CN112142479A - 一种SiC@Ti(C,N)核壳结构陶瓷粉体的制备方法 - Google Patents

一种SiC@Ti(C,N)核壳结构陶瓷粉体的制备方法 Download PDF

Info

Publication number
CN112142479A
CN112142479A CN202010925580.0A CN202010925580A CN112142479A CN 112142479 A CN112142479 A CN 112142479A CN 202010925580 A CN202010925580 A CN 202010925580A CN 112142479 A CN112142479 A CN 112142479A
Authority
CN
China
Prior art keywords
sic
distilled water
titanyl sulfate
powder
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010925580.0A
Other languages
English (en)
Other versions
CN112142479B (zh
Inventor
李东旭
黄绍锋
陆静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqiao University
Original Assignee
Huaqiao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqiao University filed Critical Huaqiao University
Priority to CN202010925580.0A priority Critical patent/CN112142479B/zh
Publication of CN112142479A publication Critical patent/CN112142479A/zh
Application granted granted Critical
Publication of CN112142479B publication Critical patent/CN112142479B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种SiC@Ti(C,N)核壳结构陶瓷粉体的制备方法,包括如下步骤:(1)将硫酸氧钛溶于蒸馏水中,获得硫酸氧钛水溶液;(2)将SiC粉末、有机溶剂和蒸馏水混合分散,获得混合溶液;(3)在上述混合溶液中加入碳氮原料,同时加入上述硫酸氧钛水溶液,水浴搅拌至沉淀全部析出后,室温静置;(4)将步骤(3)所得的物料进行离心,获得沉淀,用蒸馏水和无水乙醇充分洗涤后,经干燥和研磨,获得SiC@Ti(C,N)前驱体粉末;(5)将上述SiC@Ti(C,N)前驱体粉末于氮气气氛下煅烧,再经高温退火,即得。本发明简便易操作,具有制备温度低,成本较低,节能环保等优点。

Description

一种SiC@Ti(C,N)核壳结构陶瓷粉体的制备方法
技术领域
本发明属于材料合成技术领域,具体涉及一种SiC@Ti(C,N)核壳结构陶瓷粉体的制备方法。
背景技术
碳化硅具有各种优异的性能,如超硬耐磨、高热导率和机械强度、低热膨胀系数、耐化学腐蚀、高温稳定性(直到2500℃的分解温度)、有用的电阻特性等。碳化硅作为一种结构材料被广泛应用于各个领域。但是碳化硅材料韧性较低,脆性大,碳化硅晶片的断裂韧性一般在2.5~3MPa.m1/2之间;反应烧结纯碳化硅粉体的烧结温度在1450-1700℃之间,纯碳化硅粉体在1450℃以下结合性较差。
发明内容
本发明的目的在于克服现有技术缺陷,提供一种SiC@Ti(C,N)核壳结构陶瓷粉体的制备方法。
本发明的技术方案如下:
一种SiC@Ti(C,N)核壳结构陶瓷粉体的制备方法,包括如下步骤:
(1)将硫酸氧钛溶于蒸馏水中,于30℃水浴搅拌直至澄清,过滤除去不溶物后,获得硫酸氧钛水溶液;
(2)将SiC粉末、有机溶剂和蒸馏水混合,并超声(频率20kHZ功率300W)分散,获得混合溶液;
(3)在上述混合溶液中加入碳氮原料搅拌均匀,同时缓慢加入上述硫酸氧钛水溶液,水浴搅拌至沉淀全部析出后,室温静置24-48h;上述碳氮原料为三聚氰胺、尿素和石墨相氮化碳中的至少一种;
(4)将步骤(3)所得的物料进行离心,除去上层清液,获得沉淀,将该沉淀用蒸馏水和无水乙醇充分洗涤后,经干燥和研磨,获得SiC@Ti(C,N)前驱体粉末;
(5)将上述SiC@Ti(C,N)前驱体粉末于氮气气氛下煅烧,再经高温退火,即得所述SiC@Ti(C,N)核壳结构陶瓷粉体。
在本发明的一个优选实施方案中,所述步骤(1)中,所述硫酸氧钛和蒸馏水的比例为1.5-2.5g∶45-55mL。
进一步优选的,所述步骤(1)中,所述硫酸氧钛和蒸馏水的比例为2g∶50mL。
在本发明的一个优选实施方案中,所述步骤(2)中,所述SiC粉末、有机溶剂和蒸馏水的比例为1.5-2.5g∶15-25mL∶90-110mL。
进一步优选的,所述步骤(2)中,所述SiC粉末、有机溶剂和蒸馏水的比例为2g∶20mL: 100mL。
在本发明的一个优选实施方案中,所述SiC、碳氮原料和硫酸氧钛的质量比为 2∶3-8∶0.4-1。
在本发明的一个优选实施方案中,所述硫酸氧钛和蒸馏水的比例为2g∶50mL,所述SiC粉末、有机溶剂和蒸馏水的比例为2g∶20mL∶100mL,所述SiC、碳氮原料和硫酸氧钛的质量比为2∶3-8∶0.4-1。
在本发明的一个优选实施方案中,所述有机溶剂为乙二醇、异丙醇或正丙醇。
在本发明的一个优选实施方案中,所述煅烧的温度为600-800℃,时间为1-2h。
在本发明的一个优选实施方案中,所述高温退火的温度为1200-1400℃。
本发明的有益效果是:
1、本发明简便易操作,具有制备温度低,成本较低,节能环保等优点。
2、本发明通过制备出核壳结构的SiC@Ti(C,N)陶瓷材料,提高了碳化硅基体材料的断裂韧性。
3、本发明制备的SiC@Ti(C,N)核壳结构陶瓷粉体的壳层厚度为10-100nm,具有包裹性良好,壳层厚度可控等优点。
附图说明
图1为本发明实施例1至5制备的SiC@Ti(C,N)陶瓷粉体材料(a)与纯碳化硅(b) 的扫描电镜照片。
图2为本发明实施例2、4制备的SiC@Ti(C,N)陶瓷粉体材料的粉末衍射图。
图3为本发明实施例1至5制备的SiC@Ti(C,N)陶瓷粉体材料的扫描电镜照片。
图4为本发明实施例4制备的SiC@Ti(C,N)陶瓷粉体的显微维氏硬度压痕图。
具体实施方式
以下通过具体实施方式对本发明的技术方案进行进一步的说明和描述。
实施例1
(1)将2.00g硫酸氧钛溶于50mL蒸馏水中,于30℃水浴搅拌直至澄清,过滤除去不溶物后,稀释至0.01g/mL,获得硫酸氧钛水溶液;
(2)将2.00g SiC粉末、20mL乙二醇和100mL蒸馏水混合,并超声(频率20kHZ 功率300W)分散20-60min,获得混合溶液;
(3)在上述混合溶液中加入4.00g CO(NH2)2搅拌均匀,同时缓慢加入80mL上述硫酸氧钛水溶液,水浴搅拌24h至沉淀全部析出后,室温静置48h;
(4)将步骤(3)所得的物料进行离心,除去上层清液,获得沉淀,将该沉淀用蒸馏水和无水乙醇反复超声和离心洗涤后,经干燥和研磨,获得SiC@Ti(C,N)前驱体粉末;
(5)将上述SiC@Ti(C,N)前驱体粉末置于管式炉中,于氮气气氛下800℃煅烧2h,再经1400℃高温退火,即得如图1和3所示的所述SiC@Ti(C,N)核壳结构陶瓷粉体,其壳层厚度约为100±1nm,在型号为ZHV-1MDXS高级半自动显微维氏硬度计 (Semi-automaticmicrophotometer)上对样品进行了显微硬度测定。测试仪器采用正四棱锥体金刚石压头,在1.96N试验力作用下压入试样表面,保荷时间10s后,样品最大显微硬度高达1642HV,采用压痕法测出断裂韧性最高5.88MPa.m1/2,相比于纯碳化硅材料的断裂韧性提高了96%。
实施例2
(1)将2.00g硫酸氧钛溶于50mL蒸馏水中,于30℃水浴搅拌直至澄清,过滤除去不溶物后,稀释至0.01g/mL,获得硫酸氧钛水溶液;
(2)将2.00g SiC粉末、20mL乙二醇和100mL蒸馏水混合,并超声(频率20kHZ 功率300W)分散20-60min,获得混合溶液;
(3)在上述混合溶液中加入3.00g CO(NH2)2搅拌均匀,同时缓慢加入30mL上述硫酸氧钛水溶液,水浴搅拌24h至沉淀全部析出后,室温静置48h;
(4)将步骤(3)所得的物料进行离心,除去上层清液,获得沉淀,将该沉淀用蒸馏水和无水乙醇反复超声和离心洗涤后,经干燥和研磨,获得SiC@Ti(C,N)前驱体粉末;
(5)将上述SiC@Ti(C,N)前驱体粉末置于管式炉中,于氮气气氛下800℃煅烧2h,再经1250℃高温退火,即得如图1、2和3所示的所述SiC@Ti(C,N)核壳结构陶瓷粉体,壳层厚度约为52±1nm,样品最大显微硬度高达1434HV,采用压痕法测出断裂韧性最高5.55MPa.m1/2,相比于纯碳化硅材料的断裂韧性提高了85%。
实施例3
(1)将2.00g硫酸氧钛溶于50mL蒸馏水中,于30℃水浴搅拌直至澄清,过滤除去不溶物后,稀释至0.01g/mL,获得硫酸氧钛水溶液;
(2)将2.00g SiC粉末、20mL乙二醇和100mL蒸馏水混合,并超声(频率20kHZ 功率300W)分散20-60min,获得混合溶液;
(3)在上述混合溶液中加入6.00gCO(NH2)2和2.00g g-C3N4搅拌均匀,同时缓慢加入100mL上述硫酸氧钛水溶液,水浴搅拌24h至沉淀全部析出后,室温静置48h;
(4)将步骤(3)所得的物料进行离心,除去上层清液,获得沉淀,将该沉淀用蒸馏水和无水乙醇反复超声和离心洗涤后,经干燥和研磨,获得SiC@Ti(C,N)前驱体粉末;
(5)将上述SiC@Ti(C,N)前驱体粉末置于管式炉中,于氮气气氛下800℃煅烧2h,再经1200℃高温退火,即得如图1和3所示的所述SiC@Ti(C,N)核壳结构陶瓷粉体,壳层厚度约为100±1nm,样品最大显微硬度高达1025HV,采用压痕法测出断裂韧性最高 3.50MPa·m1 /2,相比于纯碳化硅材料的断裂韧性提高了17%。。
实施例4
(1)将2.00g硫酸氧钛溶于50mL蒸馏水中,于30℃水浴搅拌直至澄清,过滤除去不溶物后,稀释至0.01g/mL,获得硫酸氧钛水溶液;
(2)将2.00g SiC粉末、20mL乙二醇和100mL蒸馏水混合,并超声(频率20kHZ 功率300W)分散20-60min,获得混合溶液;
(3)在上述混合溶液中加入6.00g CO(NH2)2搅拌均匀,同时缓慢加入60mL上述硫酸氧钛水溶液,水浴搅拌24h至沉淀全部析出后,室温静置48h;
(4)将步骤(3)所得的物料进行离心,除去上层清液,获得沉淀,将该沉淀用蒸馏水和无水乙醇反复超声和离心洗涤后,经干燥和研磨,获得SiC@Ti(C,N)前驱体粉末;
(5)将上述SiC@Ti(C,N)前驱体粉末置于管式炉中,于氮气气氛下800℃煅烧2h,再经1250℃高温退火,即得如图1、2和3所示的所述SiC@Ti(C,N)核壳结构陶瓷粉体,壳层厚度约为82±1nm,测出硬度值高达2587HV,采用压痕法测出断裂韧性最高 3.23MPa.m1/2,相比于纯碳化硅材料的断裂韧性提高了7%(如图4所示)。
实施例5
(1)将2.00g硫酸氧钛溶于50mL蒸馏水中,于30℃水浴搅拌直至澄清,过滤除去不溶物后,稀释至0.01g/mL,获得硫酸氧钛水溶液;
(2)将2.00g SiC粉末、20mL乙二醇和100mL蒸馏水混合,并超声(频率20kHZ 功率300W)分散20-60min,获得混合溶液;
(3)在上述混合溶液中加入2.00g CO(NH2)2搅拌均匀,同时缓慢加入10mL上述硫酸氧钛水溶液,水浴搅拌24h至沉淀全部析出后,室温静置48h;
(4)将步骤(3)所得的物料进行离心,除去上层清液,获得沉淀,将该沉淀用蒸馏水和无水乙醇反复超声和离心洗涤后,经干燥和研磨,获得SiC@Ti(C,N)前驱体粉末;
(5)将上述SiC@Ti(C,N)前驱体粉末置于管式炉中,于氮气气氛下600℃煅烧2h,再经1250℃高温退火,即得如图1和3所示的所述SiC@Ti(C,N)核壳结构陶瓷粉体,壳层厚度约为34±1nm,样品最大显微硬度高达988HV,采用压痕法测出断裂韧性最高 3.02MPa·m1/2,相比于纯碳化硅材料的断裂韧性提高了0.7%。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (10)

1.一种SiC@Ti(C,N)核壳结构陶瓷粉体的制备方法,其特征在于:包括如下步骤:
(1)将硫酸氧钛溶于蒸馏水中,于水浴搅拌直至澄清,过滤除去不溶物后,获得硫酸氧钛水溶液;
(2)将SiC粉末、有机溶剂和蒸馏水混合,并超声分散,获得混合溶液;
(3)在上述混合溶液中加入碳氮原料搅拌均匀,同时缓慢加入上述硫酸氧钛水溶液,水浴搅拌至沉淀全部析出后,室温静置24-48h;上述碳氮原料为三聚氰胺、尿素和石墨相氮化碳中的至少一种;
(4)将步骤(3)所得的物料进行离心,除去上层清液,获得沉淀,将该沉淀用蒸馏水和无水乙醇充分洗涤后,经干燥和研磨,获得SiC@Ti(C,N)前驱体粉末;
(5)将上述SiC@Ti(C,N)前驱体粉末于氮气气氛下煅烧,再经高温退火,即得所述SiC@Ti(C,N)核壳结构陶瓷粉体。
2.如权利要求1所述的制备方法,其特征在于:所述步骤(1)中,硫酸氧钛和蒸馏水的比例为1.5-2.5g∶45-55mL。
3.如权利要求2所述的制备方法,其特征在于:所述步骤(1)中,硫酸氧钛和蒸馏水的比例为2g∶50mL。
4.如权利要求1所述的制备方法,其特征在于:所述步骤(2)中,所述SiC粉末、有机溶剂和蒸馏水的比例为1.5-2.5g∶15-25mL∶90-110mL。
5.如权利要求4所述的制备方法,其特征在于:所述步骤(2)中,所述SiC粉末、有机溶剂和蒸馏水的比例为2g∶20mL∶100mL。
6.如权利要求1所述的制备方法,其特征在于:所述SiC、碳氮原料和硫酸氧钛的质量比为2∶3-8∶0.4-1。
7.如权利要求1所述的制备方法,其特征在于:所述硫酸氧钛和蒸馏水的比例为2g∶50mL,所述SiC粉末、有机溶剂和蒸馏水的比例为2g∶20mL∶100mL,所述SiC、碳氮原料和硫酸氧钛的质量比为2∶3-8∶0.4-1。
8.如权利要求1至7中任一权利要求所述的制备方法,其特征在于:所述有机溶剂为乙二醇、异丙醇或正丙醇。
9.如权利要求1至7中任一权利要求所述的制备方法,其特征在于:所述煅烧的温度为600-800℃,时间为1-2h。
10.如权利要求1至7中任一权利要求所述的制备方法,其特征在于:所述高温退火的温度为1200-1400℃。
CN202010925580.0A 2020-09-04 2020-09-04 一种SiC@Ti(C,N)核壳结构陶瓷粉体的制备方法 Active CN112142479B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010925580.0A CN112142479B (zh) 2020-09-04 2020-09-04 一种SiC@Ti(C,N)核壳结构陶瓷粉体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010925580.0A CN112142479B (zh) 2020-09-04 2020-09-04 一种SiC@Ti(C,N)核壳结构陶瓷粉体的制备方法

Publications (2)

Publication Number Publication Date
CN112142479A true CN112142479A (zh) 2020-12-29
CN112142479B CN112142479B (zh) 2022-07-29

Family

ID=73890720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010925580.0A Active CN112142479B (zh) 2020-09-04 2020-09-04 一种SiC@Ti(C,N)核壳结构陶瓷粉体的制备方法

Country Status (1)

Country Link
CN (1) CN112142479B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004035364A1 (de) * 2003-08-07 2005-03-03 Ceram Tec Ag Innovative Ceramic Engineering Werkstoff auf der Basis von SiAIONen
CN101555401A (zh) * 2008-04-10 2009-10-14 中国科学院化学研究所 有机相变储能材料的微胶囊及其制备方法
CN103816897A (zh) * 2014-03-11 2014-05-28 中国科学院合肥物质科学研究院 二氧化钛-银复合核壳结构球及其制备方法和用途
CN104031421A (zh) * 2014-06-24 2014-09-10 吉林大学 一种具有核壳结构的纳米碳酸钙/二氧化钛复合粉体的制备方法
CN104831145A (zh) * 2015-06-03 2015-08-12 重庆文理学院 亚微米级SiC颗粒增强Ti(C,N)基金属陶瓷材料及其制备方法
CN105018927A (zh) * 2015-07-17 2015-11-04 河北农业大学 以三聚氰胺为碳氮前驱体制备含Ti(C,N)涂层的方法
CN107829054A (zh) * 2017-11-14 2018-03-23 湖南大学 一种高强韧性碳氮化钛基金属陶瓷材料及其制备方法
CN108580922A (zh) * 2018-04-13 2018-09-28 东北大学 一种制备高性能铝基碳化硅的方法
CN110373593A (zh) * 2019-07-01 2019-10-25 南京理工大学 一种碳氮化钛基复合金属陶瓷材料微波烧结工艺
CN110938816A (zh) * 2019-11-06 2020-03-31 中南大学 一种激光熔覆SiC纳米颗粒增强Ti(C,N)陶瓷涂层及其应用
CN111534236A (zh) * 2020-05-22 2020-08-14 陈奎东 一种掺杂石墨的耐高温导热磷酸盐胶粘剂及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004035364A1 (de) * 2003-08-07 2005-03-03 Ceram Tec Ag Innovative Ceramic Engineering Werkstoff auf der Basis von SiAIONen
CN101555401A (zh) * 2008-04-10 2009-10-14 中国科学院化学研究所 有机相变储能材料的微胶囊及其制备方法
CN103816897A (zh) * 2014-03-11 2014-05-28 中国科学院合肥物质科学研究院 二氧化钛-银复合核壳结构球及其制备方法和用途
CN104031421A (zh) * 2014-06-24 2014-09-10 吉林大学 一种具有核壳结构的纳米碳酸钙/二氧化钛复合粉体的制备方法
CN104831145A (zh) * 2015-06-03 2015-08-12 重庆文理学院 亚微米级SiC颗粒增强Ti(C,N)基金属陶瓷材料及其制备方法
CN105018927A (zh) * 2015-07-17 2015-11-04 河北农业大学 以三聚氰胺为碳氮前驱体制备含Ti(C,N)涂层的方法
CN107829054A (zh) * 2017-11-14 2018-03-23 湖南大学 一种高强韧性碳氮化钛基金属陶瓷材料及其制备方法
CN108580922A (zh) * 2018-04-13 2018-09-28 东北大学 一种制备高性能铝基碳化硅的方法
CN110373593A (zh) * 2019-07-01 2019-10-25 南京理工大学 一种碳氮化钛基复合金属陶瓷材料微波烧结工艺
CN110938816A (zh) * 2019-11-06 2020-03-31 中南大学 一种激光熔覆SiC纳米颗粒增强Ti(C,N)陶瓷涂层及其应用
CN111534236A (zh) * 2020-05-22 2020-08-14 陈奎东 一种掺杂石墨的耐高温导热磷酸盐胶粘剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HYUN-GU AN ET AL.: "Microstructure and fracture toughness of liquid-phase-sintered SiC-Ti(CN) composites", 《JOURNAL OF MATERIALS SCIENCE LETTERS》 *
何旭初等: "《钢结硬质合金的制备原理与技术》", 31 January 2017, 湖南科学技术出版社 *

Also Published As

Publication number Publication date
CN112142479B (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CN107082628B (zh) 一种基于分子筛膜合成残液的多孔陶瓷支撑体制备方法
CN107082411B (zh) 一种氮、硼共掺杂碳纳米微球及其制备方法
CN113764688B (zh) 一种三维碳结构负载GaN催化剂及其制备方法
CN105218102B (zh) 一种前驱体法制备SiC/TiC复合陶瓷的方法
US9551086B2 (en) Method of preparing silicon carbide powder comprising converting a liquid SiC precursor to a B-phase SiC particulate material
CN108129151B (zh) 一种石墨烯/碳化硅纳米复合结构单片陶瓷及其制备方法
CN109794245B (zh) 一种蜂窝状铁基加氢催化剂(Fe3O4@C)/C及其制备方法和应用
CN112110445B (zh) 一种木质素基多孔炭材料的制备方法
CN112225566B (zh) 氮化硅粉体及其制备方法与应用、陶瓷材料
Tang et al. An efficient and low-cost liquid silicon infiltration method to prepare SiC-coated carbon short fiber for fiber protection of Cf/SiC ceramic matrix composites
CN112142479B (zh) 一种SiC@Ti(C,N)核壳结构陶瓷粉体的制备方法
Maity et al. Synthesis of biomorphic SiC ceramics from coir fibreboard preform
CN108821266B (zh) 一种氮掺杂石墨烯的制备方法
CN101182211B (zh) 纳米碳化硅陶瓷的制备方法
CN105060272B (zh) 一种以卤虫卵壳作为碳源低温下制备碳纳米管的方法
CN111634901A (zh) 锆掺杂磷酸氧铌催化剂在由木质素制备碳量子点中的应用及碳量子点的制备方法、碳量子点
CN101774810B (zh) α-SiC微粉颗粒表面改性的工业生产方法
EP2716617A1 (en) Method for producing silicon carbide-carbon composite
CN109761227A (zh) 一种大批量制备高质量石墨烯的方法
CN1260179C (zh) 一种煤系高岭土合成高纯赛隆材料的方法
CN108315837B (zh) 一种硼掺杂碳化硅纤维及其制备方法
CN1272244C (zh) 一种b6o纳米线和晶须结构及其制备方法
CN103626140B (zh) 一种碳热还原氮化法合成纳米氮化钒/氮化铬复合粉末的方法
CN113307611A (zh) 一种采用煤泥制备SiC晶须的方法
KR20110022424A (ko) 고효율 탄화규소 분체 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant