CN112366319B - 复合纳米SnO2负极材料与中间相碳微球的制备方法 - Google Patents

复合纳米SnO2负极材料与中间相碳微球的制备方法 Download PDF

Info

Publication number
CN112366319B
CN112366319B CN202011251808.9A CN202011251808A CN112366319B CN 112366319 B CN112366319 B CN 112366319B CN 202011251808 A CN202011251808 A CN 202011251808A CN 112366319 B CN112366319 B CN 112366319B
Authority
CN
China
Prior art keywords
solution
mesocarbon microbeads
ethyl alcohol
absolute ethyl
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011251808.9A
Other languages
English (en)
Other versions
CN112366319A (zh
Inventor
杨万光
王盼
江船
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Tianjin New Energy Technology Ltd
Original Assignee
Guangdong Tianjin New Energy Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Tianjin New Energy Technology Ltd filed Critical Guangdong Tianjin New Energy Technology Ltd
Publication of CN112366319A publication Critical patent/CN112366319A/zh
Application granted granted Critical
Publication of CN112366319B publication Critical patent/CN112366319B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开一种复合纳米SnO2负极材料与中间相碳微球的制备方法。制备方法采用微波辅助溶胶‑凝胶法,制备纳米SnO2的同时,引入中间相碳微球材料,再经过一系列高温处理,制得结合度良好的纳米氧化锡‑中间相碳微球复合材料。本发明相比现有的负极改性对电池循环寿命的提高有限,采用本发明的技术手段,可以有效发挥中间相碳微球和纳米氧化锡的各自优势,从而大大提升锂离子电池的循环寿命。

Description

复合纳米SnO2负极材料与中间相碳微球的制备方法
技术领域
本发明涉及电化学领域,特别涉及一种复合纳米SnO2负极材料与中间相碳微球的制备方法。
背景技术
现有技术对碳基材料进行表面包覆改性,一般是直接使用成品材料复合,例如,采用SnO2对碳基材料进行包覆,通常是直接采用高温煅烧制备纳米 SnO2,再与中间相碳微球(MCMB)直接成品复合。这种工艺存在以下问题:
(1)、表面包覆改性只能通过对其表面修饰来改善性能,并不能改变碳材料结构,对循环的改善有限;
(2)、直接使用纳米SnO2首次放电过程中提及膨胀严重,循环期间锂离子的反复嵌入与脱出过程中一出现“粉化”和“团聚”现象,导致电化学性能迅速下降。
发明内容
针对现有技术存在的问题,本发明提供一种复合纳米SnO2负极材料与中间相碳微球的制备方法。制备方法采用微波辅助溶胶-凝胶法,制备纳米SnO2的同时,引入中间相碳微球材料,再经过一系列高温处理,制得结合度良好的纳米氧化锡-中间相碳微球复合材料。
为实现上述目的,本发明的具体技术方案如下:
一种复合纳米SnO2负极材料与中间相碳微球的制备方法,包括以下步骤:
(1)、将锡酸四丁酯、无水乙醇和乙酰丙酮均匀混合,所得溶液标记为A 溶液;
(2)、将六氟锡酸锂、无水乙醇、柠檬酸、去离子水均匀混合,所得溶液标记为B溶液;
(3)、在剧烈搅拌条件下,将B溶液缓慢加入到A溶液中,得到均匀透明的溶胶,继续搅拌1-10h,直至形成凝胶C;
(4)、将中粒径在10-16μm的中间相碳微球颗粒加入到步骤(3)所得的凝胶中,加入过程中,不断搅拌直至均匀;
(5)、步骤(4)所得产物经干燥、研磨后装入中间相碳微球坩埚,置于微波炉中,在空气气氛下升温到500-850℃,保温20-80min,再将产物机械研磨后即可。
优选地,所述步骤(1)中,锡酸四丁酯、无水乙醇和乙酰丙酮的摩尔比为5∶88∶3。
优选地,所述步骤(2)中,六氟锡酸锂、无水乙醇、柠檬酸、去离子的摩尔比为(4~5)∶64∶3∶34。
优选地,所述步骤(4)中,中间相碳微球颗粒的加入量按摩尔比 nC∶n(LiNO3)=1∶4添加。
采用本发明的技术方案,具有以下有益效果:
相比现有的负极改性对电池循环寿命的提高有限,采用本发明的技术手段,可以有效发挥中间相碳微球和纳米氧化锡的各自优势,从而大大提升锂离子电池的循环寿命。
附图说明
图1为本发明的工艺流程图。
具体实施方式
以下结合附图1和具体实施例,对本发明进一步说明。
实施例1
(1)按摩尔比记,将锡酸四丁酯、无水乙醇和乙酰丙酮按5∶88∶3均匀混合,所得溶液标记为A溶液;
(2按摩尔比记,将六氟锡酸锂、无水乙醇、柠檬酸、去离子水按4∶64∶3∶34 均匀混合,所得溶液标记为B溶液;
(3)在剧烈搅拌条件下,将B溶液缓慢加入到A溶液中,得到均匀透明的溶胶,继续搅拌10h,直至形成凝胶C;
(4)将中粒径在10-16μm的中间相碳微球颗粒按摩尔比nC∶n(LiNO3)=1∶4 加入到步骤(3)所得的凝胶中,加入过程中,不断搅拌直至均匀;
(5)步骤(4)所得产物经干燥、研磨后装入中间相碳微球坩埚,置于微波炉中,在空气气氛下升温到850℃,保温20min,再将产物机械研磨后即可。
实施例2
(1)按摩尔比记,将锡酸四丁酯、无水乙醇和乙酰丙酮按5∶88∶3均匀混合,所得溶液标记为A溶液;
(2按摩尔比记,将六氟锡酸锂、无水乙醇、柠檬酸、去离子水按4∶64∶3∶34 均匀混合,所得溶液标记为B溶液;
(3)在剧烈搅拌条件下,将B溶液缓慢加入到A溶液中,得到均匀透明的溶胶,继续搅拌5h,直至形成凝胶C;
(4)将中粒径在10-16μm的中间相碳微球按摩尔比nC∶n(LiNO3)=1∶4加入到步骤(3)所得的凝胶中,加入过程中,不断搅拌直至均匀;
(5)步骤(4)所得产物经干燥、研磨后装入中间相碳微球坩埚,置于微波炉中,在空气气氛下升温到500℃,保温80min,再将产物机械研磨后即可
实施例3:
(1)按摩尔比记,将锡酸四丁酯、无水乙醇和乙酰丙酮按5∶88∶3均匀混合,所得溶液标记为A溶液,备用;
(2按摩尔比记,将六氟锡酸锂、无水乙醇、柠檬酸、去离子水按 5∶64∶3∶34均匀混合,所得溶液标记为B溶液;
(3)在剧烈搅拌条件下,将B溶液缓慢加入到A溶液中,得到均匀透明的溶胶,继续搅拌8h,直至形成凝胶;
(4)将中粒径在10-16μm的中间相碳微球颗粒按摩尔比nC∶n(LiNO3)=1∶4 加入到步骤(3)所得的凝胶中,加入过程中,不断搅拌直至均匀;
(5)步骤(4)所得产物经干燥、研磨后装入中间相碳微球坩埚,置于微波炉中,在空气气氛下升温到800℃,保温60min,再将产物机械研磨后即可
实施例4:
(1)按摩尔比记,将锡酸四丁酯、无水乙醇和乙酰丙酮按5∶88∶3均匀混合,所得溶液标记为A溶液;
(2按摩尔比记,将六氟锡酸锂、无水乙醇、柠檬酸、去离子水按 4∶64∶3∶34均匀混合,所得溶液标记为B溶液;
(3)在剧烈搅拌条件下,将B溶液缓慢加入到A溶液中,得到均匀透明的溶胶,继续搅拌5h,直至形成凝胶C;
(4)将中粒径在10-16μm的天然中间相碳微球颗粒按摩尔比 nC∶n(LiNO3)=1∶4加入到步骤(3)所得的凝胶中,加入过程中,不断搅拌直至均匀;
(5)步骤(4)所得产物经干燥、研磨后装入中间相碳微球坩埚,置于微波炉中,在空气气氛下升温到750℃,保温50min,再将产物机械研磨后即可
比较例1:
中间相碳微球颗粒,直接作为比较例1。
比较例2:
人造石墨,直接作为比较例2。
测试方法
循环性能的测试,需要使用本发明材料制备锂离子电池,所使用的正极材料为含锂的过渡氧化物LiCO2,所使用电解液由电解质+溶剂组成,电解质是LiPF66,溶剂为有机溶剂,隔膜采用聚乙烯(PE)、聚丙烯(PP)组成的 PP-PE-PP三层复合膜,正负极集体分别采用铝箔和铜箔。聚偏氟乙烯(PVDF) 用作正极的粘结剂,羧基丁苯胶乳(SBR)则用作负极粘结剂。电池循环测试采用1C/1C电流充放,循环800次对比相对初始容量的容量保持率。
测试结果
表1
Figure BDA0002770931360000051
从表1所示的测试结果可以看出,采用本发明工艺制备的纳米氧化锡-中间相碳微球复合材料作为负极材料,大大提升锂离子电池的循环寿命。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (3)

1.一种复合纳米SnO2负极材料与中间相碳微球的制备方法,其特征在于,包括以下步骤:
(1)、将锡酸四丁酯、无水乙醇和乙酰丙酮均匀混合,所得溶液标记为A溶液;
(2)、将六氟锡酸锂、无水乙醇、柠檬酸、去离子水均匀混合,所得溶液标记为B溶液;
(3)、在剧烈搅拌条件下,将B溶液缓慢加入到A溶液中,得到均匀透明的溶胶,继续搅拌1-10h,直至形成凝胶C;
(4)、将中粒径在10-16μm的中间相碳微球颗粒加入到步骤(3)所得的凝胶中,加入过程中,不断搅拌直至均匀;
(5)、步骤(4)所得产物经干燥、研磨后装入中间相碳微球坩埚,置于微波炉中,在空气气氛下升温到500-850℃,保温20-80min,再将产物机械研磨后即可。
2.根据权利要求1所述的复合纳米SnO2负极材料与中间相碳微球的制备方法,其特征在于,所述步骤(1)中,锡酸四丁酯、无水乙醇和乙酰丙酮的摩尔比为5:88:3。
3.根据权利要求1所述的复合纳米SnO2负极材料与中间相碳微球的制备方法,其特征在于,所述步骤(2)中,六氟锡酸锂、无水乙醇、柠檬酸、去离子水的摩尔比为(4~5):64:3:34。
CN202011251808.9A 2019-12-31 2020-11-10 复合纳米SnO2负极材料与中间相碳微球的制备方法 Active CN112366319B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019114243478 2019-12-31
CN201911424347 2019-12-31

Publications (2)

Publication Number Publication Date
CN112366319A CN112366319A (zh) 2021-02-12
CN112366319B true CN112366319B (zh) 2022-06-14

Family

ID=74514523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011251808.9A Active CN112366319B (zh) 2019-12-31 2020-11-10 复合纳米SnO2负极材料与中间相碳微球的制备方法

Country Status (1)

Country Link
CN (1) CN112366319B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944598A (zh) * 2010-08-31 2011-01-12 天津巴莫科技股份有限公司 一种锂离子电池负极材料的制备方法
CN103236518A (zh) * 2013-04-28 2013-08-07 华南师范大学 一种锂离子电池负极纳米材料SnO2/MCMB核壳及其制备方法与应用
CN104218232A (zh) * 2014-09-16 2014-12-17 郑州大学 一种石墨烯修饰的二氧化锡锂离子电池负极材料的制备方法
CN109301204A (zh) * 2018-09-25 2019-02-01 陕西科技大学 一种空心球结构硫化锡/氧化锡锂离子电池负极材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944598A (zh) * 2010-08-31 2011-01-12 天津巴莫科技股份有限公司 一种锂离子电池负极材料的制备方法
CN103236518A (zh) * 2013-04-28 2013-08-07 华南师范大学 一种锂离子电池负极纳米材料SnO2/MCMB核壳及其制备方法与应用
CN104218232A (zh) * 2014-09-16 2014-12-17 郑州大学 一种石墨烯修饰的二氧化锡锂离子电池负极材料的制备方法
CN109301204A (zh) * 2018-09-25 2019-02-01 陕西科技大学 一种空心球结构硫化锡/氧化锡锂离子电池负极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SnO2 nanorods grown on MCMB as the anode material for lithium ion battery;Beibei Zhang et al.;《Journal of Alloys and Compounds》;20130704;全文 *

Also Published As

Publication number Publication date
CN112366319A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
CN107978739B (zh) 一种氟化磷酸锰钛钠/碳复合材料及其制备方法和作为钠离子正极材料的应用
CN108615875A (zh) 一种富锂锰基正极材料及其制备方法
CN112909234A (zh) 一种锂负极或钠负极的制备方法与应用
CN105470455A (zh) 一种改性锂离子电池正极材料及其制备方法
CN105789606A (zh) 钛酸锂包覆锂离子电池镍钴锰正极材料的制备方法
CN108777294B (zh) 一种由纳米片组成的碳支持的多孔球形MoN及其作为负极材料在锂电池中的应用
CN106960955A (zh) 钒硫化物包覆的锂离子电池三元正极材料及其制备方法
CN103066265A (zh) 钠离子电池负极活性物质及其制备方法和应用
CN102664267B (zh) 共掺杂的磷酸钒锂正极材料及其应用
CN109888247B (zh) 一种锂离子电池用钛酸锌锂/碳纳米复合负极材料的制备方法
CN105226267B (zh) 三维碳纳米管修饰尖晶石镍锰酸锂材料及其制备方法和应用
CN109473656A (zh) 一种氮化钛酸锂/氮化二氧化钛复合电极材料及其制备方法
CN109509874A (zh) 一种三氧化钼包覆富锂锰基正极材料的制备方法
CN108899541B (zh) 一种硅酸镁锂包覆改性钛酸锌锂负极材料及其制备方法
CN103000874A (zh) 一种碳包覆三元正极材料的制备方法
CN107946564B (zh) 富钠锰基Na4Mn2O5/Na0.7MnO2复合材料及其制备方法和应用
CN106340621A (zh) 一种锂电池用铁系负极材料及其制备方法
CN107026263A (zh) 海胆状硫化铋/大孔石墨烯复合材料、制备方法及其应用
CN114335534A (zh) 磷酸锆锂快离子导体包覆改性的钴酸锂正极材料及其制备方法与应用
CN104466182A (zh) 一种氮掺杂纳米碳包覆/氧化改性石墨复合材料及其制备方法
CN107204424B (zh) 一种富锂锰基层状锂电池正极材料的制备方法
CN104143632A (zh) 一种锡基铁碳复合锂电池负极材料、制备方法及应用
CN105185969B (zh) 一种正极材料及其制备方法
CN112366319B (zh) 复合纳米SnO2负极材料与中间相碳微球的制备方法
CN103715408B (zh) 锂离子电池负极材料钛酸锌锂的溶胶凝胶制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PP01 Preservation of patent right
PP01 Preservation of patent right

Effective date of registration: 20231127

Granted publication date: 20220614