
桑子容
吴云
陈喆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN202011451702.3A priority Critical patent/CN112456518B/zh
Publication of CN112456518A publication Critical patent/CN112456518A/zh
Application granted granted Critical
Publication of CN112456518B publication Critical patent/CN112456518B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • C01D5/06Preparation of sulfates by double decomposition
    • C01D5/08Preparation of sulfates by double decomposition with each other or with ammonium sulfate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • C25B1/16Hydroxides

Abstract

本发明公开了一种利用氧化镁降低盐湖卤水镁锂比的方法,包括以下步骤:S1:将含有NaCl和LiCl体系的盐湖卤水进行全部电解,得到LiOH和NaOH溶液体系;S2:向LiOH和NaOH溶液体系中加入H2SO4,得到LiOH和Na2SO4溶液体系;S3:将LiOH和Na2SO4溶液进行蒸发处理,使Na2SO4呈饱和状态,得到待冷冻溶液;S4:向待冷冻溶液中加入冷冻辅助剂;S5:将具有冷冻辅助剂的待冷冻液进行冷冻结晶处理,并离心分离得到LiOH锂液和Na2SO4·10H2O晶体。通过将原溶液中的氯化物体系转化成硫酸根体系,实现硫酸钠的结晶分离。本申请通过冷冻辅助剂的加入,可以更好的避免了盐效应对结晶分离带来的负面影响,进一步地的提高了十水硫酸钠的结晶效果,从而有效保证了较高程度的钠锂分离。

Description

一种含钠锂卤水的钠锂分离与浓缩的方法
技术领域
本发明属于盐湖提锂技术领域,具体涉及一种含钠锂卤水的钠锂分离与浓缩的方法。
背景技术
我国是一个锂资源大国,拥有丰富的盐卤资源。盐湖提锂一般需要以已经过钠、钾离子过滤后所剩下的老卤为原料,老卤进行再次锂富集后经过蒸发、除镁、浓缩后提取锂离子制取碳酸锂。然而,由于锂和钠属于同族元素,其离子质量都较轻,且化学性质非常相似,使用传统的方法很难将其彻底分离。
目前,在烧碱技术领域和矿石提锂技术领域均通过利用硫酸钠的冷冻结晶原理进行钠的有效分离,由于硫酸钠的溶解度具有一定的特殊性,通过十水硫酸钠的结晶水形式带出钠离子和大部分的水,进而实现钠的分离和溶液的浓缩。
上述技术领域中的原体系中均含有硫酸根,这样才能在冷冻的条件下形成十水硫酸钠结晶,例如,矿石提锂中体系中的硫酸锂和氢氧化钠在冷冻的条件下形成十水硫酸钠结晶和氢氧化锂锂液,实现锂钠分离。
但是在盐湖提锂技术领域中,盐湖卤水体系中锂、钠主要的存在形式为氯化锂和氯化钠,无法直接通过上述硫酸钠结晶的原理进行分离,在化学领域Cl-体系与SO4 2-体系的转化比较复杂,所以目前盐湖提锂一般都是直接蒸发结晶和单纯电解的形式进行分离。电解法对含钠锂卤水中LiCl、NaCl进行电解生成含LiOH、NaOH溶液,对溶液进行蒸发后结晶可获得LiOH晶体,但此法得到的LiOH晶体含NaOH杂质多,套洗难度大,锂损失大;同时直接蒸发结晶也存在锂钠分离不清,套洗严重,蒸发量大的技术问题。
发明内容
本发明目的是提供一种含钠锂卤水的钠锂分离与浓缩的方法,通过将原溶液中的氯化物体系转化成硫酸根体系,实现硫酸钠的结晶分离。
本发明公开了一种含钠锂卤水的钠锂分离与浓缩的方法,包括以下步骤:
S1:将含有NaCl和LiCl体系的盐湖卤水进行全部电解,得到LiOH和NaOH溶液体系;
S2:向LiOH和NaOH溶液体系中加入H2SO4,得到LiOH和Na2SO4溶液体系;
S3:将LiOH和Na2SO4溶液进行蒸发处理,使Na2SO4呈饱和状态,得到待冷冻溶液;
S4: 向待冷冻溶液中加入冷冻辅助剂;
S5:将具有冷冻辅助剂的待冷冻液进行冷冻结晶处理,并离心分离得到LiOH锂液和Na2SO4·10H2O晶体。
进一步地,S1中的NaCl和LiCl溶液体系中3>nLi+/nNa+>20。
进一步地,S2中加入H2SO4与Na+的摩尔比为1:4。
进一步地,S3中的蒸发温度为32.4~100℃。
进一步地,S4中的所述冷冻辅助剂为乙醇、乙胺、乙腈、异丙醇、丙醇和丁醇中的一种或多种;所述冷冻辅助剂的加入量为盐湖卤水质量的2 -55%。
进一步地,S5中的冷冻温度为-20~10℃。
进一步地,S5中得到的Na2SO4·10H2O晶体还可用于S3中,使Na2SO4呈饱和状态。
进一步地,S5中得到的LiOH锂液还可回收至S1中盐湖卤水中循环提取分离。这样可以更好的提高最终锂液中LiOH的含量,进一步实现锂钠的高效分离,本申请的最终锂液中nLi+/nNa+>20则成为合格锂液。
进一步地,所述待冷冻溶液还可加入助剂,加入量为盐湖卤水质量的0.1-1%。
进一步地,所述助剂为脂肪醇聚氧乙烯醚羧酸钠、十八烷基三甲基氯化铵和聚丙烯酰胺中的一种或多种。由于该体系下形成的硫酸钠结晶晶型细小,容易形成浮晶,不易于过滤分离,所有加入助剂可以更好的保证较大颗粒的结晶形成,便于后续过滤,进而实现快速高效分离。
本发明的有益效果:
(1)本申请通过将原溶液中的氯化物体系转化为硫酸根体系,充分利用了硫酸钠的冷冻结晶技术手段,实现锂钠的高效分离,克服了领域中体系转化障碍。
(2)本发明通过向含钠锂卤水中加入无水硫酸钠,并使用冷冻结晶形成Na2SO4·10H2O晶体,将溶液中很大一部分水以结晶水形式带出,从而实现混合溶液的钠锂分离与浓缩,极大的减少了提锂过程中的蒸发水量,锂损失小,能耗低,对降低提锂过程综合成本有显著效果。
(3)本申请通过冷冻辅助剂的加入,可以更好的避免了盐效应对结晶分离带来的负面影响,进一步地的提高了十水硫酸钠的结晶效果,从而有效保证了较高程度的钠锂分离。
(4)本发明加入的结晶助剂可以更好的保证较大颗粒的结晶形成,便于后续过滤,进而实现快速高效分离。
附图说明
图1为硫酸钠的溶解度曲线。
具体实施方式
为下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外,本领域技术人员对本发明所做的各种改动或修改,这些等价形式同样落于本申请所要求保护的范围内。本发明实施例中的配比均为以重量计。
实施例1
S1:将含有NaCl和LiCl体系的盐湖卤水(NaCl:23g/L,Li+:24g/;nLi+/nNa+=8.6)进行全部电解,得到LiOH和NaOH溶液体系;
S2:向LiOH和NaOH溶液体系中加入H2SO4,加入H2SO4与Na+的摩尔比为1:4,得到LiOH和Na2SO4溶液体系;
S3:将LiOH和Na2SO4溶液进行蒸发处理,蒸发温度为40℃,使Na2SO4呈饱和状态,得到待冷冻溶液;
S4:向待冷冻溶液中加入冷冻辅助剂;加入量为盐湖卤水质量的48%,所述冷冻辅助剂为乙醇;
S5:将具有冷冻辅助剂的待冷冻液进行冷冻结晶处理,冷冻温度为-20℃,并离心分离得到LiOH锂液和Na2SO4•10H2O晶体。
经化学分析检测所得Na2SO4•10H2O晶体中Li+为0.82%,所得LiOH锂液中Na+为0.71%。
实施例2
S1:将含有NaCl和LiCl体系的盐湖卤水(nLi+/nNa+=6.5)进行全部电解,得到LiOH和NaOH溶液体系;
S2:向LiOH和NaOH溶液体系中加入H2SO4,加入H2SO4与Na+的摩尔比为1:4,得到LiOH和Na2SO4溶液体系;
S3:将LiOH和Na2SO4溶液进行蒸发处理,蒸发温度为80℃,使Na2SO4呈饱和状态,得到待冷冻溶液;
S4: 向待冷冻溶液中加入冷冻辅助剂;加入量为盐湖卤水质量的14%,所述冷冻辅助剂为异丙醇;
S5:将具有冷冻辅助剂的待冷冻液进行冷冻结晶处理,冷冻温度为-10℃,并离心分离得到LiOH锂液和Na2SO4·10H2O晶体。
经化学分析检测所得Na2SO4•10H2O晶体中Li+为0.89%,所得LiOH锂液中Na+为0.90%。
实施例3
S1:将含有NaCl和LiCl体系的盐湖卤水(nLi+/nNa+=8.8)进行全部电解,得到LiOH和NaOH溶液体系;
S2:向LiOH和NaOH溶液体系中加入H2SO4,加入H2SO4与Na+的摩尔比为1:4,得到LiOH和Na2SO4溶液体系;
S3:将LiOH和Na2SO4溶液进行蒸发处理,蒸发温度为100℃,使Na2SO4呈饱和状态,得到待冷冻溶液;
S4: 向待冷冻溶液中加入冷冻辅助剂;加入量为盐湖卤水质量的18%,所述冷冻辅助剂为乙胺;
S5:将具有冷冻辅助剂的待冷冻液进行冷冻结晶处理,冷冻温度为5℃,并离心分离得到LiOH锂液和Na2SO4·10H2O晶体。
经化学分析检测所得Na2SO4•10H2O晶体中Li+为0.90%,所得LiOH锂液中Na+为0.86%。
实施例4
S1:将含有NaCl和LiCl体系的盐湖卤水(nLi+/nNa+=3.8)进行全部电解,得到LiOH和NaOH溶液体系;
S2:向LiOH和NaOH溶液体系中加入H2SO4,加入H2SO4与Na+的摩尔比为1:4,得到LiOH和Na2SO4溶液体系;
S3:将LiOH和Na2SO4溶液进行蒸发处理,蒸发温度为100℃,可在蒸发处理前加入S5中得到的Na2SO4·10H2O晶体,使Na2SO4呈饱和状态,得到待冷冻溶液;
S4: 向待冷冻溶液中加入冷冻辅助剂;加入量为盐湖卤水质量的23%,所述冷冻辅助剂为乙醇;
S5:将具有冷冻辅助剂的待冷冻液进行冷冻结晶处理,冷冻温度为-20℃,并离心分离得到LiOH锂液和Na2SO4·10H2O晶体;得到的LiOH锂液回收至S1中盐湖卤水中重复循环提取分离。
经化学分析检测所得Na2SO4•10H2O晶体中Li+为0.84%,所得LiOH锂液中Na+为0.81%。
实施例5
S1:将含有NaCl和LiCl体系的盐湖卤水(nLi+/nNa+=6.8)进行全部电解,得到LiOH和NaOH溶液体系;
S2:向LiOH和NaOH溶液体系中加入H2SO4,加入H2SO4与Na+的摩尔比为1:4,得到LiOH和Na2SO4溶液体系;
S3:将LiOH和Na2SO4溶液进行蒸发处理,蒸发温度为100℃,使Na2SO4呈饱和状态,得到待冷冻溶液;
S4: 向待冷冻溶液中加入冷冻辅助剂;加入量为盐湖卤水质量的55%,所述冷冻辅助剂为乙醇和丙醇;
S5:将具有冷冻辅助剂的待冷冻液进行冷冻结晶处理,冷冻温度为-20℃,并离心分离得到LiOH锂液和Na2SO4·10H2O晶体。
经化学分析检测所得Na2SO4•10H2O晶体中Li+为0.79%,所得LiOH锂液中Na+为0.75%。
实施例6
S1:将含有NaCl和LiCl体系的盐湖卤水(nLi+/nNa+=8.5)进行全部电解,得到LiOH和NaOH溶液体系;
S2:向LiOH和NaOH溶液体系中加入H2SO4,加入H2SO4与Na+的摩尔比为1:4,得到LiOH和Na2SO4溶液体系;
S3:将LiOH和Na2SO4溶液进行蒸发处理,蒸发温度为100℃,使Na2SO4呈饱和状态,得到待冷冻溶液;
S4: 向待冷冻溶液中加入冷冻辅助剂;加入量为盐湖卤水质量的50%,所述冷冻辅助剂为乙醇和乙腈;
S5:将具有冷冻辅助剂的待冷冻液进行冷冻结晶处理,冷冻温度为-20℃,并离心分离得到LiOH锂液和Na2SO4·10H2O晶体。
经化学分析检测所得Na2SO4•10H2O晶体中Li+为0.73%,所得LiOH锂液中Na+为0.72%。
实施例7
S1:将含有NaCl和LiCl体系的盐湖卤水(nLi+/nNa+=8.5)进行全部电解,得到LiOH和NaOH溶液体系;
S2:向LiOH和NaOH溶液体系中加入H2SO4,加入H2SO4与Na+的摩尔比为1:4,得到LiOH和Na2SO4溶液体系;
S3:将LiOH和Na2SO4溶液进行蒸发处理,蒸发温度为100℃,使Na2SO4呈饱和状态,得到待冷冻溶液;
S4: 向待冷冻溶液中加入冷冻辅助剂,加入量为盐湖卤水质量的10%,所述冷冻辅助剂为乙醇和乙腈;再加入助剂脂肪醇聚氧乙烯醚羧酸钠,加入量为盐湖卤水质量的0.2%;
S5:将具有冷冻辅助剂的待冷冻液进行冷冻结晶处理,冷冻温度为-20℃,并离心分离得到LiOH锂液和Na2SO4·10H2O晶体。
经化学分析检测所得Na2SO4•10H2O晶体中Li+为0.70%,所得LiOH锂液中Na+为0.62%。
实施例8
S1:将含有NaCl和LiCl体系的盐湖卤水(nLi+/nNa+=8.5)进行全部电解,得到LiOH和NaOH溶液体系;
S2:向LiOH和NaOH溶液体系中加入H2SO4,加入H2SO4与Na+的摩尔比为1:4,得到LiOH和Na2SO4溶液体系;
S3:将LiOH和Na2SO4溶液进行蒸发处理,蒸发温度为100℃,使Na2SO4呈饱和状态,得到待冷冻溶液;
S4:向待冷冻溶液中加入冷冻辅助剂,加入量为盐湖卤水质量的40%,所述冷冻辅助剂为乙醇和乙腈;再加入助剂聚丙烯酰胺,加入量为盐湖卤水质量的0.6%;
S5:将具有冷冻辅助剂的待冷冻液进行冷冻结晶处理,冷冻温度为-20℃,并离心分离得到LiOH锂液和Na2SO4·10H2O晶体。
经化学分析检测所得Na2SO4•10H2O晶体中Li+为0.57%,所得LiOH锂液中Na+为0.49%。
实施例9
S1:将含有NaCl和LiCl体系的盐湖卤水(nLi+/nNa+=8.5)进行全部电解,得到LiOH和NaOH溶液体系;
S2:向LiOH和NaOH溶液体系中加入H2SO4,加入H2SO4与Na+的摩尔比为1:4,得到LiOH和Na2SO4溶液体系;
S3:将LiOH和Na2SO4溶液进行蒸发处理,蒸发温度为100℃,使Na2SO4呈饱和状态,得到待冷冻溶液;
S4:向待冷冻溶液中加入冷冻辅助剂,加入量为盐湖卤水质量的37%,所述冷冻辅助剂为乙醇和乙腈;再加入助剂十八烷基三甲基氯化铵,加入量为盐湖卤水质量的1%;
S5:将具有冷冻辅助剂的待冷冻液进行冷冻结晶处理,冷冻温度为-20℃,并离心分离得到LiOH锂液和Na2SO4·10H2O晶体。
经化学分析检测所得Na2SO4•10H2O晶体中Li+为0.62%,所得LiOH锂液中Na+为0.55%。
对比例1
S1:将含有NaCl和LiCl体系的盐湖卤水(nLi+/nNa+=10.2)进行全部电解,得到LiOH和NaOH溶液体系;
S2:向LiOH和NaOH溶液体系中加入H2SO4,加入H2SO4与Na+的摩尔比为1:4,得到LiOH和Na2SO4溶液体系;
S3:将LiOH和Na2SO4溶液进行蒸发处理,蒸发温度为100℃,使Na2SO4呈饱和状态,得到待冷冻溶液;
S4:将待冷冻液进行冷冻结晶处理,冷冻温度为-20℃,并离心分离得到LiOH锂液和Na2SO4·10H2O晶体。
在结晶过程中发现结晶时间较长,并且存在结晶困难的迹象,甚至结晶形态不够完,继而造成锂钠互溶,互溶程度较大,分离度较差。
评价:
综上,可以看出,本申请的结晶辅助剂和助剂在锂钠分离时能够更好的促进二者分离,并测得LiOH锂液中Na+的掺杂均小于1%。
根据分离后的锂液的测量结果与杂质含量可以看出,相较于传统手法(掺杂量较大,传统浓缩结晶分离nLi+/nNa+约在6~12之间),使用本专利所述方法对卤水的钠锂分离效率具有更加显著效果。能源消耗小,无需进行后续处理,可直接进行下一步工艺。且后续副产品硫酸钠晶体可运用于其他产业作为原料使用。
综上,可以看出本专利方法是一种高效分离方法,能对卤水中的钠锂进行有效且高效的分离,分离效率优于传统方法的分离效率,流程操作也较为简单,对能源消耗较小,为工业生产提供了一种新的创新型且可行的方案。
以上对本发明的实施例进行了示例性说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依据本发明申请范围的均等变化与改进等,均应归属于本发明的专利涵盖范围之内。

Claims (10)

1.一种含钠锂卤水的钠锂分离与浓缩的方法,其特征在于,包括以下步骤:
S1:将含有NaCl和LiCl体系的盐湖卤水进行全部电解,得到LiOH和NaOH溶液体系;
S2:向LiOH和NaOH溶液体系中加入H2SO4,得到LiOH和Na2SO4溶液体系;
S3:将LiOH和Na2SO4溶液进行蒸发处理,使Na2SO4呈饱和状态,得到待冷冻溶液;
S4: 向待冷冻溶液中加入冷冻辅助剂;
S5:将具有冷冻辅助剂的待冷冻液进行冷冻结晶处理,并离心分离得到LiOH锂液和Na2SO4·10H2O晶体。
2.如权利要求1所述的一种含钠锂卤水的钠锂分离与浓缩的方法,其特征在于:S1中的NaCl和LiOH溶液体系中3>nLi+/nNa+>20。
3.如权利要求1所述的一种含钠锂卤水的钠锂分离与浓缩的方法,其特征在于:S2中加入H2SO4与Na+的摩尔比为1:4。
4.如权利要求1所述的一种含钠锂卤水的钠锂分离与浓缩的方法,其特征在于:S3中的蒸发温度为32.4~100℃。
5.如权利要求1所述的一种含钠锂卤水的钠锂分离与浓缩的方法,其特征在于:S4中的所述冷冻辅助剂为乙醇、乙胺、乙腈、异丙醇、丙醇和丁醇中的一种或多种;所述冷冻辅助剂的加入量为盐湖卤水质量的2 -55%。
6.如权利要求1所述的一种含钠锂卤水的钠锂分离与浓缩的方法,其特征在于:S5中的冷冻温度为-20~10℃。
7.如权利要求1所述的一种含钠锂卤水的钠锂分离与浓缩的方法,其特征在于:S5中得到的Na2SO4·10H2O晶体还可用于S3中,使Na2SO4呈饱和状态。
8.如权利要求1所述的一种含钠锂卤水的钠锂分离与浓缩的方法,其特征在于:S5中得到的LiOH锂液还可回收至S1中盐湖卤水中循环提取分离。
9.如权利要求1所述的一种含钠锂卤水的钠锂分离与浓缩的方法,其特征在于:所述待冷冻溶液还可加入助剂,加入量为盐湖卤水质量的0.1-1%。
10.如权利要求9所述的一种含钠锂卤水的钠锂分离与浓缩的方法,其特征在于:所述助剂为脂肪醇聚氧乙烯醚羧酸钠、十八烷基三甲基氯化铵和聚丙烯酰胺中的一种或多种。
CN202011451702.3A 2020-12-11 2020-12-11 一种含钠锂卤水的钠锂分离与浓缩的方法 Active CN112456518B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011451702.3A CN112456518B (zh) 2020-12-11 2020-12-11 一种含钠锂卤水的钠锂分离与浓缩的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011451702.3A CN112456518B (zh) 2020-12-11 2020-12-11 一种含钠锂卤水的钠锂分离与浓缩的方法

Publications (2)

Publication Number Publication Date
CN112456518A true CN112456518A (zh) 2021-03-09
CN112456518B CN112456518B (zh) 2022-04-29

Family

ID=74801907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011451702.3A Active CN112456518B (zh) 2020-12-11 2020-12-11 一种含钠锂卤水的钠锂分离与浓缩的方法

Country Status (1)

Country Link
CN (1) CN112456518B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933319A (zh) * 2022-06-06 2022-08-23 江西春鹏锂业有限责任公司 一种锂辉石生产单水氢氧化锂工艺及其生产线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101214978A (zh) * 2007-12-28 2008-07-09 四川天齐锂业股份有限公司 电池级单水氢氧化锂的制备方法
CN102659144A (zh) * 2012-04-26 2012-09-12 雅安华汇锂业科技材料有限公司 高纯级单水氢氧化锂的制备方法
CN103864249A (zh) * 2014-03-28 2014-06-18 中国科学技术大学 一种由盐湖卤水提取氢氧化锂的方法
CN109136971A (zh) * 2018-09-18 2019-01-04 萍乡市拓源实业有限公司 一种电渗析法生产氢氧化锂的工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101214978A (zh) * 2007-12-28 2008-07-09 四川天齐锂业股份有限公司 电池级单水氢氧化锂的制备方法
CN102659144A (zh) * 2012-04-26 2012-09-12 雅安华汇锂业科技材料有限公司 高纯级单水氢氧化锂的制备方法
CN103864249A (zh) * 2014-03-28 2014-06-18 中国科学技术大学 一种由盐湖卤水提取氢氧化锂的方法
CN109136971A (zh) * 2018-09-18 2019-01-04 萍乡市拓源实业有限公司 一种电渗析法生产氢氧化锂的工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933319A (zh) * 2022-06-06 2022-08-23 江西春鹏锂业有限责任公司 一种锂辉石生产单水氢氧化锂工艺及其生产线

Also Published As

Publication number Publication date
CN112456518B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
US11267719B2 (en) Preparation method of lithium hydroxide
CN113684369B (zh) 一种废工业含锂铝电解质的处理方法
US9255011B2 (en) Method for producing lithium carbonate
CN107653378A (zh) 一种废旧镍钴锰锂离子电池中有价金属的回收方法
AU2018227891B2 (en) Method for producing lithium hydroxide from lithium-containing ore
CN1486931A (zh) 一水氢氧化锂生产工艺
KR20200126166A (ko) 리튬 함유 물질로부터 리튬 회수방법
CN103924258B (zh) 利用盐湖卤水电解制备氢氧化锂的方法
CN112575339B (zh) 锂辉石制备氢氧化锂的方法及去除钠钾的方法
CN112142081A (zh) 一种利用锂云母制备电池级碳酸锂的方法
CN112456518B (zh) 一种含钠锂卤水的钠锂分离与浓缩的方法
CN112408436B (zh) 一种部分电离含钠锂卤水的钠锂分离的方法
US20240051837A1 (en) Method for the production of lithium hydroxide (lioh) directly from lithium chloride (lici), without the need for an intermediate production of lithium carbonate or similar
CN115246651B (zh) 一种利用含氟锂尾料回收制备碳酸锂的方法
CN101307470A (zh) 用含锂废弃物制备铝电解电解质添加剂的方法
CN115403061A (zh) 一种高纯氯化钙及其浓缩方法
CN113387378A (zh) 一种从含锂溶液中除钾并生产锂盐的方法
CN109972163B (zh) 一种氯酸钠的制备方法
CN111635999A (zh) 一种含锂卤水中提取锂并制备氢氧化锂的方法
CN113880113B (zh) 一种从含锂、钠、钾的混合盐体系中分别分离出锂盐、钠盐、钾盐的工艺方法
CN110713195A (zh) 提高氯化物型盐田生产效率的方法以及氯化物型盐田产物
WO2024078386A1 (en) A method and device for preparing high-purity lithium hydroxide based on lithium-ion solid-state electrolyte
CN111017965B (zh) 工业级氯化锂制备方法
CN111498872B (zh) 一种磷酸锂循环回收工艺
CN209759047U (zh) 高镁锂比老卤溶液双极膜电渗析法制备氢氧化锂的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant