CN112400157A - 观看系统的基于单应性变换矩阵的温度校准 - Google Patents
观看系统的基于单应性变换矩阵的温度校准 Download PDFInfo
- Publication number
- CN112400157A CN112400157A CN201980046303.8A CN201980046303A CN112400157A CN 112400157 A CN112400157 A CN 112400157A CN 201980046303 A CN201980046303 A CN 201980046303A CN 112400157 A CN112400157 A CN 112400157A
- Authority
- CN
- China
- Prior art keywords
- temperature
- color
- viewing system
- increasing temperature
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011159 matrix material Substances 0.000 title claims abstract description 77
- 230000009466 transformation Effects 0.000 title claims abstract description 65
- 238000009877 rendering Methods 0.000 claims abstract description 40
- 230000008859 change Effects 0.000 claims abstract description 31
- 238000003860 storage Methods 0.000 claims abstract description 9
- 210000003128 head Anatomy 0.000 claims description 43
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 claims description 28
- 210000001747 pupil Anatomy 0.000 claims description 11
- 230000007423 decrease Effects 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 9
- 210000001525 retina Anatomy 0.000 description 11
- 230000033001 locomotion Effects 0.000 description 10
- 230000015654 memory Effects 0.000 description 9
- 230000004438 eyesight Effects 0.000 description 6
- 238000012795 verification Methods 0.000 description 6
- 230000003190 augmentative effect Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000008447 perception Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000016776 visual perception Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
- G09G5/36—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
- G09G5/37—Details of the operation on graphic patterns
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/34—Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/14—Digital output to display device ; Cooperation and interconnection of the display device with other functional units
- G06F3/147—Digital output to display device ; Cooperation and interconnection of the display device with other functional units using display panels
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/001—Texturing; Colouring; Generation of texture or colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/60—Rotation of whole images or parts thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/001—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
- G09G3/002—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to project the image of a two-dimensional display, such as an array of light emitting or modulating elements or a CRT
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
- G09G5/003—Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
- G09G5/006—Details of the interface to the display terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/106—Processing image signals
- H04N13/122—Improving the 3D impression of stereoscopic images by modifying image signal contents, e.g. by filtering or adding monoscopic depth cues
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/275—Image signal generators from 3D object models, e.g. computer-generated stereoscopic image signals
- H04N13/279—Image signal generators from 3D object models, e.g. computer-generated stereoscopic image signals the virtual viewpoint locations being selected by the viewers or determined by tracking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/332—Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
- H04N13/344—Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/398—Synchronisation thereof; Control thereof
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0112—Head-up displays characterised by optical features comprising device for genereting colour display
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0132—Head-up displays characterised by optical features comprising binocular systems
- G02B2027/0134—Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0138—Head-up displays characterised by optical features comprising image capture systems, e.g. camera
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/014—Head-up displays characterised by optical features comprising information/image processing systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/04—Maintaining the quality of display appearance
- G09G2320/041—Temperature compensation
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0666—Adjustment of display parameters for control of colour parameters, e.g. colour temperature
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0693—Calibration of display systems
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Human Computer Interaction (AREA)
- General Engineering & Computer Science (AREA)
- Processing Or Creating Images (AREA)
- Controls And Circuits For Display Device (AREA)
Abstract
校准集被存储在存储装置上,该校准集包括多个温度和多个单应性变换矩阵,每个相应的单应性变换矩阵用于相应的温度。检测温度。针对与所述温度相匹配的温度,选择单应性变换矩阵中的相应的单应性变换矩阵。基于所选择的单应性关系来计算几何变化。接收表示本地内容的数据。基于几何变化生成本地内容的渲染并将其显示给用户。
Description
相关申请的交叉引用
本申请要求于2018年6月5日提交的美国临时专利申请No.62/681,063的优先权,其全部内容通过引用以其整体并入本文。
技术领域
本公开总体上涉及观看系统,并且更具体地涉及用于温度校准的单应性矩阵的使用。
背景技术
现代计算和显示技术已经促进了诸如“虚拟现实”观看装置的视觉感知装置的发展。虚拟现实观看装置可以是向用户呈现两个图像的可穿戴装置,一个图像用于左眼,并且一个图像用于右眼。图像中的对象可以以允许大脑将这些对象处理为三维对象的方式而彼此不同。当图像不断变化时,可以模拟三维运动。虚拟现实观看装置通常涉及数字或虚拟图像信息的呈现,而对其他真实世界对象没有透明度。
其他视觉感知装置,所谓的“增强现实”观看装置通常包括允许将数字和虚拟图像信息呈现为对用户周围的实际世界的可视化的增强的技术。增强现实观看装置可以例如具有一个或多个透明目镜,该一个或多个透明目镜允许用户看到目镜后面的真实世界对象。这样的目镜可以用作波导,光通过该波导从投射器朝向用户的眼睛传播。由投射器产生的光图案在眼睛的视网膜上可见。然后,眼睛的视网膜接收来自目镜后面的真实世界对象的光和来自投射器的光。因此,在用户的感知中,真实世界对象通过来自投射器的图像数据被增强。
热倾向于在这种观看系统的某些区域中聚集,使得观看系统具有不均匀的温度分布。另外,各种材料随温度以不同的速率膨胀/收缩。诸如此类的观看系统通常在稳态操作温度(例如40℃)下被校准。然而,从室温的“冷态”达到校准温度所需的时间可能要花费数十分钟,这留下了一个重要的时间段,在该时间段期间,用户可以在其校准分布(profile)之外使用观看系统。启动时颜色分离通常最小。颜色分离带通常随着观看系统的加热而增加,然后在观看系统达到其校准温度时返回较小的带。
发明内容
本公开提供了一种观看系统,其包括:存储装置;存储在存储装置上的校准集,该校准集包括一个或多个温度和一个或多个单应性变换矩阵,每个相应的单应性变换矩阵用于相应的温度;温度传感器;矩阵选择器,其选择单应性变换矩阵中的用于与由温度传感器检测到的温度相匹配的温度的相应的单应性变换矩阵;几何变化计算器,其基于所选择的单应性关系来计算几何变化;数据源,其接收表示本地内容的数据;渲染引擎,其连接到数据源以接收数据并连接到几何变化计算器以接收几何变化并基于几何变化来渲染本地内容;以及显示系统,其连接到渲染引擎并适于将从渲染引擎接收到的渲染显示给用户。
本公开还提供了一种观看方法,其包括:将校准集存储在存储装置上,该校准集包括一个或多个温度和多个单应性变换矩阵,每个相应的单应性变换矩阵用于相应的温度;检测温度;选择单应性变换矩阵中的用于与该温度相匹配的温度的相应的单应性变换矩阵;基于所选择的单应性关系来计算几何变化;接收表示本地内容的数据;基于几何变化来生成本地内容的渲染;以及将该渲染显示给用户。
附图说明
参考附图通过示例的方式进一步描述本公开,其中:
图1是根据一些实施例的与观看系统交互的观看者的透视图;
图2是根据一些实施例的观看系统的部分俯视图和部分框图;
图3是根据一些实施例的观看系统的一个显示器和用户的一只眼睛的透视图;
图4是根据一些实施例的二乘三仿射变换矩阵和三分量旋转向量,示出了针对观看系统的左显示器的仿射变换矩阵和向量随温度升高的变化以及颜色通道;
图5是根据一些实施例的二乘三仿射变换矩阵和三分量旋转向量,示出了针对观看系统的右显示器的仿射变换矩阵和向量随温度升高的变化以及颜色通道;
图6示出了根据一些实施例的示出显示双目验证误差减小的图;
图7包括根据一些实施例的示出单眼验证误差减小的图;
图8包括根据一些实施例的左显示器的仿射变换矩阵和旋转矩阵,其示出了六个观看系统中的温度系数;
图9包括根据一些实施例的右显示器的仿射变换矩阵和旋转矩阵,其示出了六个观看系统中的温度系数;以及
图10是根据一些实施例的可以在公开的系统中找到应用的计算机形式的机器的框图。
具体实施方式
附图中的图1示出了用户10、观看系统12、桌子形式的真实世界对象14和马克杯形式的虚拟对象16,尽管被示出,但是该马克杯从图的角度不可见,但对用户10可见。
观看系统12包括头部单元18、腰带包20、网络22和服务器24。
头部单元18包括头部单元主体26和显示系统28。头部单元主体26具有适合用户10的头部的形状。显示系统28固定在头部单元主体26上。
腰带包20具有处理器和连接到该处理器的存储装置。视觉算法和温度反馈系统存储在存储装置上,并且可由处理器执行。腰带包20例如通过电缆连接30通信地连接到显示系统28。腰带包20还包括网络接口装置,该网络接口装置允许腰带包20通过链路32与网络22无线连接。服务器24连接到网络22。
在使用中,用户10将头部单元主体26固定到他们的头部。显示系统28包括透明的光波导(未示出),使得用户10可以通过波导看到真实世界的对象14。
腰带包20可以通过网络22和链路32从服务器24下载图像数据。腰带包20例如通过电缆连接30将图像数据提供给显示系统28。显示系统28具有基于图像数据产生光的一个或多个投射器。光通过一个或多个光波导传播到用户10的眼睛。每个波导在相应眼睛的视网膜上以特定焦距产生光,以使得眼睛看到在显示系统28后面一定距离处的虚拟对象16。因此,眼睛在三维空间中看到虚拟对象16。另外,为每只眼睛产生略有不同的图像,以使得用户10的大脑在三维空间中感知虚拟对象16。因此,用户10在三维空间中看到被虚拟对象16增强的真实世界对象14。
图2更详细地示出了显示系统28和视觉算法38。视觉算法38主要位于图1中的腰带包20内。在其他实施例中,视觉算法38可以完全位于头部单元内或者可以在头部单元和腰带包之间拆分。
图2进一步包括数据源40。在本示例中,数据源40包括存储在腰带包20的存储装置上的图像数据。图像数据可以是例如三维图像数据,该三维图像数据可以用于渲染虚拟对象16。在一些实施例中,图像数据可以是允许创建视频的时间序列图像数据,该视频在二维或三维上移动并且可以位于真实世界对象上或者当用户移动其头部时位于用户前面的固定位置。
视觉算法38包括渲染引擎42、立体分析器44、显示调整算法46和同时定位和映射(SLAM)系统47。
渲染引擎42连接到数据源40和显示调整算法46。渲染引擎42能够接收来自各种系统,在本示例中为显示调整算法46,的输入并基于显示调整算法46将图像数据定位在要被用户10观看的帧中。显示调整算法46连接到SLAM系统47。SLAM系统47能够接收图像数据、出于确定图像数据的图像内的对象的目的来分析图像数据、并记录图像数据内的对象的位置。
立体分析器44连接到渲染引擎42。立体分析器44能够从渲染引擎42提供的数据流中确定左和右图像数据集。
显示系统28包括左投射器48A和右投射器48B、左波导50A和右波导50B以及检测装置52。左投射器48A和右投射器48B连接到电源。每个投射器48A或48B具有用于要被提供给相应的投射器48A或48B的图像数据的相应的输入。相应的投射器48A或48B在通电时生成二维图案的光并从中发出光。左波导50A和右波导50B被定位成分别接收来自左投射器48A和右投射器48B的光。左波导50A和右波导50B是透明波导。
检测装置52包括头部单元惯性运动单元(IMU)60和一个或多个头部单元相机62。头部单元IMU 60包括一个或多个陀螺仪和一个或多个加速度计。陀螺仪和加速度计通常形成在半导体芯片中,并且能够检测头部单元IMU 60和头部单元主体26的运动,包括沿三个正交轴的运动以及绕三个正交轴的旋转。
头部单元相机62连续地从头部单元主体26周围的环境捕获图像。可以将图像彼此比较以检测头部单元主体26和用户10的头部的运动。
SLAM系统47连接到头部单元相机62。显示调整算法46连接到头部单元IMU 60。本领域普通技术人员将理解,检测装置52与视觉算法38之间的连接通过硬件、固件和软件的组合来实现。视觉算法38的组件通过子例程或调用而彼此链接。
在使用中,用户10将头部单元主体26安装到他们的头部上。头部单元主体26的组件可以例如包括缠绕在用户10的头部的后部的带子(未示出)。然后,左波导50A和右波导50B位于用户10的左眼120A和右眼120B的前面。
渲染引擎42从数据源40接收图像数据。渲染引擎42将图像数据输入到立体分析器44中。该图像数据是图1中的虚拟对象16的三维图像数据。立体分析器44分析图像数据,以基于图像数据确定左图像数据集和右图像数据集。左图像数据集和右图像数据集是表示二维图像的数据集,这些二维图像彼此略有不同,以使用户10感知三维渲染。在本实施例中,图像数据是不随时间变化的静态数据集。
立体分析器44将左图像数据集和右图像数据集输入到左投射器48A和右投射器48B。左投射器48A和右投射器48B然后产生左光图案和右光图案。显示系统28的组件以平面图示出,但是应当理解,当以正视图示出时,左图案和右图案是二维图案。每个光图案包括多个像素。为了说明的目的,示出了来自两个像素的光线124A和126A,光线124A和126A离开左投射器48A并进入左波导50A。光线124A和126A从左波导50A的侧面反射。示出了光线124A和126A通过内部反射在左波导50A内从左向右传播,但是应当理解,光线124A和126A也使用折射和反射系统以向纸面中的方向传播。
光线124A和126A通过光瞳128A离开左光波导50A,并且然后通过左眼120A的瞳孔130A进入左眼120A。然后,光线124A和126A落在左眼120A的视网膜132A上。以这种方式,左光图案落在左眼120A的视网膜132A上。给用户10的感知是,在视网膜132A上形成的像素是用户10感知到处于左波导50A的与左眼120A相对的一侧上的一定距离处的像素134A和136A。通过操纵光的焦距产生深度感知。
以类似的方式,立体分析器44将右图像数据集输入到右投射器48B中。右投射器48B透射右光图案,该右光图案由光线124B和126B的形式的像素表示。光线124B和126B在右波导50B内反射并通过光瞳128B出射。光线124B和126B然后通过右眼120B的瞳孔130B进入并且落在右眼120B的视网膜132B上。光线124B和126B的像素被感知为右波导50B后面的像素134B和136B。
在视网膜132A和132B上产生的图案被分别感知为左图像和右图像。由于立体分析器44的功能,左图像和右图像彼此略有不同。左图像和右图像在用户10的脑海中被感知为三维渲染。
如所提及的,左波导50A和右波导50B是透明的。来自左波导50A和右波导50B的与眼睛120A和120B相对的一侧的真实声明对象的光可以通过左波导50A和右波导50B投射并落在视网膜132A和132B上。特别地,来自图1中的真实世界对象14的光落在视网膜132A和132B上,以使得用户10可以看到真实世界对象14。产生了增强现实,其中,通过虚拟对象16的三维渲染增强了真实世界对象14,由于左图像和右图像组合地被用户10感知,该虚拟对象16的三维渲染被用户10感知。
头部单元IMU 60检测用户10的头部的每个运动。例如,如果用户10逆时针移动他们的头部并且同时将他们的身体与他们的头部一起向右移动,则该移动将被头部单元IMU60中的陀螺仪和加速度计检测到。头部单元IMU 60将来自陀螺仪和加速度计的测量提供给显示调整算法46。显示调整算法46计算放置值并将该放置值提供给渲染引擎42。渲染引擎42修改从数据源40接收到的图像数据,以补偿用户10的头部的运动。渲染引擎42将修改后的图像数据提供给立体分析器44,以显示给用户10。
头部单元相机62在用户10移动他们的头部时连续捕获图像。SLAM系统47分析图像并识别图像内的对象的图像。SLAM系统47分析对象的运动以确定头部单元主体26的姿势位置。SLAM系统47将姿势位置提供给显示调整算法46。显示调整算法46使用姿势位置来进一步细化显示调整算法46提供给渲染引擎42的放置值。渲染引擎42因此基于头部单元IMU 60中的运动传感器和头部单元相机62拍摄的图像的组合来修改从数据源40接收的图像数据。通过实际示例的方式,如果用户10将其头部向右旋转,则虚拟对象16的位置在用户10的视图内向左旋转,从而给用户10虚拟对象16相对于真实世界对象14保持静止的印象。
图3更详细地示出了光线中的一者,在特定情况下,为光线124A,所遵循的路径。光线124A通过耦入光栅140进入左波导50A。光线124A遇到许多衍射光学元件,特别是位于左波导50A之上或之内的并与左投射器48A一起形成左显示系统146的一部分的耦入光栅140、正交光瞳扩展器142和出射光瞳扩展器144。当光线124A传播通过左波导50A时,衍射光学元件以不同方式重引导光,最终导致图像光通过出射光瞳扩展器144的多个光瞳朝向左眼120A离开左波导50A。左眼120A然后可以聚焦在来自光瞳中的一者的图像光上,使得图像光落在图2中的视网膜132A上,以便感知图1中的虚拟对象16。
再次参考图2,观看系统12还包括温度传感器148和温度反馈系统150。
温度传感器148以固定位置安装在头部单元主体26上。温度传感器148位于足够靠近左波导50A或右波导50B中的一者,以检测左波导50A和右波导50B的温度。在一些实施例中,温度传感器148可以位于左波导50A与右波导50B之间。在一些实施例中,可以存在多个温度传感器,例如,足够靠近左波导50A的第一温度传感器和足够靠近右波导50B的第二温度传感器。
温度反馈系统150包括单应性变换矩阵151,其包括仿射(affinity)变换矩阵(A)152、旋转矩阵(R)154、矩阵选择器156和几何变化计算器158。单应性变换矩阵151可以被计算为仿射变换矩阵152与旋转矩阵154的乘积,其中旋转矩阵154由旋转向量定义。在一些实施例中,旋转向量可以是罗德里格斯向量。在一些实施例中,矩阵选择器156是通过硬件和软件连接而连接到温度传感器148的软件例程。温度传感器148将信号提供给矩阵选择器156。由温度传感器148提供给矩阵选择器156的信号包括表示由温度传感器148感测到的温度的数据。
单应性变换矩阵151包括用于一个或多个颜色通道中的每个颜色通道的相应的单应性变换矩阵。另外,对于每个颜色通道,单应性变换矩阵151随温度而变化。每个单应性变换矩阵对应于相应的温度。仿射变换矩阵152包括用于一个或多个颜色通道中的每个颜色通道的相应的仿射变换矩阵。另外,对于每个颜色通道,仿射变换矩阵152随温度而变化。每个仿射变换矩阵对应于相应的温度。在一些实施例中,每个变换矩阵(例如,单应性变换矩阵和/或仿射变换矩阵)对应于相应的温度范围。例如,每个变换矩阵可以对应于特定(绝对)温度的百分比(例如,5%)内的温度范围。本领域普通技术人员将理解,可以例如以诸如摄氏度之类的温度单位的其他方式来限定温度范围。旋转矩阵154也根据温度而变化。每个旋转矩阵对应于相应的温度。在一些实施例中,每个旋转矩阵对应于相应的温度范围,例如,如以上关于变换矩阵所描述的。
几何变化计算器158连接到矩阵选择器156。几何变化计算器158将输出提供给渲染引擎42。
在使用中,温度传感器148连续测量观看系统12的温度。矩阵选择器156从温度传感器148接收温度。在一些实施例中,矩阵选择器156从单应性变换矩阵151中取得针对该温度的所有颜色通道的单应性变换矩阵。在一些实施例中,矩阵选择器156从仿射变换矩阵152中取得针对该温度的所有颜色通道的仿射变换矩阵,并从旋转矩阵154中取得与该温度对应的旋转矩阵。在一些实施例中,来自旋转矩阵154的旋转矩阵可以表示为旋转向量。
在一些实施例中,矩阵选择器156将所选择的针对该温度的单应性变换矩阵提供给几何变化计算器158。在一些实施例中,矩阵选择器156将所选择的针对该温度的仿射变换矩阵和所选择的针对该温度的旋转矩阵提供给几何变化计算器158。在一些实施例中,几何变化计算器158然后基于所选择的单应性变换矩阵来计算单应性变换。在一些实施例中,几何变化计算器158然后基于所选择的仿射变换矩阵和旋转矩阵来计算偏移和旋转。在一些实施例中,单应性变换建立左波导50A和右波导50B中的每个颜色通道的位置。在一些实施例中,偏移和旋转的组合建立左波导50A和右波导50B中的每个颜色通道的位置。在一些实施例中,渲染引擎42从几何变化计算器158接收单应性变换。在一些实施例中,渲染引擎42从几何变化计算器158接收偏移和变换。应当注意,没有进行校正来补偿任何偏移或旋转。替代地,渲染引擎42基于在各种颜色通道的位置上由渲染引擎42产生的渲染。例如,如果发生0.05弧分(arcmin)的偏移,则渲染引擎42首先确定必须在偏移的位置处显示什么,然后渲染虚拟对象16,以便正确地在偏移的位置处显示。
应该注意的是,没有查找表用于存储用于显示器的每个像素的校正数据。替代地,使用小得多的文件组件。在一些实施例中,小得多的文件组件是一个或多个单应性变换矩阵的形式。在一些实施例中,小得多的文件组件是一个或多个仿射变换矩阵和一个或多个旋转矩阵的形式。与使用作为处理器密集型技术的查找表相比,这种变换矩阵和旋转矩阵的处理是最少的。另外,仿射变换矩阵和旋转矩阵可以被线性化并且由存储在存储器中并且由观看系统的处理器使用的简单公式来表示。
图4和图5分别示出了左显示器和右显示器的九个显示参数与温度的关系。实线是通过第一数据点的线性拟合集合。仿射变换用于描述随温度的变化。是温度T0下的归一化光线方向,其中i=1...行*列。是温度T下的归一化光线方向。我们找到了对所有的i都尽可能近地满足的2D仿射变换A=[[A00,A01,A02],[A10,A11,A12]]。
可以预先计算图4和5中的参数的斜率。在线校正可以基于工厂校准数据。例如,表1中,带下划线的值是在45.1666摄氏度下像素(0,0)的查找表值。
表1
校准 | ||
左LED温度 | 45.16666667 | |
侧面 | 左 | |
左上元件 | LUT_x(0,0) | LUT_y(0,0) |
屈光度:0.65 | ||
通道:0 | <u>-0.3699285066</u> | <u>-0.2791998071</u> |
然后在测量的温度下,根据dA=dT*A_slope计算仿射变换矩阵A的增量(delta)。在表2中,带下划线的值是在26摄氏度下计算的。
表2
左LED温度 | 26 | |
dT | -19.1666667 | |
dA= | dT*A_slope | |
<u>0.005715459746</u> | <u>-0.000679414</u> | <u>0.001154466</u> |
<u>-0.000523419</u> | <u>0.005196848183</u> | <u>0.001293361</u> |
为了获得归一化的向量,将1与(0,0)和(1,1)元素相加以获得表3中的仿射变换矩阵A。
表3
A | ||
1.00571546 | -0.000679414 | 0.001154466 |
-0.000523419 | 1.005196848 | 0.001293361 |
接下来,将仿射变换矩阵应用于步骤表1中的值,以获得像素(0,0)的新查找表值,如表4所示的。Ramakrishnan Mukundan的计算机图形学中的高级方法:在OpenGL中的示例(Advanced Methods in Computer Graphics:With examples in OpenGL)描述了用于根据仿射变换矩阵确定校正值的公式。
表4
New_LUT_x(0,0) | New_LUT_y(0,0) |
-0.37069866 | -0.27916378 |
显示旋转(外部)的变化可以表示为wrigRdisp,可以将其参数化为三分量旋转向量(Rx,Ry,Rz)。
可以观察到以下趋势:
·A02和A12随温度线性变化,并且斜率是取决于通道的。这表明颜色被分离,并且跨深度平面(cross-depth-plane)的对准会随着温度的升高而降低。颜色/深度分离为每摄氏度0.5弧分。
·对于左显示器和右显示器,Rx随温度线性增大。这表明温度升高每摄氏度,虚拟内容就会增加0.4弧分。
·Ry在左显示器中增大而在右显示器中减小,这表明虚拟内容随着温度以每摄氏度0.002屈光度的速率升高而看起来更接近。
本领域普通技术人员将容易认识到,代替仿射矩阵和旋转矩阵,可以使用单个单应性矩阵A=[[A00,A01,A02],[A10,A11,A12],[A20,A21,A22]]。
为了示出可以通过基于温度差来线性地调整这九个参数而校正验证误差,可以在三种情况下执行显示验证测量:
·coldcal_hotverify:观看系统处于~50摄氏度,但使用在~40摄氏度获得的校准以进行验证。
·correctedcal_hotverify:观看系统处于~50摄氏度,但是使用在~40摄氏度获得的校准,并使用上述图4和5中以线性方式的九个参数来校正校准文件。
·hotcal_hotverify:观看系统被校准并在~50摄氏度下被验证。
显然,校正后的校准文件能够校正大多数验证误差。图6示出了显示双目验证(原位)误差减小。图7示出了单眼验证误差减小。
图8和9示出了六个观看系统中的左显示温度系数和右显示温度系数。数据显示,需要在多个温度下对每个观看系统进行校准。
图10示出了根据一些实施例的以计算机系统900的示例性形式的机器的示意图,在该计算机系统内,可以执行一组指令以使该机器执行本文所讨论的方法中的任何一个或多个。在替代实施例中,该机器作为独立的观看系统操作,或者可以连接(例如联网)到其他机器。此外,虽然仅示出了单个机器,但是术语“机器”也应被理解为包括机器的任何集合,这些机器单独地或共同地执行一组(或多组)指令以执行本文讨论的方法中的任何一个或多个。
示例性计算机系统900包括通过总线908彼此通信的处理器902(例如,中央处理单元(CPU)、图形处理单元(GPU)或两者);主存储器904(例如,只读存储器(ROM)、闪存、诸如同步DRAM(SDRAM)或Rambus DRAM(RDRAM)的动态随机存取存储器(DRAM)等);以及静态存储器906(例如,闪存、静态随机存取存储器(SRAM)等)。
计算机系统900还可以包括磁盘驱动单元916和网络接口装置920。
磁盘驱动单元916包括机器可读介质922,其上存储着体现本文所述的方法或功能中的任何一个或多个的一组或多组指令924(例如,软件)。在由计算机系统900执行期间,软件还可以全部或至少部分地驻留在主存储器904内和/或处理器902内,主存储器904和处理器902也构成机器可读介质。
软件还可以经由网络接口装置920在网络928上发送或接收。
计算机系统900包括激光驱动器芯片950,其用于驱动投射器以生成激光。激光驱动器芯片950包括其自身的数据存储器960和其自身的处理器962。
尽管在示例性实施例中将机器可读介质922示出为单个介质,但是术语“机器可读介质”应被认为包括存储一组或多组指令的单个介质或多个介质(例如,集中式或分布式数据库和/或相关联的缓存和服务器)。术语“机器可读介质”也应被认为包括能够存储、编码或携带一组指令以供机器执行并且使机器执行本公开的方法中的任意一个或多个的任何介质。因此,术语“机器可读介质”应被认为包括但不限于固态存储器、光学和磁性介质以及载波信号。
尽管已经描述并在附图中示出了某些示例性实施例,但是应当理解,这些实施例仅是说明性的,并且不限制本公开,并且本公开不限于所示出和所描述的特定构造和布置,因为本领域的普通技术人员可以进行修改。
Claims (21)
1.一种观看系统,包括:
存储装置;
被存储在所述存储装置上的校准集,其包括多个温度和多个单应性变换矩阵,每个相应的单应性变换矩阵用于相应的温度范围;
温度传感器;
矩阵选择器,其选择所述单应性变换矩阵中与由所述温度传感器检测到的温度相对应的相应的单应性变换矩阵;
几何变化计算器,其基于所选择的单应性变换矩阵来计算几何变化;
数据源,其接收表示本地内容的数据;
渲染引擎,其被连接到所述数据源以接收所述数据,并且被连接到所述几何变化计算器以接收所述几何变化,并基于所述几何变化来渲染所述本地内容;以及
显示系统,其被连接到所述渲染引擎,并适于显示从所述渲染引擎接收的渲染。
2.根据权利要求1所述的观看系统,其中,所述校准集的每个温度具有多个颜色单应性变换矩阵,所述数据包括多个颜色通道,所述矩阵选择器选择与由所述温度传感器检测到的所述温度相匹配的多个颜色单应性变换矩阵,并且所述渲染引擎渲染多个颜色渲染,每个颜色渲染是基于所选择的颜色单应性变换矩阵中相应的颜色单应性变换矩阵和所述颜色通道中相应的颜色通道的本地内容。
3.根据权利要求2所述的观看系统,其中,每个单应性变换矩阵是仿射变换矩阵,并且每个仿射变换矩阵(A)是二维(2D)变换矩阵([[A00,A01,A02],[A10,A11,A12]])。
4.根据权利要求3所述的观看系统,其中,针对A00,所述颜色通道之间的颜色分离随着温度的升高而增加。
5.根据权利要求3所述的观看系统,其中,针对所有颜色通道,A00随着温度的升高而减小。
6.根据权利要求3所述的观看系统,其中,针对A01,所述颜色通道之间的颜色分离随着温度的升高而增加。
7.根据权利要求3所述的观看系统,其中,针对至少一个颜色通道,A01随着温度的升高而减小,并且针对一个颜色通道,A01随着温度的升高而增大。
8.根据权利要求3所述的观看系统,其中,针对A02,所述颜色通道之间的颜色分离随着温度的升高而增加。
9.根据权利要求3所述的观看系统,其中,针对至少一个颜色通道,A02随着温度的升高而减小,并且针对一个颜色通道,A02随着温度的升高而增大。
10.根据权利要求3所述的观看系统,其中,针对A10,所述颜色通道之间的颜色分离随着温度的升高而增加。
11.根据权利要求3所述的观看系统,其中,针对至少一个颜色通道,A10随着温度的升高而减小,并且针对一个颜色通道,A10随着温度的升高而增大。
12.根据权利要求3所述的观看系统,其中,针对A11,所述颜色通道之间的颜色分离随着温度的升高而增加。
13.根据权利要求3所述的观看系统,其中,针对所有颜色通道,A11随着温度的升高而减小。
14.根据权利要求3所述的观看系统,其中,针对A21,所述颜色通道之间的颜色分离随着温度的升高而增加。
15.根据权利要求3所述的观看系统,其中,针对至少一个颜色通道,A12随着温度的升高而减小,并且针对一个颜色通道,A12随着温度的升高而增大。
16.根据权利要求1所述的观看系统,其中,所述校准集包括多个旋转矩阵(R),每个相应的旋转矩阵用于相应的温度,
其中,所述矩阵选择器选择所述旋转矩阵中用于与由所述温度传感器检测到的所述温度相匹配的温度的相应的旋转矩阵,其中,所述几何变化计算器基于所述旋转矩阵来计算几何变化,以及其中,所述渲染引擎接收所述几何变化并根据基于所述旋转矩阵的所述几何变化来渲染所述本地内容。
17.根据权利要求16所述的观看系统,其中,所述旋转矩阵(R)被表示为三分量旋转向量([Rx,Ry,Rz])。
18.根据权利要求17所述的观看系统,其中,Rx随着温度的升高而线性增大。
19.根据权利要求17所述的观看系统,其中,所述显示系统具有左显示器和右显示器,并且对于所述左显示器,Ry随着温度的升高而线性增大,而对于所述右显示器,Ry随着温度的升高而线性减小。
20.根据权利要求1所述的观看系统,进一步包括:
头部单元主体,其中,所述显示系统包括至少一个显示器,所述至少一个显示器具有:
被固定在所述头部单元主体上的透明波导,其允许来自真实世界环境的光穿过以到达佩戴所述头部单元主体的用户的眼睛;以及
投射器,其将表示本地内容的所述数据转换为光,来自所述投射器的所述光在入射光瞳处进入所述波导,并且在出射光瞳处离开所述波导,到达所述用户的眼睛。
21.一种观看方法,包括:
将校准集存储在存储装置上,所述校准集包括多个温度和多个单应性变换矩阵,每个相应的单应性变换矩阵用于相应的温度;
检测温度;
选择所述单应性变换矩阵中用于与所述温度相匹配的温度的相应的单应性变换矩阵;
基于所选择的单应性关系来计算几何变化;
接收表示本地内容的数据;
基于所述几何变化来生成所述本地内容的渲染;以及
显示所述渲染。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862681063P | 2018-06-05 | 2018-06-05 | |
US62/681,063 | 2018-06-05 | ||
PCT/US2019/035245 WO2019236495A1 (en) | 2018-06-05 | 2019-06-03 | Homography transformation matrices based temperature calibration of a viewing system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112400157A true CN112400157A (zh) | 2021-02-23 |
CN112400157B CN112400157B (zh) | 2024-07-09 |
Family
ID=68694119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980046303.8A Active CN112400157B (zh) | 2018-06-05 | 2019-06-03 | 观看系统的基于单应性变换矩阵的温度校准 |
Country Status (5)
Country | Link |
---|---|
US (2) | US10825424B2 (zh) |
EP (1) | EP3804306B1 (zh) |
JP (2) | JP7369147B2 (zh) |
CN (1) | CN112400157B (zh) |
WO (1) | WO2019236495A1 (zh) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3062142B1 (en) | 2015-02-26 | 2018-10-03 | Nokia Technologies OY | Apparatus for a near-eye display |
US10650552B2 (en) | 2016-12-29 | 2020-05-12 | Magic Leap, Inc. | Systems and methods for augmented reality |
EP3343267B1 (en) | 2016-12-30 | 2024-01-24 | Magic Leap, Inc. | Polychromatic light out-coupling apparatus, near-eye displays comprising the same, and method of out-coupling polychromatic light |
US10578870B2 (en) | 2017-07-26 | 2020-03-03 | Magic Leap, Inc. | Exit pupil expander |
CN111448497B (zh) | 2017-12-10 | 2023-08-04 | 奇跃公司 | 光波导上的抗反射涂层 |
CN115826240A (zh) | 2017-12-20 | 2023-03-21 | 奇跃公司 | 用于增强现实观看设备的插入件 |
JP7123554B2 (ja) * | 2017-12-25 | 2022-08-23 | グリー株式会社 | ゲーム装置、制御方法及び制御プログラム |
CN112136152A (zh) | 2018-03-15 | 2020-12-25 | 奇跃公司 | 由观看设备的部件变形导致的图像校正 |
US11885871B2 (en) | 2018-05-31 | 2024-01-30 | Magic Leap, Inc. | Radar head pose localization |
EP3804306B1 (en) * | 2018-06-05 | 2023-12-27 | Magic Leap, Inc. | Homography transformation matrices based temperature calibration of a viewing system |
US11579441B2 (en) | 2018-07-02 | 2023-02-14 | Magic Leap, Inc. | Pixel intensity modulation using modifying gain values |
US11510027B2 (en) | 2018-07-03 | 2022-11-22 | Magic Leap, Inc. | Systems and methods for virtual and augmented reality |
US11856479B2 (en) | 2018-07-03 | 2023-12-26 | Magic Leap, Inc. | Systems and methods for virtual and augmented reality along a route with markers |
WO2020023543A1 (en) | 2018-07-24 | 2020-01-30 | Magic Leap, Inc. | Viewing device with dust seal integration |
EP3827224B1 (en) | 2018-07-24 | 2023-09-06 | Magic Leap, Inc. | Temperature dependent calibration of movement detection devices |
WO2020028834A1 (en) | 2018-08-02 | 2020-02-06 | Magic Leap, Inc. | A viewing system with interpupillary distance compensation based on head motion |
US10795458B2 (en) | 2018-08-03 | 2020-10-06 | Magic Leap, Inc. | Unfused pose-based drift correction of a fused pose of a totem in a user interaction system |
US12016719B2 (en) | 2018-08-22 | 2024-06-25 | Magic Leap, Inc. | Patient viewing system |
CN117111304A (zh) | 2018-11-16 | 2023-11-24 | 奇跃公司 | 用于保持图像清晰度的图像尺寸触发的澄清 |
WO2020132484A1 (en) | 2018-12-21 | 2020-06-25 | Magic Leap, Inc. | Air pocket structures for promoting total internal reflection in a waveguide |
WO2020163603A1 (en) | 2019-02-06 | 2020-08-13 | Magic Leap, Inc. | Target intent-based clock speed determination and adjustment to limit total heat generated by multiple processors |
CN113544766A (zh) | 2019-03-12 | 2021-10-22 | 奇跃公司 | 在第一和第二增强现实观看器之间配准本地内容 |
JP2022530900A (ja) | 2019-05-01 | 2022-07-04 | マジック リープ, インコーポレイテッド | コンテンツプロビジョニングシステムおよび方法 |
JP2022542363A (ja) | 2019-07-26 | 2022-10-03 | マジック リープ, インコーポレイテッド | 拡張現実のためのシステムおよび方法 |
EP4058936A4 (en) | 2019-11-14 | 2023-05-03 | Magic Leap, Inc. | SYSTEMS AND METHODS FOR VIRTUAL AND AUGMENTED REALITY |
WO2021097323A1 (en) | 2019-11-15 | 2021-05-20 | Magic Leap, Inc. | A viewing system for use in a surgical environment |
US11202043B1 (en) * | 2020-08-25 | 2021-12-14 | Facebook Technologies, Llc | Self-testing display device |
CN112435278B (zh) * | 2021-01-26 | 2021-05-04 | 华东交通大学 | 一种基于动态目标检测的视觉slam方法及装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2499635A (en) * | 2012-02-23 | 2013-08-28 | Canon Kk | Image processing for projection on a projection screen |
CN105404082A (zh) * | 2014-09-05 | 2016-03-16 | 船井电机株式会社 | 图像投影设备 |
EP3047883A1 (en) * | 2015-01-21 | 2016-07-27 | Oculus VR, LLC | Compressible eyecup assemblies in a virtual reality headset |
CN105850113A (zh) * | 2014-01-06 | 2016-08-10 | 欧库勒斯虚拟现实有限责任公司 | 虚拟现实系统的校准 |
CN107076985A (zh) * | 2014-08-15 | 2017-08-18 | 阿莱恩技术有限公司 | 具有弯曲的焦面、或目标基准元件和场补偿器的共焦成像设备 |
US20180052501A1 (en) * | 2016-08-22 | 2018-02-22 | Magic Leap, Inc. | Thermal dissipation for wearable device |
US9978118B1 (en) * | 2017-01-25 | 2018-05-22 | Microsoft Technology Licensing, Llc | No miss cache structure for real-time image transformations with data compression |
Family Cites Families (301)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6541736B1 (en) | 2001-12-10 | 2003-04-01 | Usun Technology Co., Ltd. | Circuit board/printed circuit board having pre-reserved conductive heating circuits |
US4344092A (en) | 1980-10-21 | 1982-08-10 | Circon Corporation | Miniature video camera means for video system |
US4652930A (en) | 1984-11-19 | 1987-03-24 | Rca Corporation | Television camera structure |
US4810080A (en) | 1987-09-03 | 1989-03-07 | American Optical Corporation | Protective eyewear with removable nosepiece and corrective spectacle |
US4997268A (en) | 1989-07-24 | 1991-03-05 | Dauvergne Hector A | Corrective lens configuration |
US5074295A (en) | 1989-08-03 | 1991-12-24 | Jamie, Inc. | Mouth-held holder |
US5007727A (en) | 1990-02-26 | 1991-04-16 | Alan Kahaney | Combination prescription lens and sunglasses assembly |
US5240220A (en) | 1990-09-12 | 1993-08-31 | Elbex Video Ltd. | TV camera supporting device |
WO1993001743A1 (en) | 1991-07-22 | 1993-02-04 | Adair Edwin Lloyd | Sterile video microscope holder for operating room |
US5224198A (en) | 1991-09-30 | 1993-06-29 | Motorola, Inc. | Waveguide virtual image display |
US5497463A (en) | 1992-09-25 | 1996-03-05 | Bull Hn Information Systems Inc. | Ally mechanism for interconnecting non-distributed computing environment (DCE) and DCE systems to operate in a network system |
US5410763A (en) | 1993-02-11 | 1995-05-02 | Etablissments Bolle | Eyeshield with detachable components |
US5682255A (en) | 1993-02-26 | 1997-10-28 | Yeda Research & Development Co. Ltd. | Holographic optical devices for the transmission of optical signals of a plurality of channels |
US6023288A (en) | 1993-03-31 | 2000-02-08 | Cairns & Brother Inc. | Combination head-protective helmet and thermal imaging apparatus |
US5455625A (en) | 1993-09-23 | 1995-10-03 | Rosco Inc. | Video camera unit, protective enclosure and power circuit for same, particularly for use in vehicles |
US5835061A (en) | 1995-06-06 | 1998-11-10 | Wayport, Inc. | Method and apparatus for geographic-based communications service |
US5864365A (en) | 1996-01-26 | 1999-01-26 | Kaman Sciences Corporation | Environmentally controlled camera housing assembly |
US5854872A (en) | 1996-10-08 | 1998-12-29 | Clio Technologies, Inc. | Divergent angle rotator system and method for collimating light beams |
US8005254B2 (en) | 1996-11-12 | 2011-08-23 | Digimarc Corporation | Background watermark processing |
US6012811A (en) | 1996-12-13 | 2000-01-11 | Contour Optik, Inc. | Eyeglass frames with magnets at bridges for attachment |
JP3465528B2 (ja) | 1997-04-22 | 2003-11-10 | 三菱瓦斯化学株式会社 | 新規な光学材料用樹脂 |
ES2280096T3 (es) | 1997-08-29 | 2007-09-01 | Kabushiki Kaisha Sega Doing Business As Sega Corporation | Sistema de procesamiento de imagen y metodo de procesamiento de imagen. |
JPH11142783A (ja) | 1997-11-12 | 1999-05-28 | Olympus Optical Co Ltd | 画像表示装置 |
US6191809B1 (en) | 1998-01-15 | 2001-02-20 | Vista Medical Technologies, Inc. | Method and apparatus for aligning stereo images |
US6076927A (en) | 1998-07-10 | 2000-06-20 | Owens; Raymond L. | Adjustable focal length eye glasses |
JP2000099332A (ja) | 1998-09-25 | 2000-04-07 | Hitachi Ltd | 遠隔手続き呼び出し最適化方法とこれを用いたプログラム実行方法 |
US6918667B1 (en) | 1998-11-02 | 2005-07-19 | Gary Martin Zelman | Auxiliary eyewear attachment apparatus |
US6556245B1 (en) | 1999-03-08 | 2003-04-29 | Larry Allan Holmberg | Game hunting video camera |
US7119819B1 (en) | 1999-04-06 | 2006-10-10 | Microsoft Corporation | Method and apparatus for supporting two-dimensional windows in a three-dimensional environment |
US6375369B1 (en) | 1999-04-22 | 2002-04-23 | Videolarm, Inc. | Housing for a surveillance camera |
US6757068B2 (en) | 2000-01-28 | 2004-06-29 | Intersense, Inc. | Self-referenced tracking |
JP4921634B2 (ja) | 2000-01-31 | 2012-04-25 | グーグル インコーポレイテッド | 表示装置 |
JP4646374B2 (ja) | 2000-09-29 | 2011-03-09 | オリンパス株式会社 | 画像観察光学系 |
TW522256B (en) | 2000-12-15 | 2003-03-01 | Samsung Electronics Co Ltd | Wearable display system |
US6807352B2 (en) | 2001-02-11 | 2004-10-19 | Georgia Tech Research Corporation | Optical waveguides with embedded air-gap cladding layer and methods of fabrication thereof |
US6931596B2 (en) | 2001-03-05 | 2005-08-16 | Koninklijke Philips Electronics N.V. | Automatic positioning of display depending upon the viewer's location |
US20020140848A1 (en) | 2001-03-30 | 2002-10-03 | Pelco | Controllable sealed chamber for surveillance camera |
EP1249717A3 (en) | 2001-04-10 | 2005-05-11 | Matsushita Electric Industrial Co., Ltd. | Antireflection coating and optical element using the same |
JP4682470B2 (ja) | 2001-07-16 | 2011-05-11 | 株式会社デンソー | スキャン型ディスプレイ装置 |
US6762845B2 (en) | 2001-08-23 | 2004-07-13 | Zygo Corporation | Multiple-pass interferometry |
DE60124961T2 (de) | 2001-09-25 | 2007-07-26 | Cambridge Flat Projection Displays Ltd., Fenstanton | Flachtafel-Projektionsanzeige |
US6833955B2 (en) | 2001-10-09 | 2004-12-21 | Planop Planar Optics Ltd. | Compact two-plane optical device |
US7305020B2 (en) | 2002-02-04 | 2007-12-04 | Vizionware, Inc. | Method and system of reducing electromagnetic interference emissions |
US6849558B2 (en) | 2002-05-22 | 2005-02-01 | The Board Of Trustees Of The Leland Stanford Junior University | Replication and transfer of microstructures and nanostructures |
US6714157B2 (en) | 2002-08-02 | 2004-03-30 | The Boeing Company | Multiple time-interleaved radar operation using a single radar at different angles |
KR100480786B1 (ko) | 2002-09-02 | 2005-04-07 | 삼성전자주식회사 | 커플러를 가지는 집적형 광 헤드 |
US7306337B2 (en) | 2003-03-06 | 2007-12-11 | Rensselaer Polytechnic Institute | Calibration-free gaze tracking under natural head movement |
DE10311972A1 (de) | 2003-03-18 | 2004-09-30 | Carl Zeiss | HMD-Vorrichtung |
AU2003901272A0 (en) | 2003-03-19 | 2003-04-03 | Martin Hogan Pty Ltd | Improvements in or relating to eyewear attachments |
US7294360B2 (en) | 2003-03-31 | 2007-11-13 | Planar Systems, Inc. | Conformal coatings for micro-optical elements, and method for making the same |
EP1639394A2 (en) | 2003-06-10 | 2006-03-29 | Elop Electro-Optics Industries Ltd. | Method and system for displaying an informative image against a background image |
JP4699699B2 (ja) | 2004-01-15 | 2011-06-15 | 株式会社東芝 | ビーム光走査装置及び画像形成装置 |
EP1731943B1 (en) | 2004-03-29 | 2019-02-13 | Sony Corporation | Optical device and virtual image display device |
GB0416038D0 (en) | 2004-07-16 | 2004-08-18 | Portland Press Ltd | Document display system |
EP1769275A1 (en) | 2004-07-22 | 2007-04-04 | Pirelli & C. S.p.A. | Integrated wavelength selective grating-based filter |
US7542040B2 (en) | 2004-08-11 | 2009-06-02 | The United States Of America As Represented By The Secretary Of The Navy | Simulated locomotion method and apparatus |
EP1850731A2 (en) | 2004-08-12 | 2007-11-07 | Elop Electro-Optical Industries Ltd. | Integrated retinal imager and method |
US9030532B2 (en) | 2004-08-19 | 2015-05-12 | Microsoft Technology Licensing, Llc | Stereoscopic image display |
US7029114B2 (en) | 2004-09-03 | 2006-04-18 | E'lite Optik U.S. L.P. | Eyewear assembly with auxiliary frame and lens assembly |
WO2006030848A1 (ja) | 2004-09-16 | 2006-03-23 | Nikon Corporation | 非晶質酸化珪素バインダを有するMgF2光学薄膜、及びそれを備える光学素子、並びにそのMgF2光学薄膜の製造方法 |
US20060126181A1 (en) | 2004-12-13 | 2006-06-15 | Nokia Corporation | Method and system for beam expansion in a display device |
US8619365B2 (en) | 2004-12-29 | 2013-12-31 | Corning Incorporated | Anti-reflective coating for optical windows and elements |
GB0502453D0 (en) | 2005-02-05 | 2005-03-16 | Cambridge Flat Projection | Flat panel lens |
US7573640B2 (en) | 2005-04-04 | 2009-08-11 | Mirage Innovations Ltd. | Multi-plane optical apparatus |
US20060250322A1 (en) | 2005-05-09 | 2006-11-09 | Optics 1, Inc. | Dynamic vergence and focus control for head-mounted displays |
US7948683B2 (en) | 2006-05-14 | 2011-05-24 | Holochip Corporation | Fluidic lens with manually-adjustable focus |
WO2006132614A1 (en) | 2005-06-03 | 2006-12-14 | Nokia Corporation | General diffractive optics method for expanding and exit pupil |
US7364306B2 (en) * | 2005-06-20 | 2008-04-29 | Digital Display Innovations, Llc | Field sequential light source modulation for a digital display system |
JP4776285B2 (ja) | 2005-07-01 | 2011-09-21 | ソニー株式会社 | 照明光学装置及びこれを用いた虚像表示装置 |
US20070058248A1 (en) | 2005-09-14 | 2007-03-15 | Nguyen Minh T | Sport view binocular-zoom lens focus system |
US20080043334A1 (en) | 2006-08-18 | 2008-02-21 | Mirage Innovations Ltd. | Diffractive optical relay and method for manufacturing the same |
US20100232016A1 (en) | 2005-09-28 | 2010-09-16 | Mirage Innovations Ltd. | Stereoscopic Binocular System, Device and Method |
US9658473B2 (en) | 2005-10-07 | 2017-05-23 | Percept Technologies Inc | Enhanced optical and perceptual digital eyewear |
US8696113B2 (en) | 2005-10-07 | 2014-04-15 | Percept Technologies Inc. | Enhanced optical and perceptual digital eyewear |
US11428937B2 (en) | 2005-10-07 | 2022-08-30 | Percept Technologies | Enhanced optical and perceptual digital eyewear |
US20070081123A1 (en) | 2005-10-07 | 2007-04-12 | Lewis Scott W | Digital eyewear |
EP1943556B1 (en) | 2005-11-03 | 2009-02-11 | Mirage Innovations Ltd. | Binocular optical relay device |
US8092723B2 (en) | 2005-11-18 | 2012-01-10 | Nanocomp Oy Ltd | Method of producing a diffraction grating element |
EP1952189B1 (en) | 2005-11-21 | 2016-06-01 | Microvision, Inc. | Display with image-guiding substrate |
WO2007085682A1 (en) | 2006-01-26 | 2007-08-02 | Nokia Corporation | Eye tracker device |
JP2007219106A (ja) | 2006-02-16 | 2007-08-30 | Konica Minolta Holdings Inc | 光束径拡大光学素子、映像表示装置およびヘッドマウントディスプレイ |
US7461535B2 (en) | 2006-03-01 | 2008-12-09 | Memsic, Inc. | Multi-temperature programming for accelerometer |
IL174170A (en) | 2006-03-08 | 2015-02-26 | Abraham Aharoni | Device and method for two-eyed tuning |
US7353134B2 (en) | 2006-03-09 | 2008-04-01 | Dean A. Cirielli | Three-dimensional position and motion telemetry input |
CN101449270B (zh) | 2006-03-15 | 2011-11-16 | 谷歌公司 | 自动显示尺寸调整后的图像 |
WO2007141587A1 (en) | 2006-06-02 | 2007-12-13 | Nokia Corporation | Color distribution in exit pupil expanders |
US7692855B2 (en) | 2006-06-28 | 2010-04-06 | Essilor International Compagnie Generale D'optique | Optical article having a temperature-resistant anti-reflection coating with optimized thickness ratio of low index and high index layers |
US7724980B1 (en) | 2006-07-24 | 2010-05-25 | Adobe Systems Incorporated | System and method for selective sharpening of images |
KR100817056B1 (ko) | 2006-08-25 | 2008-03-26 | 삼성전자주식회사 | 분기이력 길이표시기, 분기예측 시스템 및 분기 예측 방법 |
US20080068557A1 (en) | 2006-09-20 | 2008-03-20 | Gilbert Menduni | Lens holding frame |
US20080146942A1 (en) | 2006-12-13 | 2008-06-19 | Ep Medsystems, Inc. | Catheter Position Tracking Methods Using Fluoroscopy and Rotational Sensors |
JP4847351B2 (ja) | 2007-01-11 | 2011-12-28 | キヤノン株式会社 | 回折光学素子及びそれを用いた回折格子 |
JP4348441B2 (ja) | 2007-01-22 | 2009-10-21 | 国立大学法人 大阪教育大学 | 位置検出装置、位置検出方法、データ判定装置、データ判定方法、コンピュータプログラム及び記憶媒体 |
US20090017910A1 (en) | 2007-06-22 | 2009-01-15 | Broadcom Corporation | Position and motion tracking of an object |
WO2008148927A1 (en) | 2007-06-04 | 2008-12-11 | Nokia Corporation | A diffractive beam expander and a virtual display based on a diffractive beam expander |
US8508848B2 (en) | 2007-12-18 | 2013-08-13 | Nokia Corporation | Exit pupil expanders with wide field-of-view |
DE102008005817A1 (de) | 2008-01-24 | 2009-07-30 | Carl Zeiss Ag | Optisches Anzeigegerät |
WO2009101238A1 (en) | 2008-02-14 | 2009-08-20 | Nokia Corporation | Device and method for determining gaze direction |
JP2009244869A (ja) | 2008-03-11 | 2009-10-22 | Panasonic Corp | 表示装置、表示方法、眼鏡型ヘッドマウントディスプレイ、及び自動車 |
US9400212B2 (en) * | 2008-06-13 | 2016-07-26 | Barco Inc. | Smart pixel addressing |
JP5181860B2 (ja) | 2008-06-17 | 2013-04-10 | セイコーエプソン株式会社 | パルス幅変調信号生成装置およびそれを備えた画像表示装置、並びにパルス幅変調信号生成方法 |
US10885471B2 (en) | 2008-07-18 | 2021-01-05 | Disney Enterprises, Inc. | System and method for providing location-based data on a wireless portable device |
US7850306B2 (en) | 2008-08-28 | 2010-12-14 | Nokia Corporation | Visual cognition aware display and visual data transmission architecture |
US7885506B2 (en) | 2008-09-26 | 2011-02-08 | Nokia Corporation | Device and a method for polarized illumination of a micro-display |
WO2010065786A1 (en) | 2008-12-03 | 2010-06-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for determining the positioin of the tip of a medical catheter within the body of a patient |
US8699141B2 (en) | 2009-03-13 | 2014-04-15 | Knowles Electronics, Llc | Lens assembly apparatus and method |
JP5121764B2 (ja) | 2009-03-24 | 2013-01-16 | 株式会社東芝 | 固体撮像装置 |
US9095436B2 (en) | 2009-04-14 | 2015-08-04 | The Invention Science Fund I, Llc | Adjustable orthopedic implant and method for treating an orthopedic condition in a subject |
US9383823B2 (en) | 2009-05-29 | 2016-07-05 | Microsoft Technology Licensing, Llc | Combining gestures beyond skeletal |
JP5316391B2 (ja) | 2009-08-31 | 2013-10-16 | ソニー株式会社 | 画像表示装置及び頭部装着型ディスプレイ |
US20110050640A1 (en) * | 2009-09-03 | 2011-03-03 | Niklas Lundback | Calibration for a Large Scale Multi-User, Multi-Touch System |
US11320571B2 (en) | 2012-11-16 | 2022-05-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view with uniform light extraction |
JP2011077972A (ja) * | 2009-10-01 | 2011-04-14 | Seiko Epson Corp | プロジェクター |
US8305502B2 (en) | 2009-11-11 | 2012-11-06 | Eastman Kodak Company | Phase-compensated thin-film beam combiner |
US8605209B2 (en) | 2009-11-24 | 2013-12-10 | Gregory Towle Becker | Hurricane damage recording camera system |
US8909962B2 (en) | 2009-12-16 | 2014-12-09 | Qualcomm Incorporated | System and method for controlling central processing unit power with guaranteed transient deadlines |
US9244533B2 (en) | 2009-12-17 | 2016-01-26 | Microsoft Technology Licensing, Llc | Camera navigation for presentations |
US8565554B2 (en) | 2010-01-09 | 2013-10-22 | Microsoft Corporation | Resizing of digital images |
KR101099137B1 (ko) | 2010-01-29 | 2011-12-27 | 주식회사 팬택 | 이동 통신 시스템에서 증강 현실 정보를 제공하기 위한 장치 및 방법 |
US8467133B2 (en) | 2010-02-28 | 2013-06-18 | Osterhout Group, Inc. | See-through display with an optical assembly including a wedge-shaped illumination system |
US9547910B2 (en) | 2010-03-04 | 2017-01-17 | Honeywell International Inc. | Method and apparatus for vision aided navigation using image registration |
US9753297B2 (en) | 2010-03-04 | 2017-09-05 | Nokia Corporation | Optical apparatus and method for expanding an exit pupil |
JP5499854B2 (ja) | 2010-04-08 | 2014-05-21 | ソニー株式会社 | 頭部装着型ディスプレイにおける光学的位置調整方法 |
US8118499B2 (en) | 2010-05-19 | 2012-02-21 | LIR Systems, Inc. | Infrared camera assembly systems and methods |
US20110291964A1 (en) | 2010-06-01 | 2011-12-01 | Kno, Inc. | Apparatus and Method for Gesture Control of a Dual Panel Electronic Device |
JP2012015774A (ja) | 2010-06-30 | 2012-01-19 | Toshiba Corp | 立体視映像処理装置および立体視映像処理方法 |
US8854594B2 (en) | 2010-08-31 | 2014-10-07 | Cast Group Of Companies Inc. | System and method for tracking |
KR101479262B1 (ko) | 2010-09-02 | 2015-01-12 | 주식회사 팬택 | 증강현실 정보 이용 권한 부여 방법 및 장치 |
JP5632693B2 (ja) | 2010-09-28 | 2014-11-26 | 任天堂株式会社 | 情報処理プログラム、情報処理装置、情報処理方法および情報処理システム |
US20120081392A1 (en) | 2010-09-30 | 2012-04-05 | Apple Inc. | Electronic device operation adjustment based on face detection |
KR101260576B1 (ko) | 2010-10-13 | 2013-05-06 | 주식회사 팬택 | Ar 서비스를 제공하기 위한 사용자 단말기 및 그 방법 |
US20120113235A1 (en) | 2010-11-08 | 2012-05-10 | Sony Corporation | 3d glasses, systems, and methods for optimized viewing of 3d video content |
JP5854593B2 (ja) | 2010-11-17 | 2016-02-09 | キヤノン株式会社 | 積層型回折光学素子 |
US9213405B2 (en) | 2010-12-16 | 2015-12-15 | Microsoft Technology Licensing, Llc | Comprehension and intent-based content for augmented reality displays |
US8949637B2 (en) | 2011-03-24 | 2015-02-03 | Intel Corporation | Obtaining power profile information with low overhead |
KR101591579B1 (ko) | 2011-03-29 | 2016-02-18 | 퀄컴 인코포레이티드 | 증강 현실 시스템들에서 실세계 표면들에의 가상 이미지들의 앵커링 |
KR101210163B1 (ko) | 2011-04-05 | 2012-12-07 | 엘지이노텍 주식회사 | 광학 시트 및 이를 포함하는 표시장치 |
US8856355B2 (en) | 2011-05-09 | 2014-10-07 | Samsung Electronics Co., Ltd. | Systems and methods for facilitating communication between mobile devices and display devices |
US20150077312A1 (en) | 2011-05-13 | 2015-03-19 | Google Inc. | Near-to-eye display having adaptive optics |
US9245307B2 (en) | 2011-06-01 | 2016-01-26 | Empire Technology Development Llc | Structured light projection for motion detection in augmented reality |
US9087267B2 (en) | 2011-06-10 | 2015-07-21 | Image Vision Labs, Inc. | Image scene recognition |
US10606066B2 (en) | 2011-06-21 | 2020-03-31 | Gholam A. Peyman | Fluidic light field camera |
US20120326948A1 (en) | 2011-06-22 | 2012-12-27 | Microsoft Corporation | Environmental-light filter for see-through head-mounted display device |
EP2723240B1 (en) | 2011-06-27 | 2018-08-08 | Koninklijke Philips N.V. | Live 3d angiogram using registration of a surgical tool curve to an x-ray image |
US8548290B2 (en) | 2011-08-23 | 2013-10-01 | Vuzix Corporation | Dynamic apertured waveguide for near-eye display |
US9025252B2 (en) | 2011-08-30 | 2015-05-05 | Microsoft Technology Licensing, Llc | Adjustment of a mixed reality display for inter-pupillary distance alignment |
KR101407670B1 (ko) | 2011-09-15 | 2014-06-16 | 주식회사 팬택 | 증강현실 기반 모바일 단말과 서버 및 그 통신방법 |
US8998414B2 (en) | 2011-09-26 | 2015-04-07 | Microsoft Technology Licensing, Llc | Integrated eye tracking and display system |
US9835765B2 (en) | 2011-09-27 | 2017-12-05 | Canon Kabushiki Kaisha | Optical element and method for manufacturing the same |
US8847988B2 (en) | 2011-09-30 | 2014-09-30 | Microsoft Corporation | Exercising applications for personal audio/visual system |
US9125301B2 (en) | 2011-10-18 | 2015-09-01 | Integrated Microwave Corporation | Integral heater assembly and method for carrier or host board of electronic package assembly |
US9678102B2 (en) | 2011-11-04 | 2017-06-13 | Google Inc. | Calibrating intertial sensors using an image sensor |
US8608309B2 (en) | 2011-12-30 | 2013-12-17 | A New Vision Llc | Eyeglass system |
WO2013101273A1 (en) | 2011-12-30 | 2013-07-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for detection and avoidance of collisions of robotically-controlled medical devices |
US9704220B1 (en) | 2012-02-29 | 2017-07-11 | Google Inc. | Systems, methods, and media for adjusting one or more images displayed to a viewer |
EP2688060A4 (en) | 2012-03-22 | 2015-08-05 | Sony Corp | DISPLAY DEVICE, IMAGE PROCESSING DEVICE AND IMAGE PROCESSING PROCESS AND COMPUTER PROGRAM THEREFOR |
US20130278633A1 (en) | 2012-04-20 | 2013-10-24 | Samsung Electronics Co., Ltd. | Method and system for generating augmented reality scene |
EP2834698B1 (en) | 2012-05-03 | 2021-06-23 | Nokia Technologies Oy | Image providing apparatus, method and computer program |
US8989535B2 (en) | 2012-06-04 | 2015-03-24 | Microsoft Technology Licensing, Llc | Multiple waveguide imaging structure |
US9671566B2 (en) | 2012-06-11 | 2017-06-06 | Magic Leap, Inc. | Planar waveguide apparatus with diffraction element(s) and system employing same |
US9113291B2 (en) | 2012-06-18 | 2015-08-18 | Qualcomm Incorporated | Location detection within identifiable pre-defined geographic areas |
US9645394B2 (en) | 2012-06-25 | 2017-05-09 | Microsoft Technology Licensing, Llc | Configured virtual environments |
US9767720B2 (en) | 2012-06-25 | 2017-09-19 | Microsoft Technology Licensing, Llc | Object-centric mixed reality space |
US9696547B2 (en) | 2012-06-25 | 2017-07-04 | Microsoft Technology Licensing, Llc | Mixed reality system learned input and functions |
US9031283B2 (en) | 2012-07-12 | 2015-05-12 | Qualcomm Incorporated | Sensor-aided wide-area localization on mobile devices |
WO2014031540A1 (en) | 2012-08-20 | 2014-02-27 | Cameron Donald Kevin | Processing resource allocation |
US9380287B2 (en) | 2012-09-03 | 2016-06-28 | Sensomotoric Instruments Gesellschaft Fur Innovative Sensorik Mbh | Head mounted system and method to compute and render a stream of digital images using a head mounted display |
KR101923723B1 (ko) | 2012-09-17 | 2018-11-29 | 한국전자통신연구원 | 사용자 간 상호작용이 가능한 메타버스 공간을 제공하기 위한 메타버스 클라이언트 단말 및 방법 |
US9177404B2 (en) | 2012-10-31 | 2015-11-03 | Qualcomm Incorporated | Systems and methods of merging multiple maps for computer vision based tracking |
US9576183B2 (en) | 2012-11-02 | 2017-02-21 | Qualcomm Incorporated | Fast initialization for monocular visual SLAM |
US9584382B2 (en) | 2012-11-28 | 2017-02-28 | At&T Intellectual Property I, L.P. | Collecting and using quality of experience information |
US20140168260A1 (en) | 2012-12-13 | 2014-06-19 | Paul M. O'Brien | Waveguide spacers within an ned device |
US8988574B2 (en) | 2012-12-27 | 2015-03-24 | Panasonic Intellectual Property Corporation Of America | Information communication method for obtaining information using bright line image |
US20150355481A1 (en) | 2012-12-31 | 2015-12-10 | Esight Corp. | Apparatus and method for fitting head mounted vision augmentation systems |
US10716469B2 (en) | 2013-01-25 | 2020-07-21 | Wesley W. O. Krueger | Ocular-performance-based head impact measurement applied to rotationally-centered impact mitigation systems and methods |
US9336629B2 (en) | 2013-01-30 | 2016-05-10 | F3 & Associates, Inc. | Coordinate geometry augmented reality process |
GB201301764D0 (en) | 2013-01-31 | 2013-03-20 | Adlens Ltd | Actuation of fluid-filled lenses |
US20160004102A1 (en) | 2013-02-15 | 2016-01-07 | Adlens Limited | Adjustable Lens and Article of Eyewear |
US9600068B2 (en) | 2013-03-13 | 2017-03-21 | Sony Interactive Entertainment Inc. | Digital inter-pupillary distance adjustment |
US9854014B2 (en) | 2013-03-14 | 2017-12-26 | Google Inc. | Motion data sharing |
US9779517B2 (en) | 2013-03-15 | 2017-10-03 | Upskill, Inc. | Method and system for representing and interacting with augmented reality content |
US9235395B2 (en) | 2013-05-30 | 2016-01-12 | National Instruments Corporation | Graphical development and deployment of parallel floating-point math functionality on a system with heterogeneous hardware components |
JP6232763B2 (ja) | 2013-06-12 | 2017-11-22 | セイコーエプソン株式会社 | 頭部装着型表示装置および頭部装着型表示装置の制御方法 |
US9256987B2 (en) | 2013-06-24 | 2016-02-09 | Microsoft Technology Licensing, Llc | Tracking head movement when wearing mobile device |
WO2015031511A1 (en) | 2013-08-27 | 2015-03-05 | Frameri Inc. | Removable eyeglass lens and frame platform |
US9256072B2 (en) | 2013-10-02 | 2016-02-09 | Philip Scott Lyren | Wearable electronic glasses that detect movement of a real object copies movement of a virtual object |
US20150123966A1 (en) | 2013-10-03 | 2015-05-07 | Compedia - Software And Hardware Development Limited | Interactive augmented virtual reality and perceptual computing platform |
US9996797B1 (en) | 2013-10-31 | 2018-06-12 | Leap Motion, Inc. | Interactions with virtual objects for machine control |
KR102189115B1 (ko) | 2013-11-11 | 2020-12-09 | 삼성전자주식회사 | 대칭형 다중 프로세서를 구비한 시스템 온-칩 및 이를 위한 최대 동작 클럭 주파수 결정 방법 |
US9286725B2 (en) | 2013-11-14 | 2016-03-15 | Nintendo Co., Ltd. | Visually convincing depiction of object interactions in augmented reality images |
CN105706028B (zh) | 2013-11-19 | 2018-05-29 | 麦克赛尔株式会社 | 投影型影像显示装置 |
JP6465030B2 (ja) | 2013-11-26 | 2019-02-06 | ソニー株式会社 | ヘッドマウントディスプレイ |
CN107329259B (zh) | 2013-11-27 | 2019-10-11 | 奇跃公司 | 虚拟和增强现实系统与方法 |
WO2015100714A1 (en) | 2014-01-02 | 2015-07-09 | Empire Technology Development Llc | Augmented reality (ar) system |
US10228562B2 (en) | 2014-02-21 | 2019-03-12 | Sony Interactive Entertainment Inc. | Realtime lens aberration correction from eye tracking |
US9383630B2 (en) | 2014-03-05 | 2016-07-05 | Mygo, Llc | Camera mouth mount |
US9871741B2 (en) | 2014-03-10 | 2018-01-16 | Microsoft Technology Licensing, Llc | Resource management based on device-specific or user-specific resource usage profiles |
US9251598B2 (en) | 2014-04-10 | 2016-02-02 | GM Global Technology Operations LLC | Vision-based multi-camera factory monitoring with dynamic integrity scoring |
US20170123775A1 (en) | 2014-03-26 | 2017-05-04 | Empire Technology Development Llc | Compilation of application into multiple instruction sets for a heterogeneous processor |
US20150301955A1 (en) | 2014-04-21 | 2015-10-22 | Qualcomm Incorporated | Extending protection domains to co-processors |
US9626802B2 (en) | 2014-05-01 | 2017-04-18 | Microsoft Technology Licensing, Llc | Determining coordinate frames in a dynamic environment |
US10620700B2 (en) | 2014-05-09 | 2020-04-14 | Google Llc | Systems and methods for biomechanically-based eye signals for interacting with real and virtual objects |
EP2952850A1 (en) | 2014-06-03 | 2015-12-09 | Optotune AG | Optical device, particularly for tuning the focal length of a lens of the device by means of optical feedback |
JP6917710B2 (ja) * | 2014-07-01 | 2021-08-11 | ソニーグループ株式会社 | 情報処理装置および方法 |
RU2603238C2 (ru) | 2014-07-15 | 2016-11-27 | Самсунг Электроникс Ко., Лтд. | Световодная структура, голографическое оптическое устройство и система формирования изображений |
US9865089B2 (en) | 2014-07-25 | 2018-01-09 | Microsoft Technology Licensing, Llc | Virtual reality environment with real world objects |
US20160077338A1 (en) | 2014-09-16 | 2016-03-17 | Steven John Robbins | Compact Projection Light Engine For A Diffractive Waveguide Display |
US9494799B2 (en) | 2014-09-24 | 2016-11-15 | Microsoft Technology Licensing, Llc | Waveguide eye tracking employing switchable diffraction gratings |
US10176625B2 (en) | 2014-09-25 | 2019-01-08 | Faro Technologies, Inc. | Augmented reality camera for use with 3D metrology equipment in forming 3D images from 2D camera images |
KR102688893B1 (ko) | 2014-09-29 | 2024-07-29 | 매직 립, 인코포레이티드 | 상이한 파장의 광을 도파관 밖으로 출력하기 위한 아키텍쳐 및 방법 |
US9612722B2 (en) | 2014-10-31 | 2017-04-04 | Microsoft Technology Licensing, Llc | Facilitating interaction between users and their environments using sounds |
US10371936B2 (en) | 2014-11-10 | 2019-08-06 | Leo D. Didomenico | Wide angle, broad-band, polarization independent beam steering and concentration of wave energy utilizing electronically controlled soft matter |
US20170243403A1 (en) | 2014-11-11 | 2017-08-24 | Bent Image Lab, Llc | Real-time shared augmented reality experience |
WO2016106220A1 (en) | 2014-12-22 | 2016-06-30 | Dimensions And Shapes, Llc | Headset vision system for portable devices |
US10018844B2 (en) | 2015-02-09 | 2018-07-10 | Microsoft Technology Licensing, Llc | Wearable image display system |
US9696795B2 (en) | 2015-02-13 | 2017-07-04 | Leap Motion, Inc. | Systems and methods of creating a realistic grab experience in virtual reality/augmented reality environments |
US10180734B2 (en) | 2015-03-05 | 2019-01-15 | Magic Leap, Inc. | Systems and methods for augmented reality |
WO2016146963A1 (en) | 2015-03-16 | 2016-09-22 | Popovich, Milan, Momcilo | Waveguide device incorporating a light pipe |
US9955862B2 (en) | 2015-03-17 | 2018-05-01 | Raytrx, Llc | System, method, and non-transitory computer-readable storage media related to correction of vision defects using a visual display |
US9779554B2 (en) | 2015-04-10 | 2017-10-03 | Sony Interactive Entertainment Inc. | Filtering and parental control methods for restricting visual activity on a head mounted display |
EP3578507B1 (en) | 2015-04-20 | 2022-10-12 | SZ DJI Technology Co., Ltd. | Systems and methods for thermally regulating sensor operation |
US10909464B2 (en) | 2015-04-29 | 2021-02-02 | Microsoft Technology Licensing, Llc | Semantic locations prediction |
US9664569B2 (en) | 2015-05-15 | 2017-05-30 | Google Inc. | Circuit board configurations facilitating operation of heat sensitive sensor components |
KR20160139727A (ko) | 2015-05-28 | 2016-12-07 | 엘지전자 주식회사 | 글래스타입 단말기 및 이의 제어방법 |
GB2539009A (en) | 2015-06-03 | 2016-12-07 | Tobii Ab | Gaze detection method and apparatus |
WO2016205396A1 (en) | 2015-06-15 | 2016-12-22 | Black Eric J | Methods and systems for communication with beamforming antennas |
FR3037672B1 (fr) | 2015-06-16 | 2017-06-16 | Parrot | Drone comportant des moyens perfectionnes de compensation du biais de la centrale inertielle en fonction de la temperature |
US9519084B1 (en) | 2015-06-18 | 2016-12-13 | Oculus Vr, Llc | Securing a fresnel lens to a refractive optical element |
WO2017004695A1 (en) | 2015-07-06 | 2017-01-12 | Frank Jones | Methods and devices for demountable head mounted displays |
US20170100664A1 (en) | 2015-10-12 | 2017-04-13 | Osterhout Group, Inc. | External user interface for head worn computing |
US20170038607A1 (en) | 2015-08-04 | 2017-02-09 | Rafael Camara | Enhanced-reality electronic device for low-vision pathologies, and implant procedure |
WO2017039308A1 (en) | 2015-08-31 | 2017-03-09 | Samsung Electronics Co., Ltd. | Virtual reality display apparatus and display method thereof |
JP6615541B2 (ja) | 2015-09-02 | 2019-12-04 | 株式会社バンダイナムコアミューズメント | 投影システム |
US10082865B1 (en) | 2015-09-29 | 2018-09-25 | Rockwell Collins, Inc. | Dynamic distortion mapping in a worn display |
US10067346B2 (en) | 2015-10-23 | 2018-09-04 | Microsoft Technology Licensing, Llc | Holographic display |
US9983709B2 (en) | 2015-11-02 | 2018-05-29 | Oculus Vr, Llc | Eye tracking using structured light |
WO2017079329A1 (en) | 2015-11-04 | 2017-05-11 | Magic Leap, Inc. | Dynamic display calibration based on eye-tracking |
US9671615B1 (en) | 2015-12-01 | 2017-06-06 | Microsoft Technology Licensing, Llc | Extended field of view in near-eye display using wide-spectrum imager |
US10445860B2 (en) | 2015-12-08 | 2019-10-15 | Facebook Technologies, Llc | Autofocus virtual reality headset |
US10025060B2 (en) | 2015-12-08 | 2018-07-17 | Oculus Vr, Llc | Focus adjusting virtual reality headset |
US20170185261A1 (en) | 2015-12-28 | 2017-06-29 | Htc Corporation | Virtual reality device, method for virtual reality |
EP3190447B1 (en) | 2016-01-06 | 2020-02-05 | Ricoh Company, Ltd. | Light guide and virtual image display device |
US10838116B2 (en) | 2016-01-06 | 2020-11-17 | University Of Utah Research Foundation | Low-power large aperture adaptive lenses for smart eyeglasses |
US9978180B2 (en) | 2016-01-25 | 2018-05-22 | Microsoft Technology Licensing, Llc | Frame projection for augmented reality environments |
US9891436B2 (en) | 2016-02-11 | 2018-02-13 | Microsoft Technology Licensing, Llc | Waveguide-based displays with anti-reflective and highly-reflective coating |
JP6686504B2 (ja) | 2016-02-15 | 2020-04-22 | セイコーエプソン株式会社 | 頭部装着型画像表示装置 |
WO2017173213A1 (en) | 2016-03-31 | 2017-10-05 | Zoll Medical Corporation | Systems and methods of tracking patient movement |
JP7055751B2 (ja) | 2016-04-07 | 2022-04-18 | マジック リープ, インコーポレイテッド | 拡張現実のためのシステムおよび方法 |
EP3236211A1 (en) | 2016-04-21 | 2017-10-25 | Thomson Licensing | Method and apparatus for estimating a pose of a rendering device |
US10197804B2 (en) | 2016-04-25 | 2019-02-05 | Microsoft Technology Licensing, Llc | Refractive coating for diffractive optical elements |
US10261162B2 (en) | 2016-04-26 | 2019-04-16 | Magic Leap, Inc. | Electromagnetic tracking with augmented reality systems |
US20170312032A1 (en) | 2016-04-27 | 2017-11-02 | Arthrology Consulting, Llc | Method for augmenting a surgical field with virtual guidance content |
US10241346B2 (en) | 2016-05-07 | 2019-03-26 | Microsoft Technology Licensing, Llc | Degrees of freedom for diffraction elements in wave expander |
US10215986B2 (en) | 2016-05-16 | 2019-02-26 | Microsoft Technology Licensing, Llc | Wedges for light transformation |
US11228770B2 (en) | 2016-05-16 | 2022-01-18 | Qualcomm Incorporated | Loop sample processing for high dynamic range and wide color gamut video coding |
US10078377B2 (en) | 2016-06-09 | 2018-09-18 | Microsoft Technology Licensing, Llc | Six DOF mixed reality input by fusing inertial handheld controller with hand tracking |
TW201803289A (zh) | 2016-07-11 | 2018-01-16 | 原相科技股份有限公司 | 可利用較小電路面積並同時考量節能省電以偵測空氣中之干擾訊號之功率來控制放大器之增益值的無線收發機裝置及方法 |
US10943359B2 (en) | 2016-08-04 | 2021-03-09 | Dolby Laboratories Licensing Corporation | Single depth tracked accommodation-vergence solutions |
CA3032812A1 (en) | 2016-08-04 | 2018-02-08 | Reification Inc. | Methods for simultaneous localization and mapping (slam) and related apparatus and systems |
JP6880174B2 (ja) * | 2016-08-22 | 2021-06-02 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | 仮想現実、拡張現実、および複合現実システムおよび方法 |
US10690936B2 (en) | 2016-08-29 | 2020-06-23 | Mentor Acquisition One, Llc | Adjustable nose bridge assembly for headworn computer |
US20180067779A1 (en) | 2016-09-06 | 2018-03-08 | Smartiply, Inc. | AP-Based Intelligent Fog Agent |
US20180082480A1 (en) | 2016-09-16 | 2018-03-22 | John R. White | Augmented reality surgical technique guidance |
CA3036709A1 (en) | 2016-09-26 | 2018-03-29 | Magic Leap, Inc. | Calibration of magnetic and optical sensors in a virtual reality or augmented reality display system |
US10134192B2 (en) | 2016-10-17 | 2018-11-20 | Microsoft Technology Licensing, Llc | Generating and displaying a computer generated image on a future pose of a real world object |
US10373297B2 (en) | 2016-10-26 | 2019-08-06 | Valve Corporation | Using pupil location to correct optical lens distortion |
US10735691B2 (en) | 2016-11-08 | 2020-08-04 | Rockwell Automation Technologies, Inc. | Virtual reality and augmented reality for industrial automation |
EP3320829A1 (en) | 2016-11-10 | 2018-05-16 | E-Health Technical Solutions, S.L. | System for integrally measuring clinical parameters of visual function |
KR102573744B1 (ko) * | 2016-11-23 | 2023-09-01 | 삼성디스플레이 주식회사 | 표시 장치 및 그 구동 방법 |
CN108885533B (zh) | 2016-12-21 | 2021-05-07 | 杰创科科技有限公司 | 组合虚拟现实和增强现实 |
US11138436B2 (en) | 2016-12-29 | 2021-10-05 | Magic Leap, Inc. | Automatic control of wearable display device based on external conditions |
US10489975B2 (en) | 2017-01-04 | 2019-11-26 | Daqri, Llc | Environmental mapping system |
US20180255285A1 (en) | 2017-03-06 | 2018-09-06 | Universal City Studios Llc | Systems and methods for layered virtual features in an amusement park environment |
EP3376279B1 (en) | 2017-03-13 | 2022-08-31 | Essilor International | Optical device for a head-mounted display, and head-mounted device incorporating it for augmented reality |
US10241545B1 (en) | 2017-06-01 | 2019-03-26 | Facebook Technologies, Llc | Dynamic distortion correction for optical compensation |
US11132533B2 (en) | 2017-06-07 | 2021-09-28 | David Scott Dreessen | Systems and methods for creating target motion, capturing motion, analyzing motion, and improving motion |
US20190196690A1 (en) | 2017-06-23 | 2019-06-27 | Zyetric Virtual Reality Limited | First-person role playing interactive augmented reality |
US10402448B2 (en) | 2017-06-28 | 2019-09-03 | Google Llc | Image retrieval with deep local feature descriptors and attention-based keypoint descriptors |
US10578870B2 (en) | 2017-07-26 | 2020-03-03 | Magic Leap, Inc. | Exit pupil expander |
US20190056591A1 (en) | 2017-08-18 | 2019-02-21 | Microsoft Technology Licensing, Llc | Optical waveguide with multiple antireflective coatings |
US9948612B1 (en) | 2017-09-27 | 2018-04-17 | Citrix Systems, Inc. | Secure single sign on and conditional access for client applications |
US10437065B2 (en) | 2017-10-03 | 2019-10-08 | Microsoft Technology Licensing, Llc | IPD correction and reprojection for accurate mixed reality object placement |
US10317680B1 (en) | 2017-11-09 | 2019-06-11 | Facebook Technologies, Llc | Optical aberration correction based on user eye position in head mounted displays |
EP3482802B1 (de) | 2017-11-13 | 2021-01-13 | VR Coaster GmbH & Co. KG | Vorrichtung zum erleben einer virtual reality simulation in einer unterwasserwelt |
US10916059B2 (en) | 2017-12-06 | 2021-02-09 | Universal City Studios Llc | Interactive video game system having an augmented virtual representation |
US11348257B2 (en) | 2018-01-29 | 2022-05-31 | Philipp K. Lang | Augmented reality guidance for orthopedic and other surgical procedures |
US10422989B2 (en) | 2018-02-06 | 2019-09-24 | Microsoft Technology Licensing, Llc | Optical systems including a single actuator and multiple fluid-filled optical lenses for near-eye-display devices |
GB201805301D0 (en) | 2018-03-29 | 2018-05-16 | Adlens Ltd | Improvements In Or Relating To Variable Focusing Power Optical Devices |
US10504288B2 (en) | 2018-04-17 | 2019-12-10 | Patrick Piemonte & Ryan Staake | Systems and methods for shared creation of augmented reality |
JP6779939B2 (ja) | 2018-04-19 | 2020-11-04 | グリー株式会社 | ゲーム装置、制御方法及び制御プログラム |
US10969486B2 (en) | 2018-04-26 | 2021-04-06 | SCRRD, Inc. | Augmented reality platform and method for use of same |
US10740966B2 (en) | 2018-05-14 | 2020-08-11 | Microsoft Technology Licensing, Llc | Fake thickness on a two-dimensional object |
EP3804306B1 (en) * | 2018-06-05 | 2023-12-27 | Magic Leap, Inc. | Homography transformation matrices based temperature calibration of a viewing system |
US11510027B2 (en) | 2018-07-03 | 2022-11-22 | Magic Leap, Inc. | Systems and methods for virtual and augmented reality |
US10902678B2 (en) | 2018-09-06 | 2021-01-26 | Curious Company, LLC | Display of hidden information |
US11017217B2 (en) | 2018-10-09 | 2021-05-25 | Midea Group Co., Ltd. | System and method for controlling appliances using motion gestures |
US10516853B1 (en) | 2018-10-10 | 2019-12-24 | Plutovr | Aligning virtual representations to inputs and outputs |
US10678323B2 (en) | 2018-10-10 | 2020-06-09 | Plutovr | Reference frames for virtual environments |
US10838488B2 (en) | 2018-10-10 | 2020-11-17 | Plutovr | Evaluating alignment of inputs and outputs for virtual environments |
US11216150B2 (en) | 2019-06-28 | 2022-01-04 | Wen-Chieh Geoffrey Lee | Pervasive 3D graphical user interface with vector field functionality |
WO2021007581A1 (en) | 2019-07-11 | 2021-01-14 | Elo Labs, Inc. | Interactive personal training system |
-
2019
- 2019-06-03 EP EP19815876.8A patent/EP3804306B1/en active Active
- 2019-06-03 JP JP2020567766A patent/JP7369147B2/ja active Active
- 2019-06-03 CN CN201980046303.8A patent/CN112400157B/zh active Active
- 2019-06-03 WO PCT/US2019/035245 patent/WO2019236495A1/en unknown
- 2019-06-03 US US16/430,252 patent/US10825424B2/en active Active
-
2020
- 2020-09-28 US US17/034,982 patent/US11200870B2/en active Active
-
2023
- 2023-07-13 JP JP2023114940A patent/JP2023133345A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2499635A (en) * | 2012-02-23 | 2013-08-28 | Canon Kk | Image processing for projection on a projection screen |
CN105850113A (zh) * | 2014-01-06 | 2016-08-10 | 欧库勒斯虚拟现实有限责任公司 | 虚拟现实系统的校准 |
CN107076985A (zh) * | 2014-08-15 | 2017-08-18 | 阿莱恩技术有限公司 | 具有弯曲的焦面、或目标基准元件和场补偿器的共焦成像设备 |
CN105404082A (zh) * | 2014-09-05 | 2016-03-16 | 船井电机株式会社 | 图像投影设备 |
EP3047883A1 (en) * | 2015-01-21 | 2016-07-27 | Oculus VR, LLC | Compressible eyecup assemblies in a virtual reality headset |
US20180052501A1 (en) * | 2016-08-22 | 2018-02-22 | Magic Leap, Inc. | Thermal dissipation for wearable device |
US9978118B1 (en) * | 2017-01-25 | 2018-05-22 | Microsoft Technology Licensing, Llc | No miss cache structure for real-time image transformations with data compression |
CN110199267A (zh) * | 2017-01-25 | 2019-09-03 | 微软技术许可有限责任公司 | 利用数据压缩进行实时图像转换的无缺失的高速缓存结构 |
Also Published As
Publication number | Publication date |
---|---|
EP3804306B1 (en) | 2023-12-27 |
US20190371276A1 (en) | 2019-12-05 |
CN112400157B (zh) | 2024-07-09 |
JP7369147B2 (ja) | 2023-10-25 |
EP3804306A4 (en) | 2022-03-02 |
JP2023133345A (ja) | 2023-09-22 |
WO2019236495A1 (en) | 2019-12-12 |
US11200870B2 (en) | 2021-12-14 |
EP3804306A1 (en) | 2021-04-14 |
JP2021527234A (ja) | 2021-10-11 |
US20210012753A1 (en) | 2021-01-14 |
US10825424B2 (en) | 2020-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112400157B (zh) | 观看系统的基于单应性变换矩阵的温度校准 | |
CN110325895B (zh) | 聚焦调整多平面头戴式显示器 | |
US10558049B2 (en) | Focal surface display | |
CN109073891B (zh) | 用于近眼显示的双眼图像对准 | |
Mercier et al. | Fast gaze-contingent optimal decompositions for multifocal displays. | |
US11200646B2 (en) | Compensation for deformation in head mounted display systems | |
US20150312558A1 (en) | Stereoscopic rendering to eye positions | |
EP3409013B1 (en) | Viewing device adjustment based on eye accommodation in relation to a display | |
JP2019507363A (ja) | 焦点調整するバーチャルリアリティヘッドセット | |
EP3179289B1 (en) | Focus adjusting virtual reality headset | |
US11758115B2 (en) | Method for the user-specific calibration of a display apparatus, wearable on the head of a user, for an augmented presentation | |
US20220060680A1 (en) | Head mounted display apparatus | |
US20230213772A1 (en) | Display systems with collection optics for disparity sensing detectors | |
JP2023526212A (ja) | コヒーレントコンテキストを用いた、ピース毎の漸次的かつ持続的な較正 | |
US20230209032A1 (en) | Detection, analysis and correction of disparities in a display system utilizing disparity sensing port | |
US20230084541A1 (en) | Compact imaging optics using spatially located, free form optical components for distortion compensation and image clarity enhancement | |
CN110431470B (zh) | 焦面显示 | |
US20230273433A1 (en) | Stereo alignment assessment for head-mounted display | |
CN117724240A (zh) | 具有面内照明的眼睛追踪系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |