CN112441603B - 一种高纯氟化镁光学材料制备方法 - Google Patents

一种高纯氟化镁光学材料制备方法 Download PDF

Info

Publication number
CN112441603B
CN112441603B CN202011308681.XA CN202011308681A CN112441603B CN 112441603 B CN112441603 B CN 112441603B CN 202011308681 A CN202011308681 A CN 202011308681A CN 112441603 B CN112441603 B CN 112441603B
Authority
CN
China
Prior art keywords
solution
reaction
magnesium fluoride
ammonium
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011308681.XA
Other languages
English (en)
Other versions
CN112441603A (zh
Inventor
李雪
马亚丽
岳岩
曹笑宁
刘云义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Chemical Technology
Original Assignee
Shenyang University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Chemical Technology filed Critical Shenyang University of Chemical Technology
Priority to CN202011308681.XA priority Critical patent/CN112441603B/zh
Publication of CN112441603A publication Critical patent/CN112441603A/zh
Application granted granted Critical
Publication of CN112441603B publication Critical patent/CN112441603B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/26Magnesium halides
    • C01F5/28Fluorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

一种高纯氟化镁光学材料制备方法,一种光学材料制备方法,首先将轻烧粉与铵盐按一定比例配成溶液进行蒸氨反应,将得到的氨气通入一定浓度的氢氟酸进行固化,然后将制得的氟化铵溶液与蒸氨得到的镁盐溶液加入到聚四氟乙烯容器中,在充分搅拌的情况下,控制反应温度于一定范围内进行结晶反应,反应一定时间且反应液pH值为7~10左右,恒温陈化1~4 h后进行过滤、洗涤及干燥得到高纯氟化镁。滤液中铵盐可用于蒸氨反应,实现铵盐的循环使用。本发明所得产品纯度高,质量好,原料来源丰富,操作简便,设备占地面积小,生产成本低,污染物排放量小,适宜于规模生产,是制备光学材料高纯氟化镁的一种技术。

Description

一种高纯氟化镁光学材料制备方法
技术领域
本发明涉及一种光学材料制备方法,特别是涉及一种高纯氟化镁光学材料制备方法。
背景技术
紫外光学技术在激光约束核聚变、光刻机、紫外光学加工、医疗、三代半导体紫外封装等领域被广泛使用,然而高性能紫外高透光学材料的缺乏已然成为制约紫外激光、深紫外光源发展的技术瓶颈。这是因为当前的紫外材料主要是紫外级熔石英和氟化钙晶体,然而石英和紫外光作用易于产生色心等缺陷问题,高质量的氟化钙晶体生长困难、双折射的问题,都使得它们的性能已无法完全满足使用要求。并且我国目前使用的高性能、大尺寸熔石英和氟化钙主要还是欧美地区的进口,研制新型紫外透镜材料,突破国外技术封锁,形成我国独特的技术方案和技术优势迫在眉睫。氟化镁晶体,从真空紫外110 nm到红外7.5 μm表现出优异的透过率和较低的折射率,使得其光折射损失很低,是唯一既有宽光谱透射范围又有双折射性能的晶体,被用于制造光学元器件如窗口、镜面、透镜、偏光镜、楔形和衬底和航空(天)器(如导弹)的整流罩(帽),也是集成电路制造中光刻机的必备元件。由氟化镁制成的光纤制品比石英材料传输信号损失减小达到2个数量级,被认为是下一代的光纤材料。
作为一种高端功能型镁化工品,光学材料氟化镁的生产要求产品的高纯化和晶体化。就氟化镁晶体产品来说,当将其用于导弹整流帽的制造时,其纯度需要达到99.9%以上;当将其用于光刻机的激光镜头时,其纯度甚至需要达到99.99%以上,并且对其杂质种类有严格限定。目前国内氟化镁产品生产企业面临的一大问题是产品生产中系统溶液精制技术不足,导致产品纯度难以达到要求或者不能实现稳定生产。
发明内容
本发明的目的在于提供一种高纯氟化镁光学材料制备方法,本发明分别以氢氟酸、轻烧粉、铵盐为原料,通过氢氟酸固化氨气制得的氟化铵与蒸氨反应制得的镁盐溶液在聚四氟乙烯容器内进行沉镁反应,制备高纯氟化镁产品的方法,通过氢氟酸固化氨气以减少氨的排放,通过结晶过程可从沉镁滤液获取铵盐原料,实现铵盐的循环使用,达到降低成本、减少污染物排放的作用。
本发明的目的是通过以下技术方案实现的:
一种高纯氟化镁光学材料制备方法,所述方法包括以下制备过程:以轻烧粉为原料与铵盐溶液混合,进行蒸氨反应,制得镁盐溶液和氨气,再经过除杂得到镁盐精制液(MgO+ NH4 + → Mg2+ + NH3↑ + OH-);利用氢氟酸吸收上述氨气,制得氟化铵溶液(HF + NH3 =NH4F);将以上溶液加入到结晶反应器中,搅拌状态下引入镁盐精制液,将反应液加热进行复分解反应,控制反应条件,反应后,反应液经恒温陈化、过滤洗涤及干燥处理后得到光学材料高纯氟化镁晶体(Mg2+ + 2NH4F → MgF2↓ + 2NH4 +);通过结晶反应将滤液中的铵盐溶液回收用于第一步的反应,实现铵盐的循环。
所述的一种高纯氟化镁光学材料制备方法,所述轻烧粉作为镁源。
所述的一种高纯氟化镁光学材料制备方法,所述铵盐为硝酸铵、氯化铵、硫酸铵、有机铵盐(醋酸铵)中的一种或任意几种的组合组成。
所述的一种高纯氟化镁光学材料制备方法,所述固相轻烧粉与液相铵盐溶液蒸氨反应,制备精制镁盐溶液。
所述的一种高纯氟化镁光学材料制备方法,所述蒸氨反应的氨气通过氢氟酸的固化成为沉镁结晶反应的原料。
所述的一种高纯氟化镁光学材料制备方法,所述蒸氨反应温度为90~120 ℃,反应时间为2~5 h;镁盐精制液浓度为1~4 mol/L。
所述的一种高纯氟化镁光学材料制备方法,所述过滤出氟化镁产品后的滤液通过结晶反应实现铵盐的循环利用。
本发明的优点与效果是:
1.采用低成本的轻烧粉为镁源,反应后产物母液过滤、洗涤均容易,氟化镁产品纯度很高。
2.反应在较温和的温度(低于100 ℃)和压力(基本为常压)条件下完成,操作步骤简单,并能够很好的控制结晶过程。在反应过程中不使用强酸,且无副产品生成,从而降低生产成本及外界环境污染。
3.利用结晶过程可从产品滤液回收铵盐实现铵盐循环。进一步提高了该工艺的经济效益,减少污染物排放。
4.本发明开发的制备方法能够合成高质量、高纯度的氟化镁产品,操作步骤简单,所需设备及占地面积少,耗能少,设备投资及生产费用低,污染物排放量少,适宜于规模生产。
附图说明
图1为氟化镁晶体形状SEM照片(放大200倍);
图2为氟化镁晶体形状SEM照片(放大3000倍);
图3为产品XRD表征图。
具体实施方式
下面结合附图所示实施例对本发明进行详细说明。
本发明光学材料高纯氟化镁的一种制备方法,是以轻烧粉为原料,与一定浓度铵盐溶液混合,在一定条件进行蒸氨反应,制得一定浓度的镁盐溶液和氨气,再经过除杂得到镁盐精制液(MgO + NH4 + → Mg2+ + NH3↑ + OH-)。利用一定浓度的氢氟酸吸收上述氨气,制得氟化铵溶液(HF + NH3 = NH4F)。将以上溶液加入到结晶反应器中,搅拌状态下引入镁盐精制液,将反应液加热至一定温度进行复分解反应,控制反应条件,反应一定时间后,反应液经恒温陈化、过滤洗涤及干燥处理后得到光学材料高纯氟化镁晶体(Mg2+ + 2NH4F →MgF2↓ + 2NH4 +)。通过结晶反应将滤液中的铵盐溶液回收用于第一步的反应,实现铵盐的循环。
本发明方法将价格低廉的轻烧粉作为镁源,从而降低光学材料高纯氟化镁产品的生产成本。
本发明铵盐为硝酸铵、氯化铵、硫酸铵、有机铵盐(醋酸铵等)中的一种或任意几种的组合组成。本发明固相轻烧粉与液相铵盐溶液的蒸氨反应,制备精制镁盐溶液,减少了不溶性杂质的引入,从而提高氟化镁产品的纯度。蒸氨反应的氨气通过氢氟酸的固化成为沉镁结晶反应的原料,从而减少氨气的排放。氟化铵与精制镁盐溶液结晶反应的滤液中,含有大量强酸弱碱的铵盐,可以减少氟化镁产品中碱性金属离子的聚集,提高产品的纯度。蒸氨反应温度为90~120 ℃,反应时间为2~5 h;镁盐精制液浓度为1~4 mol/L。制备的氟化镁晶体的纯度含量大于99.9%,色度达到无色透明的大结晶晶体,熔点1260℃,无崩点。过滤出氟化镁产品后的滤液可通过结晶反应实现铵盐的循环利用。
实施例1
以轻烧粉、硝酸铵为原料制备氨气和物质的量浓度约为1.0 mol/L的硝酸镁溶液,将生成的氨气通入氢氟酸进行固化制得一定浓度的氟化铵溶液,将蒸氨得到的硝酸镁溶液加入至50 mL乙二醇溶剂中,在60 ℃搅拌下回流处理8 h,再将制得的氟化铵溶液在搅拌下滴加到上述溶液中,滴加时间为35 min,滴加完毕后再搅拌7 h,得到液体溶胶;然后在140℃下静止老化12 h以上,得到固体凝胶;恒温陈化1~4 h后进行过滤、洗涤及干燥;再在160~180 ℃下干燥12 h以上,最后在马弗炉400~500 ℃下焙烧4 h以上,制得高纯氟化镁。滤液中铵盐可用于蒸氨反应,实现铵盐的循环使用。
实施例2
以轻烧粉、氯化铵为原料制备氨气和物质的量浓度约为1.2 mol/L的氯化镁溶液,将氯化镁和聚乙二醇溶于80 mL乙二醇中,在40 ℃搅拌下回流处理8 h,再将氟化铵水溶液(70 wt%)在搅拌下滴加到上述溶液中,滴加时间为35 min,滴加完毕后再搅拌7 h,得到液体溶胶;然后在110 ℃下静止老化12 h以上,得到固体凝胶;恒温陈化1~4 h后进行过滤、洗涤及干燥;再在140 ℃下干燥12 h以上,最后在马弗炉400~500 ℃下焙烧4 h以上,制得高纯氟化镁。

Claims (2)

1.一种高纯氟化镁光学材料制备方法,其特征在于,所述方法以轻烧粉、硝酸铵为原料进行蒸氨反应制备氨气和物质的量浓度为1.0 mol/L的硝酸镁溶液,将生成的氨气通入氢氟酸进行固化制得氟化铵溶液,将蒸氨得到的硝酸镁溶液加入至50 mL乙二醇溶剂中,在60℃搅拌下回流处理8 h,再将制得的氟化铵溶液在搅拌下滴加到上述溶液中,滴加时间为35min,滴加完毕后再搅拌7 h,得到液体溶胶;然后在140 ℃下静止老化12 h以上,得到固体凝胶;恒温陈化1~4 h后进行过滤、洗涤及干燥;再在160~180 ℃下干燥12 h以上,最后在马弗炉400~500 ℃下焙烧4 h以上,制得高纯氟化镁;滤液中铵盐可用于蒸氨反应,实现铵盐的循环使用。
2.一种高纯氟化镁光学材料制备方法,其特征在于,所述方法以轻烧粉、氯化铵为原料制备氨气和物质的量浓度为1.2 mol/L的氯化镁溶液,将氯化镁和聚乙二醇溶于80 mL乙二醇中,在40 ℃搅拌下回流处理8 h,再将70 wt%的氟化铵水溶液在搅拌下滴加到上述溶液中,滴加时间为35 min,滴加完毕后再搅拌7 h,得到液体溶胶;然后在110 ℃下静止老化12h以上,得到固体凝胶;恒温陈化1~4 h后进行过滤、洗涤及干燥;再在140 ℃下干燥12 h以上,最后在马弗炉400~500 ℃下焙烧4 h以上,制得高纯氟化镁。
CN202011308681.XA 2020-11-20 2020-11-20 一种高纯氟化镁光学材料制备方法 Active CN112441603B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011308681.XA CN112441603B (zh) 2020-11-20 2020-11-20 一种高纯氟化镁光学材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011308681.XA CN112441603B (zh) 2020-11-20 2020-11-20 一种高纯氟化镁光学材料制备方法

Publications (2)

Publication Number Publication Date
CN112441603A CN112441603A (zh) 2021-03-05
CN112441603B true CN112441603B (zh) 2022-11-11

Family

ID=74737162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011308681.XA Active CN112441603B (zh) 2020-11-20 2020-11-20 一种高纯氟化镁光学材料制备方法

Country Status (1)

Country Link
CN (1) CN112441603B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0396440A1 (fr) * 1989-04-14 1990-11-07 Rhone-Poulenc Chimie Procédé de préparation de magnésite, application à la préparation de fluorure de magnésium et fluorure de magnésium ainsi obtenu
CN101376514A (zh) * 2007-08-30 2009-03-04 多氟多化工股份有限公司 一种氟化镁的生产方法
CN102745724A (zh) * 2012-06-26 2012-10-24 沈阳化工大学 一种以轻烧粉为原料生产高纯氧化镁的方法
CN104071815A (zh) * 2014-07-02 2014-10-01 湖南有色氟化学科技发展有限公司 一种在饱和氯化铵体系中制备高纯氟化镁的方法
CN106348322A (zh) * 2016-10-11 2017-01-25 张旭 菱镁矿制备高纯氟化镁的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101376513B (zh) * 2007-08-30 2011-02-16 多氟多化工股份有限公司 一种氟化镁的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0396440A1 (fr) * 1989-04-14 1990-11-07 Rhone-Poulenc Chimie Procédé de préparation de magnésite, application à la préparation de fluorure de magnésium et fluorure de magnésium ainsi obtenu
CN101376514A (zh) * 2007-08-30 2009-03-04 多氟多化工股份有限公司 一种氟化镁的生产方法
CN102745724A (zh) * 2012-06-26 2012-10-24 沈阳化工大学 一种以轻烧粉为原料生产高纯氧化镁的方法
CN104071815A (zh) * 2014-07-02 2014-10-01 湖南有色氟化学科技发展有限公司 一种在饱和氯化铵体系中制备高纯氟化镁的方法
CN106348322A (zh) * 2016-10-11 2017-01-25 张旭 菱镁矿制备高纯氟化镁的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
氟化镁制备技术现状及发展趋势;帅领等;《材料导报》;20111125;第25卷(第专辑18期);322-325 *

Also Published As

Publication number Publication date
CN112441603A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
CN108751242A (zh) 一种低钠氧化铝分解工艺及低钠氧化铝
CN115893449A (zh) 一种工业级钠碱混合液生产电子级氟化钠的方法
CN104261439B (zh) 制备光学玻璃用硝酸钾的方法
CN112441603B (zh) 一种高纯氟化镁光学材料制备方法
JP2542797B2 (ja) 高純度シリカの製造方法
CN105858676A (zh) 一种硅酸钠联产氟化钠的生产方法
CN113307275A (zh) 一种高纯结晶二氧化硅颗粒的制备方法
CN103088421B (zh) 化学合成高纯六角单晶氟化钙的方法
CN108455647A (zh) 一种磷酸副产磷石膏与氟硅酸生产氟化钙副产白炭黑与硫酸铵的方法
JPS62502683A (ja) 化学的精製方法
CN1234596C (zh) 以氟硅酸钠为原料制取氟化合物和二氧化硅的生产方法
KR20230066307A (ko) 리튬 화합물의 제조방법
RU2424188C1 (ru) Способ получения высокочистого фторида кальция
CN110950358A (zh) 一种利用氟硅酸钾生产氟化钾时通过外加硅凝胶晶种联产白炭黑的工艺
CN113307296A (zh) 一种低氧含量氟化钡的制备方法
JPH04193711A (ja) 高純度リチウム化合物の精製方法
CN107974099B (zh) 还原直接黑db硝基紫蒽酮的清洁生产方法
RU2396212C2 (ru) Способ получения тетрафторида урана
CN114291805A (zh) 一种六氟磷酸钾的制备方法
JPH0455309A (ja) 粒状メタケイ酸ナトリウム含水結晶の製造方法
US681993A (en) Process of producing titanium compounds.
JPS59111909A (ja) 無ホウ素二酸化ケイ素の製造方法
CN110745855A (zh) 一种高纯氢氧化铈的制备方法
CN115012037B (zh) 一种高纯度氟化镁晶体材料的制备方法
CN117466251B (zh) 一种利用稀土氧化钇制备高氯酸钇的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant