CN112209423A - 火焰合成法一步合成超薄空心球微米铝酸锌的方法 - Google Patents

火焰合成法一步合成超薄空心球微米铝酸锌的方法 Download PDF

Info

Publication number
CN112209423A
CN112209423A CN202011020513.0A CN202011020513A CN112209423A CN 112209423 A CN112209423 A CN 112209423A CN 202011020513 A CN202011020513 A CN 202011020513A CN 112209423 A CN112209423 A CN 112209423A
Authority
CN
China
Prior art keywords
flame
temperature
zinc aluminate
precursor
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011020513.0A
Other languages
English (en)
Other versions
CN112209423B (zh
Inventor
郭耸
翁哲帆
陈苗苗
程洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202011020513.0A priority Critical patent/CN112209423B/zh
Publication of CN112209423A publication Critical patent/CN112209423A/zh
Application granted granted Critical
Publication of CN112209423B publication Critical patent/CN112209423B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种火焰合成法一步合成超薄空心球微米铝酸锌的方法。所述方法以Zn(NO3)2·6H2O和Al(NO3)3·9H2O的水溶液作为前驱液,以氮气作为载气,将前驱液以射流雾化的方式送入由乙烯、氧气和载气形成的高温平面火焰区域,利用高温火焰和火焰正下方收集板之间极大的温度梯度让铝酸锌迅速沉积在冷却基板上。本发明方法合成的超薄空心球微米铝酸锌的球壁薄、中间空腔体积大,具有更小的密度和较大的热阻,适用于阻燃消烟领域。

Description

火焰合成法一步合成超薄空心球微米铝酸锌的方法
技术领域
本发明涉及一种火焰合成法一步合成超薄空心球微米铝酸锌的方法,属于纳米材料制备技术领域。
背景技术
铝酸锌是一种三元尖晶石氧化物,属于Fd3m空间群,具有密排面心立方晶体结构的宽带隙半导体。由于其具有熔点高、化学性质稳定、优异的催化性能、光学、电学性能以及耐腐蚀性等被广泛应用在陶瓷、光学元件、电子元器件、催化剂、湿敏传感器以及阻燃材料中。不同形貌和尺寸的铝酸锌应用的领域也有所不同,如Baochang Cheng等人采用共沉淀法制备的中间体在900℃下退火后,制备出直径为100-200nm、长度为数个到十个微米、具有多孔结构的纳米棒状的铝酸锌(Cheng B,OuyangZ,TianB,etal.Porous ZnAl2O4 spinelnanorods:High sensitivity humidity sensors[J].Ceramics International,2013,39(7):7379-7386.)。Xiang Ying Chen等人首次使用碳纳米球作为硬模板合成了Eu3+掺杂的空心纳米球铝酸锌荧光粉(Chen X Y,MaC,Bao S P,etal.Synthesis andphotoluminescence of ZnAl2O4:Eu3+hollow nanophosphors using carbon nanospheresas hard templates.[J].J Colloid Interface,2010,346(1):8-11.)。以上两种方法虽然都合成了不同形貌的铝酸锌,但制备方法比较复杂且制备空心球结构时需要用到模板,难以实现工业化生产。
空心球状的铝酸锌拥有更多结构上的优势,空心结构在降低自身整体的密度同时利用其封闭空腔热阻大的特点可以具有很好的保温隔热效果。现阶段铝酸锌合成方法普遍采用水热法、共沉淀法、溶胶-凝胶法、高温固相法,然而这些方法存在所需的设备较多、工艺复杂、合成周期较长等缺点。目前对于空心球铝酸锌的制备研究并不多,工业上的空心球状材料一般是通过将其熔融状态的物质经喷吹得到,粒径在200um以上,很难得到更小的粒径,且熔融喷吹的方法耗能极大增加了制备的成本。
火焰气溶胶合成技术是一种能单步快速制备材料的方法,且由于其设备和操作流程简单使得这种方法易于工业化,其中的预混滞止平面火焰常被用来合成一元金属氧化物,如TiO2、Al2O3、SiO2等,颗粒在火焰区停留时间短且焰后极大的温度梯度让颗粒迅速沉积在收集板上,减轻颗粒之间的团聚和烧结的程度,但是关于预混滞止平面火焰一步直接合成二元复合金属氧化物的报道却很少。
发明内容
为解决现有的空心球铝酸锌合成方法中存在操作步骤复杂、产物纯度不高以及合成的时间周期较长等问题,本发明提供一种火焰合成法一步合成超薄空心球微米铝酸锌的方法。
本发明的技术方案如下:
火焰合成法一步合成超薄空心球微米铝酸锌的方法,具体步骤如下:采用Zn(NO3)2·6H2O和Al(NO3)3·9H2O作为前驱体,将Zn(NO3)2·6H2O和Al(NO3)3·9H2O溶解于水中形成前驱体溶液,置于雾化装置中并通入载气,雾化形成的气溶胶经过预热后,通过载气将前驱体带入燃烧器后进入高温火焰区域,前驱体经历气化、分解、氧化、碰撞成核的过程,在热泳力的作用下沉积在冷却基板表面,得到超薄空心球微米铝酸锌;所述的高温火焰区域由载气、可燃气乙烯、氧气的预混气体形成。
本发明中,所述的高温火焰区域的温度为1400K。
本发明中,预混滞止平面火焰的温度对一步直接合成超薄空心球微米铝酸锌有着至关重要的作用,让两种金属氧化物在火焰面一瞬间或在火焰面下方极短的距离内形成复合金属氧化物取决于火焰面温度的高低,温度不能满足条件时形成的只是两种金属氧化物混合在一起。
发明人研究发现,乙烯的流量是影响平面火焰温度的主要因素,乙烯流量过低会导致火焰温度不够高,铝酸锌的形成需要足够高的火焰温度来让氧化锌和氧化铝复合在一起形成尖晶石结构,但过高的乙烯流量会让火焰及焰后区形成贫氧氛围,不利于相关氧化物的形成。本发明中,乙烯的流量为0.68~0.72SLPM。
本发明中,所述的载气选自氮气或氩气等惰性气体。在本发明具体实施方式中,采用氮气。发明人研究发现,载气的流量直接影响火焰温度的高低。过低的氮气流量不能形成一个平面火焰,会让火焰回火;过高的氮气流量一方面会降低平面火焰的温度,不利于铝酸锌的形成,另一方面氮气同时也是作为载气,若其体积流量增大会带入更多的前驱物进入火焰面,这会让火焰面的结构不稳定出现抖动甚至是熄灭平面火焰。本发明中,氮气的流量为10.26~10.72SLPM。
发明人研究发现,需要有足够的氧气来让乙烯充分燃烧,多余的氧气可以给焰后区提供一个富氧氛围,有利于氧化物的生成,但是氧气量过多,多余的氧气相当于是一种惰性气体会让火焰温度降低,会不利于铝酸锌的形成。本发明中,氧气的流量为3.53~3.80SLPM。
发明人研究发现,若燃烧器的器壁和输送前驱液的管道不进行预热保温,尤其是输送前驱液的管道,雾化出来的前驱液会在管道内堆积并伴随着载气以液滴的形式滴入火焰面中,不仅会带入杂质而且还会扰动甚至熄灭平面火焰,为了让前驱液以气溶胶的形式进行反应。本发明中,燃烧器的器壁预热至130℃,输送前驱物的管道预热至90℃。
发明人发现由于Al(NO3)3·9H2O分解温度较低,有一部分Al(NO3)3·9H2O会在管道内壁分解造成损失导致两个前驱物不能按照化学式中的计量比反应。本发明中,Zn(NO3)2·6H2O和Al(NO3)3·9H2O的摩尔比为0.75:2。
本发明中所用的雾化采用射流雾化的方式,传统的超声雾化由于雾化量不稳定,雾化器不宜长时间工作且雾化颗粒大,效果差,因此实验采用玻璃同心管喷雾器,外管的高速氮气利用虹吸原理将中心管内的液体吸出并破碎成极小液滴,另一部分氮气作为载气输送前驱物,气流速度越高破碎的液滴直径越小,合成产物的粒径分布更均匀。
本发明中所合成的超薄空心球微米铝酸锌沉积冷却基板上。在本发明的具体实施方式中,采用的冷却基板是由一块直径为50mm,厚度为2mm的氮化铝陶瓷片和一个低温的不锈钢板组成,氮化铝陶瓷片放在不锈钢板上,不锈钢板内部挖有通冷却水的槽道,合成过程中冷却水通过水泵不停地循环,氮化铝陶瓷片导热系数大这个特点保证沉积板在高温火焰下温度不会高,防止产物在陶瓷片上团聚,且陶瓷片厚度小可以不需要熄灭火焰就可以更换,可让实验持续进行,实验中循环冷却水可以将陶瓷片的温度稳定控制在70℃左右。
与现有技术相比,本发明具有以下优点:
(1)本发明首次采用预混滞止平面火焰技术,通过控制火焰温度、雾化方式、前驱液中两种物质的摩尔比、沉积板的温度来实现一步直接合成二元复合金属氧化物,制备装置和步骤简单,原料廉价,实验结果具有高重复性,可实现工业化生产。
(2)本发明合成的超薄空心球微米铝酸锌的直径约为1um,球的壁厚约为30~40nm,球壳厚度很小、空腔体积较大的特点极大降低了材料自身的密度,且封闭的大空腔赋予材料具备更大的热阻,起到良好的保温隔热效果,同时铝酸锌材料本身具有高稳定性,本发明合成的超薄空心球微米铝酸锌在阻燃消烟领域具有广泛的应用前景。
附图说明
图1为本发明制备超薄空心球微米铝酸锌的预混滞止平面火焰装置的示意图。
图2为实施例1制得的ZnAl2O4的XRD图。
图3为实施例1制得的超薄空心球微米铝酸锌的SEM图。
图4为实施例1制得的超薄空心球微米铝酸锌的TEM图。
图5为对比例1制得的ZnAl2O4和ZnO的XRD图。
图6为对比例2制得的(Zn0.3Al0.7)Al1.7O4的XRD图。
图7为对比例3制得的(Zn0.95Al0.05)(Al1.95Zn0.05)O4和ZnO的XRD图。
具体实施方式
下面结合实施例和附图对本发明做进一步说明。
图1为用预混滞止平面火焰一步合成铝酸锌的装置示意图,图中1是不锈钢冷却板,2是沉积用的氮化铝陶瓷片,3是燃烧器预混室,4是燃烧器器壁的加热带,5是高温平面火焰,前驱物在经过火焰面之后迅速分解反应,产物最终沉积在氮化铝陶瓷片上。
具体地,本发明采用的实验装置是一个带有加热夹套的燃烧器,燃烧器入口有三个支路分别连接由Go减压表调控好流量的载气、乙烯、氧气,燃烧器入口到其主体有一段短的渐扩过程,然后三种气体与前驱物在燃烧器主体段充分混合,再通过一段渐缩的圆锥形出口喷出,点燃冷却基板和喷口之间的气体就会形成平面火焰。还有一路载气在喷口处通过一个同心圆锥形夹套喷出来让燃烧器主体内的预混气体从内喷口喷出之后还能维持一个稳定的平推流,且这股载气可以减小平面火焰的热量向周围环境的损失,进一步维持火焰的温度。
实验装置的具体操作方法为:实验前,打开循环水泵,让冷却基板稳定在一个较低的温度,接着打开燃烧器器壁和输送前驱物管道的加热带,等到加热温度分别稳定至130℃和90℃,再调节合适的乙烯、氧气、载气的流量,在燃烧器喷口处点火形成一个1400℃左右的平面火焰,等待5分钟后火焰没有出现不稳定的情况就可以通雾化用的载气,将前驱液雾化后带入火焰中,经过极薄的圆形平面高温火焰面和火焰后的温度梯度区,最后在冷却基板上沉积得到超薄空心球微米铝酸锌。
本发明中所用的气体是乙烯、氧气、氮气均为普通纯度,制备铝酸锌的原料是西陇科学股份有限公司的Zn(NO3)2·6H2O,纯度大于98%,以及贤鼎生物科技有限公司的Al(NO3)3·9H2O,纯度大于98%。
实施例1
步骤1,Zn(NO3)2·6H2O和Al(NO3)3·9H2O以0.75:2的摩尔比溶解在50mL的水中,并在室温下磁力搅拌15min,确保两个前驱物充分溶解混合,再将溶液倒入雾化装置中。
步骤2,打开冷却水泵让冷却基板处于低温状态,接着预热燃烧器和输送前驱物管道上的加热带,让温度分别加热至130℃和90℃,然后通入10.72SLPM的氮气。
步骤3,先后通入氧气、乙烯以及作为载气用的氮气,流量分别为3.8SLPM、0.72SLPM和10.72SLPM,10s之后用点火枪点燃燃烧器喷口的气体,略微调整之后平面火焰在3min之内都是稳定的就可以通雾化用的氮气,先慢慢升高雾化用的氮气,在慢慢降低载气用的氮气,根据压力表上的数值保证两路氮气的总和与刚点火时的数值一致,氮气将雾化出的前驱液带入火焰中发生一系列的反应,最后在冷却基板上沉积得到超薄空心球微米铝酸锌。
图2是实施例1合成的超薄空心球微米铝酸锌的XRD图,图中的曲线出现了铝酸锌的特征衍射峰,出峰的位置与ICDD#71-0968提供的数据基本符合,峰的强度很高表明铝酸锌具有良好的结晶度,图中并未出现其他物质的衍射峰说明目的产物中无杂质。
图3是实施例1合成的超薄空心球微米铝酸锌的SEM图,从SEM图中可以清楚地看出铝酸锌颗粒的形貌和尺寸均一,球形颗粒之间无明显的烧结团聚现象。
图4是实施例1合成超薄空心球微米铝酸锌的TEM图,图中可以非常直观的看到目的产物的是空心球状的,球的表面存在着许多大小约为30nm的颗粒,球壳的厚度约为30-40nm,相对于直径为1um的球体来说,球壳的厚度非常小。
对比例1
改变实施例1中步骤1里的Zn(NO3)2·6H2O和Al(NO3)3·9H2O的摩尔比,将摩尔比0.75:2改为1:2,其余步骤和条件与实施例1一致。
图5是对比例1合成产物的XRD图,图中的曲线不仅出现了铝酸锌的特征衍射峰还出现了氧化锌的特征衍射峰,表明目的产物中存在杂质氧化锌。Zn(NO3)2·6H2O分解成ZnO的温度为350℃~550℃,Al(NO3)3·9H2O分解成Al2O3的温度为135℃~150℃。硝酸铝的分解温度相对于硝酸锌的分解温度来说要低很多,会有一部分的硝酸铝在管道中分解成氧化铝进而附着在管道内壁上不和硝酸锌的分解产物一起反应,所以需要适当的降低硝酸锌在前驱液中的含量来除去产物中多余的氧化锌。
对比例2
改变实施例1中步骤1里的Zn(NO3)2·6H2O和Al(NO3)3·9H2O的摩尔比,将摩尔比0.75:2改为0.6:2,其余步骤和条件与实施例1一致。
图6是对比例2合成产物的XRD图,图中曲线的特征衍射峰与标准卡片库里的(Zn0.3Al0.7)Al1.7O4的衍射峰完全对应,表明由于硝酸锌的含量在前驱液中过少,导致合成产物的物相发生改变,不是ZnAl2O4
对比例3
改变实施例1中步骤2里的氧气流量,将3.8SLPM升到4.8SLPM,其余步骤和条件均与实施例1一致。
图7是对比例3合成产物的XRD图,图中曲线特征衍射峰对应的是标准卡片库里的(Zn0.95Al0.05)(Al1.95Zn0.05)O4的衍射峰,还出现了ZnO的衍射峰,表明多余的氧气相对于惰性气体会降低火焰面的温度,不能让ZnO和Al2O3完全转变成为ZnAl2O4

Claims (10)

1.火焰合成法一步合成超薄空心球微米铝酸锌的方法,其特征在于,具体步骤如下:采用Zn(NO3)2·6H2O和Al(NO3)3·9H2O作为前驱体,将Zn(NO3)2·6H2O和Al(NO3)3·9H2O溶解于水中形成前驱体溶液,置于雾化装置中并通入载气,雾化形成的气溶胶经过预热后,通过载气将前驱体带入燃烧器后进入高温火焰区域,前驱体经历气化、分解、氧化、碰撞成核的过程,在热泳力的作用下沉积在冷却基板表面,得到超薄空心球微米铝酸锌;所述的高温火焰区域由载气、可燃气乙烯、氧气的预混气体形成。
2.根据权利要求1所述的方法,其特征在于,所述的高温火焰区域的温度为1400K。
3.根据权利要求1所述的方法,其特征在于,所述的乙烯的流量为0.68~0.72SLPM。
4.根据权利要求1所述的方法,其特征在于,所述的载气选自氮气或氩气。
5.根据权利要求4所述的方法,其特征在于,所述的氮气的流量为10.26~10.72SLPM。
6.根据权利要求1所述的方法,其特征在于,所述的氧气的流量为3.53~3.80SLPM。
7.根据权利要求1所述的方法,其特征在于,燃烧器的器壁温度预热至130℃,输送前驱物的管道预热至90℃。
8.根据权利要求1所述的方法,其特征在于,所述的Zn(NO3)2·6H2O和Al(NO3)3·9H2O的摩尔比为0.75:2。
9.根据权利要求1所述的方法,其特征在于,所述的冷却基板是由一块直径为50mm,厚度为2mm的氮化铝陶瓷片和一个低温的不锈钢板组成。
10.根据权利要求9所述的方法,其特征在于,所述的氮化铝陶瓷片的温度稳定在70℃。
CN202011020513.0A 2020-09-25 2020-09-25 火焰合成法一步合成超薄空心球微米铝酸锌的方法 Active CN112209423B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011020513.0A CN112209423B (zh) 2020-09-25 2020-09-25 火焰合成法一步合成超薄空心球微米铝酸锌的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011020513.0A CN112209423B (zh) 2020-09-25 2020-09-25 火焰合成法一步合成超薄空心球微米铝酸锌的方法

Publications (2)

Publication Number Publication Date
CN112209423A true CN112209423A (zh) 2021-01-12
CN112209423B CN112209423B (zh) 2022-03-18

Family

ID=74051086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011020513.0A Active CN112209423B (zh) 2020-09-25 2020-09-25 火焰合成法一步合成超薄空心球微米铝酸锌的方法

Country Status (1)

Country Link
CN (1) CN112209423B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113174147A (zh) * 2021-04-12 2021-07-27 华南理工大学 一种亚微米级类球形氧化锌颗粒及其制备方法
CN115216277A (zh) * 2022-07-27 2022-10-21 北京世纪鑫泰科技发展有限公司 一种导热材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057731A (zh) * 1990-06-21 1992-01-08 川崎制铁株式会社 用作铁氧体原材料的复合氧化物的生产方法
JP2003048775A (ja) * 2001-07-31 2003-02-21 Kyocera Corp 半導電性ジルコニア焼結体及びその製造方法
CN1636936A (zh) * 2004-12-03 2005-07-13 中国科学院长春应用化学研究所 尖晶石型铁氧体纳米复合材料的制备方法
CN106896146A (zh) * 2017-01-05 2017-06-27 扬州大学 一种铁酸锌丙酮气敏层的涂层制备方法
CN108269980A (zh) * 2018-01-03 2018-07-10 桂林理工大学 一种制备高性能三氧化二铁/铁酸锌复合电极材料的方法
CN109850934A (zh) * 2019-01-31 2019-06-07 扬州睿德石油机械有限公司 一种金属氧化物悬浮液的制备方法以及在液料火焰下喷涂形成高比表面积气敏涂层的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057731A (zh) * 1990-06-21 1992-01-08 川崎制铁株式会社 用作铁氧体原材料的复合氧化物的生产方法
JP2003048775A (ja) * 2001-07-31 2003-02-21 Kyocera Corp 半導電性ジルコニア焼結体及びその製造方法
CN1636936A (zh) * 2004-12-03 2005-07-13 中国科学院长春应用化学研究所 尖晶石型铁氧体纳米复合材料的制备方法
CN106896146A (zh) * 2017-01-05 2017-06-27 扬州大学 一种铁酸锌丙酮气敏层的涂层制备方法
CN108269980A (zh) * 2018-01-03 2018-07-10 桂林理工大学 一种制备高性能三氧化二铁/铁酸锌复合电极材料的方法
CN109850934A (zh) * 2019-01-31 2019-06-07 扬州睿德石油机械有限公司 一种金属氧化物悬浮液的制备方法以及在液料火焰下喷涂形成高比表面积气敏涂层的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113174147A (zh) * 2021-04-12 2021-07-27 华南理工大学 一种亚微米级类球形氧化锌颗粒及其制备方法
CN115216277A (zh) * 2022-07-27 2022-10-21 北京世纪鑫泰科技发展有限公司 一种导热材料及其制备方法

Also Published As

Publication number Publication date
CN112209423B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
Mueller et al. Nanoparticle synthesis at high production rates by flame spray pyrolysis
EP0697995B1 (en) Apparatus for producing nanoscale ceramic powders
CN112209423B (zh) 火焰合成法一步合成超薄空心球微米铝酸锌的方法
US9242224B2 (en) Method for the production of multiphase composite materials using microwave plasma process
CN101264433B (zh) 一种制备纳米颗粒的气相燃烧反应器及其工业应用
US8187562B2 (en) Method for producing cerium dioxide nanopowder by flame spray pyrolysis and cerium dioxide nanopowder produced by the method
KR20090023492A (ko) 금속함유 나노입자, 그의 합성 및 용도
CN104884406B (zh) 用于形成纳米尺度锂金属磷酸盐粉末的火焰喷雾热分解法
CN100523094C (zh) 溶液燃烧法合成纳米晶钴铝尖晶石颜料的方法
CN102139908B (zh) 一种亚微米级氧化钇及其制备方法
EP3564001A1 (en) Method for the production of multiphase composite materials using microwave plasma process
TW200404631A (en) Method for manufacturing metal powder
CN107601537B (zh) 高纯铝雾化速燃法制备高纯氧化铝粉的方法和专用装置
CN101784342A (zh) 具有可调节涂层的SiO2涂覆的二氧化钛颗粒的制备
CN102923765A (zh) 一种铟锡氧化物(ito)纳米粉体及其制造方法
CN112194187B (zh) 预混火焰合成铁酸锌球形纳米材料的方法
CN103008685B (zh) 金属粉末生产方法以及由该方法生产的金属粉末、导电糊和多层陶瓷电子元件
JPH0891874A (ja) ガラス球状粉末及びその製造方法
KR100480393B1 (ko) 입자크기와 응집상태를 조절할 수 있는 고순도의 나노 및서브미크론 입자의 기상 제조방법
US8142743B2 (en) Method and apparatus for forming zinc oxide
CN109574050B (zh) 一种超高比表面积碳酸铝铵的制备及其热分解制备氧化铝的方法
JP2007291515A (ja) 微粒子、その製造方法及び製造装置
KR20060099878A (ko) 산화인듐 나노 입자의 제조방법 및 이에 의해 제조된가용성 산화인듐 나노 입자
CN114956152A (zh) 一种超声雾化制备针状CuO粉体的方法
KR100839020B1 (ko) 산화마그네슘 나노분말의 제조방법 및 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant