CN112342531A - 一种利用低频射频电浆制备ild绝缘层的晶圆制造工艺 - Google Patents

一种利用低频射频电浆制备ild绝缘层的晶圆制造工艺 Download PDF

Info

Publication number
CN112342531A
CN112342531A CN202011119874.0A CN202011119874A CN112342531A CN 112342531 A CN112342531 A CN 112342531A CN 202011119874 A CN202011119874 A CN 202011119874A CN 112342531 A CN112342531 A CN 112342531A
Authority
CN
China
Prior art keywords
wafer
ild
layer
plasma
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011119874.0A
Other languages
English (en)
Inventor
严立巍
符德荣
文锺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaoxing Tongxincheng Integrated Circuit Co ltd
Original Assignee
Shaoxing Tongxincheng Integrated Circuit Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaoxing Tongxincheng Integrated Circuit Co ltd filed Critical Shaoxing Tongxincheng Integrated Circuit Co ltd
Priority to CN202011119874.0A priority Critical patent/CN112342531A/zh
Publication of CN112342531A publication Critical patent/CN112342531A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明公开一种利用低频射频电浆制备ILD绝缘层的晶圆制造工艺,包括以下步骤:S1、将晶圆表面清洁后放入RF plasma反应器中,晶圆边缘用环形夹具固定,由下电极的缝隙注入高温气体对晶圆底部进行加热,使晶圆保持一定温度;S2、通过真空泵对RF plasma反应器进行抽气,使RF plasma反应器内部处于真空状态,然后通入N2达到反应压力;S3、通入有机前驱物和O2,同时控制电极板间的距离,开启射频电源,通过低频RF generate的轰击在电极间产生等离子体从而在晶圆表面沉积ILD绝缘层。本发明使用低频射频电浆通入TEOS及TMP气体,以N2载体通入反应腔体,在相对高温下利用低频射频电浆的轰击及相对较高反应温度可形成致密且掺杂物键结稳定的ILD膜。

Description

一种利用低频射频电浆制备ILD绝缘层的晶圆制造工艺
技术领域
本发明涉及晶圆封装领域,具体的是一种利用低频射频电浆制备ILD绝缘层的晶圆制造工艺。
背景技术
介质层是硅器件与金属层之间及金属层与金属层的电绝缘层,也称为层间介质ILD。层间介质ILD包括SiO2、BPSG、PSG、Polymers、SiN4、Aerogels及low-k类介质等。现行功率半导体(如MOSFET,IGBT,PMIC等)的ILD在器件的运作及信赖性上扮演十分重要的角色,ILD整体的绝缘性必须完美,在极大电压/电流的工作循环中,不能有漏电的现象,绝缘层中不能有孔隙存在,必须有足够的致密度,同时由于元件散热的考量,高功率元件避免在金属层上有厚的保护膜覆盖,因此ILD本身必须具备抵挡处界水分及Na+、K+活性离子的能力,即ILD密化后能阻挡水气并有P的键结可以扑捉Na+或K+等活性离子,而不至于扩散到电晶体区域而影响电晶体的运作。
目前,层间介质ILD一般采用APCVD或SACVD的Ozone与TEOS的沉积方式,但是上述工艺存在以下缺点:(1)膜十分松散且多孔,致密性不足;(2)固化时掺杂物会大量向外扩散;(3)掺杂物键结不稳定,高温步骤后堆积在膜表层,且扩散到晶体基体上。若采用传统的PETEOS工艺,由于高频射频等离子体所形成的膜也十分松散,P掺杂物键合以不稳定且应力较高,高温步骤后容易,产生缺隙。若采用LPTEOS(低压TEOS CVD)工艺,成膜温度高(>750℃)ILD膜也比较致密,掺杂物也十分稳定,但由于LPTEOS湿加热炉管中的气相沈积工艺,一定会在晶圆的侧面及背面也形成沈积,在之后的减薄工艺中,背面研磨时,侧壁的LPTEOS膜容易因应力变化而破裂脱落,造成制程中缺隙,不易解决。
发明内容
为解决上述背景技术中提到的不足,本发明的目的在于提供一种利用低频射频电浆制备ILD绝缘层的晶圆制造工艺,使用低频射频电浆通入TEOS及TMP气体,以N2载体通入反应腔体,在相对高温(400-800℃)下利用低频(300-1000KHZ)射频电浆的轰击及相对较高反应温度可形成致密且掺杂物键结稳定的ILD膜。
本发明的目的可以通过以下技术方案实现:
一种利用低频射频电浆制备ILD绝缘层的晶圆制造工艺,包括以下步骤:
S1、将晶圆表面清洁后放入RF plasma反应器中,晶圆边缘用环形夹具固定,对晶圆进行加热使晶圆保持一定温度;
S2、通过真空泵对RF plasma反应器进行抽气,使RF plasma反应器内部处于真空状态,然后通入惰性气体达到反应压力;
S3、通入有机前驱物和O2,同时控制电极板间的距离,开启射频电源,通过低频RFgenerate的轰击在电极间产生等离子体从而在晶圆表面沉积ILD绝缘层。
优选地,步骤S1中晶圆加热至400-800℃,晶圆加热方式为高温气体加热、辐射加热的一种或两者组合。
优选地,步骤S2中中反应压力为50-400mTorr。
优选地,步骤S3中有机前驱物通过气体载体通入RF plasma反应器中,气体载体为N2或He。
优选地,步骤S3中射频频率为300-1000KHz,射频的功率200-1000W。
优选地,ILD绝缘层为双层或三层的ILD结构。
优选地,双层ILD结构包括一层ILD-1和一层ILD-2,ILD-1沉积在晶圆表面,ILD-2沉积在ILD-1表面。
优选地,三层ILD结构为两层ILD-1和一层ILD-2,ILD-2设置在两层ILD-1之间,层ILD-1和ILD-2依次沉积在晶圆表面。
优选地,ILD-1为无掺杂的TEOS沉积层,ILD-2为掺杂P的TEOS沉积层。
优选地,无掺杂的TEOS沉积层射频时仅通入有机前驱物为TEOS,掺杂P的TEOS沉积层射频时通入有机前驱物为TEOS和TMP。
本发明的有益效果:
1、本发明使用低频射频电浆通入TEOS及TMP气体,以N2载体通入反应腔体,在相对高温(400-800℃)下利用低频(300-1000KHZ)射频电浆的轰击及相对较高反应温度可形成致密且掺杂物键结稳定的ILD膜;
2、本发明形成双层或三层叠片膜,相对于传统的ILD制程膜致密,掺杂物键结稳定,吸附效果佳,粘附好且不至产生向外扩散的问题,可达成高信赖性的功率元件需求;三层结构可使膜表面不至因P的累积而造成与金属或封装材料的粘附不佳。
附图说明
下面结合附图对本发明作进一步的说明。
图1是本发明采用高温气体加热晶圆的RF plasma反应器的结构示意图;
图2是本发明采用高温气体和辐射组合加热晶圆的RF plasma反应器的结构示意图
图3是本发明实施例1的工艺成型图;
图4是本发明实施例2的工艺成型图。
图中:
1-RF反应器,2-RF电源,3-上电极,4-下电极,5-固定夹具,6-晶圆,7-气泵,8-ILD-1层,9-ILD-2层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“开孔”、“上”、“下”、“厚度”、“顶”、“中”、“长度”、“内”、“四周”等指示方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的组件或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本发明的限制。
实施例1
一种利用低频射频电浆制备ILD绝缘层的晶圆制造工艺,包括以下步骤:
S1、将晶圆表面清洁后放入RF plasma反应器中,晶圆边缘用环形夹具固定,由下电极的缝隙注入高温气体对晶圆底部进行加热,使晶圆保持450℃;
S2、通过真空泵对RF plasma反应器进行抽气,使RF plasma反应器内部处于真空状态,然后通入N2达到反应压力为200mTorr;
S3、通入TEOS和O2,同时控制电极板间的距离,开启射频电源,通过800KHz低频RFgenerate的轰击在电极间产生等离子体从而在晶圆表面沉积ILD-1层;再通入TEOS、TMP和O2,通过800KHz低频RF generate在ILD-1层表面沉积ILD-2层,形成两侧ILD结构的ILD绝缘层。
实施例2
一种利用低频射频电浆制备ILD绝缘层的晶圆制造工艺,包括以下步骤:
S1、将晶圆表面清洁后放入RF plasma反应器中,晶圆边缘用环形夹具固定,由下电极的缝隙注入高温气体对晶圆底部进行加热结合辐射加热,使晶圆保持550℃;
S2、通过真空泵对RF plasma反应器进行抽气,使RF plasma反应器内部处于真空状态,然后通入N2达到反应压力为50mTorr;
S3、通入TEOS和O2,同时控制电极板间的距离,开启射频电源,通过500KHz低频RFgenerate的轰击在电极间产生等离子体从而在晶圆表面沉积ILD-1层,再通入TEOS、TMP和O2,通过500KHz低频RF generate在ILD-1层表面沉积ILD-2层,最后再通入TEOS和O2,通过500KHz低频RF generate在ILD-2层表面沉积ILD-1层,形成三层ILD结构的ILD绝缘层。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (10)

1.一种利用低频射频电浆制备ILD绝缘层的晶圆制造工艺,其特征在于,包括以下步骤:
S1、将晶圆表面清洁后放入RF plasma反应器中,晶圆边缘用环形夹具固定,对晶圆进行加热使晶圆保持一定温度;
S2、通过真空泵对RF plasma反应器进行抽气,使RF plasma反应器内部处于真空状态,然后通入惰性气体达到反应压力;
S3、通入有机前驱物和O2,同时控制电极板间的距离,开启射频电源,通过低频RFgenerate的轰击在电极间产生等离子体从而在晶圆表面沉积ILD绝缘层。
2.根据权利要求1所述的利用低频射频电浆制备ILD绝缘层的晶圆制造工艺,其特征在于,所述步骤S1中晶圆加热至400-800℃,晶圆加热方式为高温气体、热和辐射的一种或两种组合。
3.根据权利要求1所述的利用低频射频电浆制备ILD绝缘层的晶圆制造工艺,其特征在于,所述步骤S2中反应压力为50-400mTorr。
4.根据权利要求1所述的利用低频射频电浆制备ILD绝缘层的晶圆制造工艺,其特征在于,所述步骤S3中有机前驱物通过气体载体通入RF plasma反应器中,所述气体载体为N2或He。
5.根据权利要求1所述的利用低频射频电浆制备ILD绝缘层的晶圆制造工艺,其特征在于,所述步骤S3中射频频率为300-1000KHz,射频的功率200-1000W。
6.根据权利要求1所述的利用低频射频电浆制备ILD绝缘层的晶圆制造工艺,其特征在于,所述ILD绝缘层为双层或三层的ILD结构。
7.根据权利要求6所述的利用低频射频电浆制备ILD绝缘层的晶圆制造工艺,其特征在于,所述双层ILD结构包括一层ILD-1和一层ILD-2,所述ILD-1沉积在晶圆表面,所述ILD-2沉积在ILD-1表面。
8.根据权利要求6所述的利用低频射频电浆制备ILD绝缘层的晶圆制造工艺,其特征在于,所述三层ILD结构为两层ILD-1和一层ILD-2,所述ILD-2设置在两层ILD-1之间,所述层ILD-1和ILD-2依次沉积在晶圆表面。
9.根据权利要求7或8所述的利用低频射频电浆制备ILD绝缘层的晶圆制造工艺,其特征在于,所述ILD-1为无掺杂的TEOS沉积层,所述ILD-2为掺杂P的TEOS沉积层。
10.根据权利要求9所述的利用低频射频电浆制备ILD绝缘层的晶圆制造工艺,其特征在于,所述无掺杂的TEOS沉积层射频时仅通入有机前驱物为TEOS,所述掺杂P的TEOS沉积层射频时通入有机前驱物为TEOS和TMP。
CN202011119874.0A 2020-10-19 2020-10-19 一种利用低频射频电浆制备ild绝缘层的晶圆制造工艺 Pending CN112342531A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011119874.0A CN112342531A (zh) 2020-10-19 2020-10-19 一种利用低频射频电浆制备ild绝缘层的晶圆制造工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011119874.0A CN112342531A (zh) 2020-10-19 2020-10-19 一种利用低频射频电浆制备ild绝缘层的晶圆制造工艺

Publications (1)

Publication Number Publication Date
CN112342531A true CN112342531A (zh) 2021-02-09

Family

ID=74362215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011119874.0A Pending CN112342531A (zh) 2020-10-19 2020-10-19 一种利用低频射频电浆制备ild绝缘层的晶圆制造工艺

Country Status (1)

Country Link
CN (1) CN112342531A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW393726B (en) * 1999-01-06 2000-06-11 Taiwan Semiconductor Mfg A boron phosphorus silicon glass (BPSG) dielectric material having a low shrinkage rate
TW466632B (en) * 2000-04-19 2001-12-01 Applied Materials Inc Method of depositing a low K films using an oxidizing plasma
TW503514B (en) * 2000-07-21 2002-09-21 Canon Sales Co Inc Film forming method, semiconductor device and semiconductor device manufacturing method
TW200512873A (en) * 2003-09-26 2005-04-01 Taiwan Semiconductor Mfg Co Ltd ILD and LI dielectric layer stack forming method and LI dielectric stack
CN101310039A (zh) * 2006-05-30 2008-11-19 应用材料股份有限公司 使用含硅前驱物和原子氧进行高质量流体状硅氧化物的化学气相沉积
CN101643896A (zh) * 2003-04-07 2010-02-10 应用材料股份有限公司 淀积氧化硅于大面积基板上的方法及设备
CN103540908A (zh) * 2012-04-26 2014-01-29 Spts科技有限公司 沉积二氧化硅薄膜的方法
CN107039267A (zh) * 2015-12-21 2017-08-11 Spts科技有限公司 改善粘附性的方法
CN107980172A (zh) * 2015-08-27 2018-05-01 应用材料公司 Vnand拉伸厚teos氧化物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW393726B (en) * 1999-01-06 2000-06-11 Taiwan Semiconductor Mfg A boron phosphorus silicon glass (BPSG) dielectric material having a low shrinkage rate
TW466632B (en) * 2000-04-19 2001-12-01 Applied Materials Inc Method of depositing a low K films using an oxidizing plasma
TW503514B (en) * 2000-07-21 2002-09-21 Canon Sales Co Inc Film forming method, semiconductor device and semiconductor device manufacturing method
CN101643896A (zh) * 2003-04-07 2010-02-10 应用材料股份有限公司 淀积氧化硅于大面积基板上的方法及设备
TW200512873A (en) * 2003-09-26 2005-04-01 Taiwan Semiconductor Mfg Co Ltd ILD and LI dielectric layer stack forming method and LI dielectric stack
CN101310039A (zh) * 2006-05-30 2008-11-19 应用材料股份有限公司 使用含硅前驱物和原子氧进行高质量流体状硅氧化物的化学气相沉积
CN103540908A (zh) * 2012-04-26 2014-01-29 Spts科技有限公司 沉积二氧化硅薄膜的方法
CN107980172A (zh) * 2015-08-27 2018-05-01 应用材料公司 Vnand拉伸厚teos氧化物
CN107039267A (zh) * 2015-12-21 2017-08-11 Spts科技有限公司 改善粘附性的方法

Similar Documents

Publication Publication Date Title
JP2764472B2 (ja) 半導体の成膜方法
TW200539422A (en) Semiconductor device with flowable insulation layer formed on capacitor and method for fabricating the same
US7102875B2 (en) Capacitor with aluminum oxide and lanthanum oxide containing dielectric structure and fabrication method thereof
JP2012134511A (ja) ジルコニウム酸化膜を有する半導体素子のキャパシタ及びその製造方法
TW201013781A (en) Film forming method of silicon oxide film, silicon oxide film, semiconductor device, and manufacturing method of semiconductor device
CN101071771A (zh) 用于半导体器件的绝缘膜沉积方法
JP2006179860A (ja) 半導体装置のキャパシタ及びその製造方法
JP2001210799A (ja) 半導体装置のキャパシターの製造方法
JP4035626B2 (ja) 半導体素子のキャパシタ製造方法
KR100331270B1 (ko) TaON박막을 갖는 커패시터 제조방법
CN112342531A (zh) 一种利用低频射频电浆制备ild绝缘层的晶圆制造工艺
KR100942958B1 (ko) 박막 형성방법 및 이를 이용한 반도체 소자의 커패시터형성방법
US20070264770A1 (en) Capacitor forming method
KR100587082B1 (ko) 반도체 소자의 캐패시터 형성방법
KR100818652B1 (ko) 산소포획막을 구비한 캐패시터 및 그의 제조 방법
KR100670726B1 (ko) 반도체 소자의 캐패시터 및 그 형성방법
KR100275330B1 (ko) 반도체소자의 캐패시터 제조방법
KR100342873B1 (ko) 반도체장치의 커패시터 제조방법
JP2659600B2 (ja) 半導体装置の製造方法
US6316307B1 (en) Method of forming a capacitor for a semiconductor memory device
CN102468144B (zh) 一种提高通孔中钛和氮化钛填充能力的方法
KR100580771B1 (ko) 플래쉬 메모리소자의 형성방법
JPH06112190A (ja) 絶縁膜の形成方法
US20020106907A1 (en) Method of forming a conformal oxide film
KR100604664B1 (ko) 이중 유전막을 구비한 캐패시터 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210209