CN112332668A - 一种峰值电流模Buck-Boost高精度过零检测电路 - Google Patents

一种峰值电流模Buck-Boost高精度过零检测电路 Download PDF

Info

Publication number
CN112332668A
CN112332668A CN202011174249.6A CN202011174249A CN112332668A CN 112332668 A CN112332668 A CN 112332668A CN 202011174249 A CN202011174249 A CN 202011174249A CN 112332668 A CN112332668 A CN 112332668A
Authority
CN
China
Prior art keywords
voltage
output
resistor
terminal
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011174249.6A
Other languages
English (en)
Inventor
奚冬杰
徐晴昊
李现坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 58 Research Institute
Original Assignee
CETC 58 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 58 Research Institute filed Critical CETC 58 Research Institute
Priority to CN202011174249.6A priority Critical patent/CN112332668A/zh
Publication of CN112332668A publication Critical patent/CN112332668A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/175Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开一种峰值电流模Buck‑Boost高精度过零检测电路,属于电子技术领域,包括高侧功率管MH、低侧功率管ML、反向器INV、电感L、驱动模块、RS触发器、PWM比较器、电流采样模块、输出滤波电容CO、负载RL、电阻RFB1、电阻RFB2、误差放大器EA、比较器COMP和自适应失调电压产生模块;当Buck‑Boost转换器工作于DCM模式下,出现电感电流反灌时可确保低侧功率管的精确关断,以满足低噪声(避免电感电流不为零时,SW节点发生振荡)和低功率损耗要求;用于补偿延时的比较器输入失调电压与芯片工作状态相关,可在Buck‑Boost宽输出电压范围工作条件下,实现低侧功率管的关断准确性。

Description

一种峰值电流模Buck-Boost高精度过零检测电路
技术领域
本发明涉及电子技术领域,涉及模拟集成电路,特别涉及一种峰值电流模Buck-Boost高精度过零检测电路。
背景技术
随着集成电路产业的迅猛发展,人们对消费电子产品的需求日益增加,对产品的高效率和低功耗也提出了更高要求。现Buck-Boost转换器中为提升芯片工作效率,常用解决方案为采用MOSFET取代同步整流二极管,利用其反向续流时的低压差实现低功率损耗。值得关注的是,采用该方案后当Buck-Boost工作于DCM(Discontinuous Conduction Mode,非连续模式)时需增加设计额外的过零检测电路(ZCD)以防止电感电流倒灌,降低芯片效率。
芯片处于DCM模式时,Buck-Boost转换器中电感电流将存在反灌情况,过零检测电路是通过监控电感电流实时状态,并在其恰好发生反灌时输出逻辑控制信号,关断低侧功率管从而避免电流反灌发生。但提前关断低侧功率管会使转换器无法正确进入DCM模式,此时体二极管导通时间过长,且高低侧功率管相连节点(SW)电压存在振荡。延迟关断低侧功率管则会发生电感电流反灌,导致芯片工作效率下降。因此如何准确识别电流反灌发生并关断低侧功率管是过零检测电路的关键指标。
传统过零检测电路设计方案中,为补偿电路传输延迟,通常采用提前输出检测控制逻辑以实现即时关断低侧功率管目的。但是该方案仅能在固定输出电压下实现对低侧功率管的精确关断,无法适应转换器要求宽输出范围的应用条件,具体原因将结合图1进行分析。
Buck-Boost中传统过零检测电路实现原理为,利用比较器检测SW节点与输出VOUT-节点压差,以判断电感电流是否发生反灌。但比较器输出、数字控制逻辑和栅极驱动电路等均存在延迟,将导致低侧功率管关断延后,因此需在比较器输入端引入合适的失调电压Voffset以对总延迟进行补偿。
在图1中,tc代表由各模块和器件参数决定且与芯片工作状态无关的总传输延时。失调电压Voffset为比较器输入失调电压,用于补偿因tc引起的低侧功率管关断误差。失调电压Voffset在图1中表现为SW节点电压VSW与VOUT-在相等前tc处二者的差值。
Voffset=k×tc (1)
k为低侧功率管开启后,电感电流续流时VSW的上升斜率。
Figure BDA0002748252440000021
Rdson_low为低侧功率管导通阻抗,L为储能电感值。
由上述两式可知,Voffset与VOUT-成正比,因此传统固定失调压差补偿方式无法在Buck-Boost宽输出范围工作条件下,当电感电流发生反灌时,实现对低侧功率管的精确关断。
发明内容
本发明的目的在于提供一种峰值电流模Buck-Boost高精度过零检测电路,以解决传统固定失调压差补偿方式无法对低侧功率管实现精确关断的问题。
为解决上述技术问题,本发明提供了一种峰值电流模Buck-Boost高精度过零检测电路,包括高侧功率管MH、低侧功率管ML、反向器INV、电感L、驱动模块、RS触发器、PWM比较器、电流采样模块、输出滤波电容CO、负载RL、电阻RFB1、电阻RFB2、误差放大器EA、比较器COMP和自适应失调电压产生模块;
高侧功率管MH漏端接输入电压VIN,栅端接反向器INV输入端,源端接SW节点电压VSW;低侧功率管ML漏端接SW节点电压VSW,栅端接反向器INV输出端,源端接输出电压VOUT-;电感L上端接SW节点电压VSW,下端接GND;
输出滤波电容CO和负载RL的上端均接输出电压VOUT-,下端均接GND;电阻RFB1上端接输出电压VOUT-,下端接误差放大器EA负输入端;电阻RFB2上端接误差放大器EA负输入端,下端接GND;误差放大器EA正输入端接参考电压VREF,输出端接PWM比较器负输入端;电流采样模块输入端接SW节点电压VSW,输出端产生电流采样信号VSENSE
PWM比较器正输入端接电流采样信号VSENSE与斜坡补偿信号Vslope的和,输出端接RS触发器的R端;RS触发器的S端接时钟信号CLK,Q端接驱动模块第一输入端;驱动模块第二输入端接比较器COMP输出端,输出端接MH栅端;
自适应失调电压产生模块第一输入端接输出电压VOUT-,第二输入端接SW节点电压VSW,第一输出端接比较器COMP正输入端,第二输出端接比较器COMP负输入端。
可选的,所述自适应失调电压产生模块包括电阻R1~R8、NMOS管MN1~MN3、PMOS管MP1和比较器COMP;
电阻R1~R5上端均接内部低压电源VDD_LOW,电阻R1下端接PMOS管MP1源端;电阻R2下端接NMOS管MN2漏端;电阻R3下端接NMOS管MN3漏端;电阻R4下端接NMOS管MN2栅端;电阻R5下端接NMOS管MN3栅端;电阻R6上端接NMOS管MN1源端,下端接输出电压VOUT-;电阻R7上端接NMOS管MN2源端,下端接SW节点电压VSW;电阻R8上端接NMOS管MN3源端,下端接输出电压VOUT-;
NMOS管MN1漏端接NMOS管MN2栅端,栅端接PMOS管MP1源端;PMOS管MP1漏端接输出电压VOUT-,栅端接GND。
可选的,所述比较器COMP的正输入端接所述电阻R3的下端和NMOS管MN3漏端,负输入端接所述电阻R2的下端和所述NMOS管MN2的漏端,输出端产生过零检测控制信号VZCDC
可选的,所述自适应失调电压产生模块产生VOUT-_offset至所述比较器COMP的正输入端,产生VSW_offset至所述比较器COMP的负输入端。
本发明具有以下有益效果:
(1)当Buck-Boost转换器工作于DCM模式下,出现电感电流反灌时可确保低侧功率管的精确关断,以满足低噪声(避免电感电流不为零时,SW节点发生振荡)和低功率损耗要求;
(2)用于补偿延时的比较器输入失调电压与芯片工作状态相关,可在Buck-Boost宽输出电压范围工作条件下,实现低侧功率管的关断准确性。
附图说明
图1为Buck-Boost工作于DCM模式下SW节点波形;
图2为本发明提供的峰值电流模Buck-Boost高精度过零检测电路系统图;
图3为峰值电流模Buck-Boost高精度过零检测电路中核心自适应失调电压产生模块实现原理图。
具体实施方式
以下结合附图和具体实施例对本发明提出的一种峰值电流模Buck-Boost高精度过零检测电路作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
实施例一
本发明提供了一种峰值电流模Buck-Boost高精度过零检测电路,其结构如图2所示,包括高侧功率管MH、低侧功率管ML、反向器INV、电感L、驱动模块、RS触发器、PWM比较器、电流采样模块、输出滤波电容CO、负载RL、电阻RFB1、电阻RFB2、误差放大器EA、比较器COMP和自适应失调电压产生模块;高侧功率管MH漏端接输入电压VIN,栅端接反向器INV输入端,源端接SW节点电压VSW;低侧功率管ML漏端接SW节点电压VSW,栅端接反向器INV输出端,源端接输出电压VOUT-;电感L上端接SW节点电压VSW,下端接GND;输出滤波电容CO和负载RL的上端均接输出电压VOUT-,下端均接GND;电阻RFB1上端接输出电压VOUT-,下端接误差放大器EA负输入端;电阻RFB2上端接误差放大器EA负输入端,下端接GND;误差放大器EA正输入端接参考电压VREF,输出端接PWM比较器负输入端;电流采样模块输入端接SW节点电压VSW,输出端产生电流采样信号VSENSE;PWM比较器正输入端接电流采样信号VSENSE与斜坡补偿信号Vslope的和,输出端接RS触发器的R端;RS触发器的S端接时钟信号CLK,Q端接驱动模块第一输入端;驱动模块第二输入端接比较器COMP输出端,输出端接MH栅端;自适应失调电压产生模块第一输入端接输出电压VOUT-,第二输入端接SW节点电压VSW,第一输出端接比较器COMP正输入端,第二输出端接比较器COMP负输入端。
图3所示为其核心自适应失调电压产生模块实现原理图,包括电阻R1~R8、NMOS管MN1~MN3、PMOS管MP1和比较器COMP;电阻R1~R5上端均接内部低压电源VDD_LOW,电阻R1下端接PMOS管MP1源端;电阻R2下端接NMOS管MN2漏端;电阻R3下端接NMOS管MN3漏端;电阻R4下端接NMOS管MN2栅端;电阻R5下端接NMOS管MN3栅端;电阻R6上端接NMOS管MN1源端,下端接输出电压VOUT-;电阻R7上端接NMOS管MN2源端,下端接SW节点电压VSW;电阻R8上端接NMOS管MN3源端,下端接输出电压VOUT-;NMOS管MN1漏端接NMOS管MN2栅端,栅端接PMOS管MP1源端;PMOS管MP1漏端接输出电压VOUT-,栅端接GND。所述比较器COMP的正输入端接所述电阻R3的下端和NMOS管MN3漏端,负输入端接所述电阻R2的下端和所述NMOS管MN2的漏端,输出端产生过零检测控制信号VZCDC。所述自适应失调电压产生模块产生电压VOUT-_offset至所述比较器COMP的正输入端,产生电压VSW_offset至所述比较器COMP的负输入端。
本发明的工作原理为:
请参阅图2,本发明的峰值电流模Buck-Boost高精度过零检测电路由自适应Voffset产生模块(即自适应失调电压产生模块)和比较器COMP组成。自适应Voffset产生模块用于生成与VOUT-成正比的Voffset,确保当VOUT-_offset与VSW_offset相等时,输出电压VOUT-与SW节点电压VSW压差为Voffset。比较器COMP输出过零检测控制信号VZCDC,VZCDC通过数字逻辑实现对低侧功率管的精确关断。
请参阅图3,R2=R3,R7=R8。VDD_LOW为芯片内部低压电源,通常由内置线性稳压器产生。
对流过NMOS管MN2的电流IMN2有:
Figure BDA0002748252440000051
(W/L)MN2为NMOS管MN2宽长比,Vth_MN2为NMOS管MN2阈值电压,IMN1为流过NMOS管MN1的电流。
对流过MN3的电流IMN3有:
Figure BDA0002748252440000061
(W/L)MN3为MN3宽长比,Vth_MN3为MN3阈值电压。
由图3可知当VOUT-_offset与VSW_offset相等时,IMN2与IMN3相等,此时VOUT-与VSW的差值即为Voffset。因此对Voffset有:
Voffset=IMN1×R4 (5)
由式(5)可知,改变IMN1即可调节Voffset大小。
图3中,MP1、R1、MN1、R6尺寸均较大。MP1和R1以及MN1和R6分别构成两组电平位移电路,可将GND电压传递至MN1源端。因此对IMN1有:
Figure BDA0002748252440000062
合并(5)、(6)两式即有:
Figure BDA0002748252440000063
结合(1)、(2)和(7)式可知,仅需设置R4/R6比例如式(8)所示,即可使得在确定tc下,针对任意输出VOUT-,自适应失调电压产生模块所设定Voffset均可有效抵消tc所引入延时误差。当电感电流恰好发生反灌时,实现精确关断低侧功率管,防止SW发生振荡同时提升芯片效率。
Figure BDA0002748252440000064
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (4)

1.一种峰值电流模Buck-Boost高精度过零检测电路,其特征在于,包括高侧功率管MH、低侧功率管ML、反向器INV、电感L、驱动模块、RS触发器、PWM比较器、电流采样模块、输出滤波电容CO、负载RL、电阻RFB1、电阻RFB2、误差放大器EA、比较器COMP和自适应失调电压产生模块;
高侧功率管MH漏端接输入电压VIN,栅端接反向器INV输入端,源端接SW节点电压VSW;低侧功率管ML漏端接SW节点电压VSW,栅端接反向器INV输出端,源端接输出电压VOUT-;电感L上端接SW节点电压VSW,下端接GND;
输出滤波电容CO和负载RL的上端均接输出电压VOUT-,下端均接GND;电阻RFB1上端接输出电压VOUT-,下端接误差放大器EA负输入端;电阻RFB2上端接误差放大器EA负输入端,下端接GND;误差放大器EA正输入端接参考电压VREF,输出端接PWM比较器负输入端;电流采样模块输入端接SW节点电压VSW,输出端产生电流采样信号VSENSE
PWM比较器正输入端接电流采样信号VSENSE与斜坡补偿信号Vslope的和,输出端接RS触发器的R端;RS触发器的S端接时钟信号CLK,Q端接驱动模块第一输入端;驱动模块第二输入端接比较器COMP输出端,输出端接MH栅端;
自适应失调电压产生模块第一输入端接输出电压VOUT-,第二输入端接SW节点电压VSW,第一输出端接比较器COMP正输入端,第二输出端接比较器COMP负输入端。
2.如权利要求1所述的峰值电流模Buck-Boost高精度过零检测电路,其特征在于,所述自适应失调电压产生模块包括电阻R1~R8、NMOS管MN1~MN3、PMOS管MP1和比较器COMP;
电阻R1~R5上端均接内部低压电源VDD_LOW,电阻R1下端接PMOS管MP1源端;电阻R2下端接NMOS管MN2漏端;电阻R3下端接NMOS管MN3漏端;电阻R4下端接NMOS管MN2栅端;电阻R5下端接NMOS管MN3栅端;电阻R6上端接NMOS管MN1源端,下端接输出电压VOUT-;电阻R7上端接NMOS管MN2源端,下端接SW节点电压VSW;电阻R8上端接NMOS管MN3源端,下端接输出电压VOUT-;
NMOS管MN1漏端接NMOS管MN2栅端,栅端接PMOS管MP1源端;PMOS管MP1漏端接输出电压VOUT-,栅端接GND。
3.如权利要求2所述的峰值电流模Buck-Boost高精度过零检测电路,其特征在于,所述比较器COMP的正输入端接所述电阻R3的下端和NMOS管MN3漏端,负输入端接所述电阻R2的下端和所述NMOS管MN2的漏端,输出端产生过零检测控制信号VZCDC
4.如权利要求1所述的峰值电流模Buck-Boost高精度过零检测电路,其特征在于,所述自适应失调电压产生模块产生VOUT-_offset至所述比较器COMP的正输入端,产生VSW_offset至所述比较器COMP的负输入端。
CN202011174249.6A 2020-10-28 2020-10-28 一种峰值电流模Buck-Boost高精度过零检测电路 Pending CN112332668A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011174249.6A CN112332668A (zh) 2020-10-28 2020-10-28 一种峰值电流模Buck-Boost高精度过零检测电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011174249.6A CN112332668A (zh) 2020-10-28 2020-10-28 一种峰值电流模Buck-Boost高精度过零检测电路

Publications (1)

Publication Number Publication Date
CN112332668A true CN112332668A (zh) 2021-02-05

Family

ID=74296362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011174249.6A Pending CN112332668A (zh) 2020-10-28 2020-10-28 一种峰值电流模Buck-Boost高精度过零检测电路

Country Status (1)

Country Link
CN (1) CN112332668A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114814336A (zh) * 2022-05-07 2022-07-29 电子科技大学 一种负载电流采样电路
CN114825932A (zh) * 2022-04-29 2022-07-29 晶艺半导体有限公司 Buck-boost的控制电路、方法及变换器
CN115102375A (zh) * 2022-07-06 2022-09-23 电子科技大学 一种具有低噪声特性的功率管驱动电路
CN116735948A (zh) * 2023-08-14 2023-09-12 深圳市思远半导体有限公司 一种过零检测电路和开关电源
CN114825932B (zh) * 2022-04-29 2024-05-31 晶艺半导体有限公司 Buck-boost的控制电路、方法及变换器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332814A (zh) * 2011-09-14 2012-01-25 杭州矽力杰半导体技术有限公司 一种降低emi的功率因数校正控制电路
CN106685230A (zh) * 2016-08-03 2017-05-17 浙江大学 一种基于峰值电流模式控制的峰值电流控制单元
CN107546977A (zh) * 2016-06-24 2018-01-05 联芯科技有限公司 一种多相交错并联直流转换器
CN107834829A (zh) * 2017-11-20 2018-03-23 电子科技大学 一种自适应反流比较器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332814A (zh) * 2011-09-14 2012-01-25 杭州矽力杰半导体技术有限公司 一种降低emi的功率因数校正控制电路
CN107546977A (zh) * 2016-06-24 2018-01-05 联芯科技有限公司 一种多相交错并联直流转换器
CN106685230A (zh) * 2016-08-03 2017-05-17 浙江大学 一种基于峰值电流模式控制的峰值电流控制单元
CN107834829A (zh) * 2017-11-20 2018-03-23 电子科技大学 一种自适应反流比较器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
辛杨立: "一种用于电流模Buck变换器的电流采样电路", 《微电子学》 *
黄龙: "一种用于同步Buck变换器的自适应反流检测电路", 《微电子学》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114825932A (zh) * 2022-04-29 2022-07-29 晶艺半导体有限公司 Buck-boost的控制电路、方法及变换器
CN114825932B (zh) * 2022-04-29 2024-05-31 晶艺半导体有限公司 Buck-boost的控制电路、方法及变换器
CN114814336A (zh) * 2022-05-07 2022-07-29 电子科技大学 一种负载电流采样电路
CN114814336B (zh) * 2022-05-07 2023-04-28 电子科技大学 一种负载电流采样电路
CN115102375A (zh) * 2022-07-06 2022-09-23 电子科技大学 一种具有低噪声特性的功率管驱动电路
CN115102375B (zh) * 2022-07-06 2024-04-12 电子科技大学 一种具有低噪声特性的功率管驱动电路
CN116735948A (zh) * 2023-08-14 2023-09-12 深圳市思远半导体有限公司 一种过零检测电路和开关电源
CN116735948B (zh) * 2023-08-14 2023-12-15 深圳市思远半导体有限公司 一种过零检测电路和开关电源

Similar Documents

Publication Publication Date Title
CN112332668A (zh) 一种峰值电流模Buck-Boost高精度过零检测电路
KR100994391B1 (ko) 동기 정류형 스위칭 레귤레이터, 동기 정류형 스위칭레귤레이터의 제어 회로 및 동기 정류형 스위칭레귤레이터의 동작 제어 방법
US7990121B2 (en) Synchronous rectification switching regulator, control circuit thereof, and method of controlling the operation thereof
US7456623B2 (en) DC-DC converter and control circuit for DC-DC converter
JP5211959B2 (ja) Dc−dcコンバータ
JP4997891B2 (ja) Dc−dcコンバータ及びdc−dcコンバータの制御方法
KR100912865B1 (ko) 스위칭 레귤레이터 및 그 스위칭 레귤레이터를 구비하는반도체 장치
CN102128973B (zh) 一种电压过零检测电路及具有该检测电路的dc-dc转换器
KR20070054092A (ko) 동기 정류형 스위칭 레귤레이터, 동기 정류형 스위칭레귤레이터의 제어 회로 및 동기 정류형 스위칭레귤레이터의 동작 제어 방법
KR20070094486A (ko) 비절연 강압형 dc-dc 컨버터
TWI543537B (zh) 訊號準位移轉電路及直流轉直流降壓轉換控制電路
KR20080100133A (ko) 동기 정류형 스위칭 레귤레이터
WO2008090900A1 (en) Voltage rising/falling type switching regulator and reverse current prevention method
JP5727797B2 (ja) Dc−dcコンバータ
KR20090027149A (ko) 동기 정류형 스위칭 레귤레이터
JP2008067495A (ja) スイッチングレギュレータ
JP2007306719A (ja) Dc−dcコンバータ及びdc−dcコンバータの制御回路
Lee et al. On-chip current sensing technique for CMOS monolithic switch-mode power converters
JP2009278713A (ja) スイッチングレギュレータ
Luo et al. Design of digital tri-mode adaptive-output buck–boost power converter for power-efficient integrated systems
US9977445B2 (en) Low power standby mode for buck regulator
JP3733128B2 (ja) Dc/dcコンバータの制御回路
CN114679036A (zh) 一种用于功率ldmos的高速栅极驱动电路
CN112332667B (zh) 一种电流模升降压变换器电流检测电路
JP5727189B2 (ja) 同期整流型電源回路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210205