CN112142475B - 一种电子封装用高致密/高导热AlN陶瓷及其制备方法 - Google Patents

一种电子封装用高致密/高导热AlN陶瓷及其制备方法 Download PDF

Info

Publication number
CN112142475B
CN112142475B CN202010953289.4A CN202010953289A CN112142475B CN 112142475 B CN112142475 B CN 112142475B CN 202010953289 A CN202010953289 A CN 202010953289A CN 112142475 B CN112142475 B CN 112142475B
Authority
CN
China
Prior art keywords
powder
aln
modified
density
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010953289.4A
Other languages
English (en)
Other versions
CN112142475A (zh
Inventor
刘吉平
李年华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202010953289.4A priority Critical patent/CN112142475B/zh
Publication of CN112142475A publication Critical patent/CN112142475A/zh
Application granted granted Critical
Publication of CN112142475B publication Critical patent/CN112142475B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种电子封装用高致密/高导热AlN陶瓷及其制备方法,属于无机非金属材料与特种材料制备领域。采用AlN粉体、改性纳米AlN粉末、改性Sm2O3粉末、TiO2粉末、炭黑粉末和单层碳纳米管制备高致密/高导热AlN陶瓷;本发明的烧结温度控制在1600℃,能耗低,不使用任何粘结剂,免去排胶等耗时步骤,保温时间短,生产效率大幅提高;所制备的AlN陶瓷晶体中晶界面显著减少,致密度大幅提高,导热性能表现优异,热导率值高达250~270W/m.K。

Description

一种电子封装用高致密/高导热AlN陶瓷及其制备方法
技术领域
本发明涉及一种电子封装用高致密/高导热AlN陶瓷及其制备方法技术领域,属于无机非金属材料与特种材料制备领域。
背景技术
为适应社会的发展与时代的需求,电子产品的升级与换代也是日新月异,越来越多的电子产品向小型便携化、快捷多功能化方向发展。促使电子设备元器件集成度、运行速度的不断提高以及高功率芯片的使用,导致集成电路功耗越来越大,电子元件在高频工作状态下产生的热量更加集中,而热量的不断积累就会导致芯片的发热量急剧上升。器件过高的升温会造成芯片处理速度的快速下降,甚至损坏失效。数据表明电子器件的温度每超过额定温度2℃,其可靠性就会降低10%。散热问题严重制约了电子元件向高密度、多功能、高速化和大功率的发展。在集成电路中,封装起着芯片保护、芯片支撑、芯片散热、芯片绝缘以及芯片与外电路连接的作用。为了更加高效、快速的散热,并进一步提高电子设备的性能稳定性和使用寿命,对电子封装材料的导热性能提出了更高的要求;同时,为了保证电子设备的信号传输速度和减小信号损失,还需要电子封装材料具有较低的介电常数和介质损耗。开发高导热低介电封装材料对下一代高性能电子器件与设备的开发具有非常重要的意义。陶瓷封装材料塑料和金属相比,优点在于:(1)绝缘性能好,可靠性高;(2)介电系数较小,高频性能好;(3)热膨胀系数小,热导率高;(4)气密性好,化学性能稳定等一系列优点,对电子系统起到较强的保护作用。目前,Al2O3陶瓷材料存在着热导率不高的缺点,因而在高频、大功率、超大规模集成电路的使用中受到限制;Si3N4介电性能稍差(介电常数为8.3,介电损耗为0.001~0.1),生产成本也偏高;SiC陶瓷的介电常数太高,是AlN的4倍,耐压强度低,仅适合密度较低的封装而不适合高密度封装;BeO各项性能优异,但其有剧毒性,长期吸入BeO粉尘会引起中毒甚至危及生命,而且污染环境,生产成本太高;立方BN和六方结构的BN都是在高温高压下制备的,是比较典型的共价键晶体。BN由于价格昂贵,而且有着热膨胀系数与硅不匹配等缺点。而氮化铝(AlN)陶瓷材料因具有高热导率、低介电常数、与Si相匹配的线膨胀系数、绝缘以及机械性能良好、成本低、无毒等优点,作为一种综合性能优越的新型电子陶瓷逐渐成为新一代集成电路封装材料的首选。但是AlN作为共价化合物,熔点高,自扩散系数小,通常都是通过高温烧结制备,高成本限制了AlN作为封装基板的应用。专利CN101570437A通过连续式氢氮气氛炉将AlN粉体和烧结添加剂在1450~1600℃温度范围内进行烧结,得到的AlN陶瓷的热导率达170~220W/m.K,其不足之处在于稀土金属氧化物的含量较高,使得烧结温度降低太多,导致氮化铝陶瓷块体的致密度不够,并且在一定程度上阻碍了导热率的提升。因此,在温度不太高的情况下,提供一种电子封装用高致密/高导热AlN陶瓷及其制备方法对电子封装技术的发展具有重大意义。
发明内容
本发明的目的是为了解决AlN陶瓷烧结过程中使用大量烧结助剂造成晶体缺陷和高含量氧化物使用导致致密度不高,并进而导致的AlN陶瓷热导率性能难以提升的问题,而提供的一种电子封装用高致密/高导热AlN陶瓷及其制备方法,该方法操作流程简单,所得AlN陶瓷具有高的致密度和优异的导热性;
本发明的目的是通过以下技术方案实现的:
一种电子封装用高致密/高导热AlN陶瓷,其各组分与质量百分比如下:
Figure BDA0002677753050000021
组分中AlN粉体的粒径为10~20μm,改性纳米AlN粉末的平均粒径小于50nm。
一种电子封装用高致密/高导热AlN陶瓷的制备方法,具体步骤如下:
步骤一、
按照质量百分比分别称取AlN粉体、改性纳米AlN粉末、改性Sm2O3粉末、TiO2粉末、炭黑粉末、单层碳纳米管,使其总重为10g,并将所有原料组分倒入卧式行星球磨机的陶瓷罐中;
步骤二、
按球料比5:1称取锆球,并将锆球倒入到上述陶瓷罐中,并按料液比1:3量取30ml无水乙醇加入到上述陶瓷罐中进行球磨,转速为600~700r/min,频率为50HZ,球磨时间3h,得到混合均匀的浆料A;
步骤三、
将浆料A倒入培养皿,放入真空干燥箱中,60~70℃条件下干燥6~8h后取出,并先后使用50、100目的标准筛进行筛分,得到干燥后粒度均匀的浆料B;
步骤四、
将浆料B进行干压成型,成型压力为150MPa,保压50s后得到AlN陶瓷圆片状胚体;
步骤五、
将压制成型的AlN坯体置于1600℃硅钼棒发热体箱式炉进行烧结,保温时间3h后得到高致密/高导热AlN陶瓷片。
所述改性纳米AlN粉末的制备方法为:按质量比1:30将十二烷基二甲基苄基溴化铵加入到四氢呋喃溶液中进行超声分散,超声功率为180W,超声频率为50KHz,30分钟后得到阳离子表面活性剂溶液;然后在真空手套箱中按纳米AlN粉末与十二烷基二甲基苄基溴化铵的质量比为2:1将纳米AlN粉末加入到阳离子表面活性剂溶液进行超声分散,超声功率为180W,超声频率为50KHz,30分钟后得到改性混合液A;继而在真空手套箱中对改性混合液A进行过滤,然后放入70~80℃真空干燥箱中干燥,1~3小时后取出研细即得到改性纳米AlN粉末;
所述改性Sm2O3粉末的制备方法为:按质量比1:200将硅烷偶联剂加入到四氢呋喃溶液中进行磁力搅拌,搅拌速率为60~80r/min,20~30分钟后得到偶联剂溶液;然后按硅烷偶联剂、Sm2O3粉末与鳞片状碳粉的质量比为1:10:1将Sm2O3粉末与鳞片状碳粉加入到偶联剂溶液中进行超声分散,超声功率为180W,超声频率为50KHz,1~2小时后得到改性混合液B;继而对改性混合液B进行过滤,然后放入70~80℃鼓风干燥箱中干燥,1~3小时后取出研细即得到改性Sm2O3粉末;
有益效果
1、本发明提供的一种电子封装用高致密/高导热AlN陶瓷及其制备方法,烧结温度控制在1600℃,能耗低,不使用任何粘结剂,免去排胶等耗时步骤,保温时间短,生产效率大幅提高;
2、本发明提供的一种电子封装用高致密/高导热AlN陶瓷及其制备方法,所制备的AlN陶瓷晶体中晶界面显著减少,致密度大幅提高,导热性能表现优异,热导率值高达250~270W/m.K;
3、本发明提供的一种电子封装用高致密/高导热AlN陶瓷及其制备方法,制备方法简单,生产过程绿色环保,能够满足大批量生产要求。
具体实施方式
以下通过具体实施方式对本发明作进一步说明:
实施例1
一种电子封装用高致密/高导热AlN陶瓷,其各组分与质量百分比如下:
Figure BDA0002677753050000041
一种电子封装用高致密/高导热AlN陶瓷的制备方法,将0.25g十二烷基二甲基苄基溴化铵加入到7.5g四氢呋喃溶液中进行超声分散,超声功率为180W,超声频率为50KHz,30分钟后得到阳离子表面活性剂溶液;然后在真空手套箱中将0.5g纳米AlN粉末加入到阳离子表面活性剂溶液进行超声分散,超声功率为180W,超声频率为50KHz,30分钟后得到改性混合液A;继而在真空手套箱中对改性混合液A进行过滤,然后放入70℃真空干燥箱中干燥,1.5小时后取出研细即得到0.73g改性纳米AlN粉末;
将0.02g硅烷偶联剂加入到4g四氢呋喃溶液中进行磁力搅拌,搅拌速率为60r/min,30分钟后得到偶联剂溶液;然后将0.2g Sm2O3粉末与0.02g鳞片状碳粉加入到偶联剂溶液中进行超声分散,超声功率为180W,超声频率为50KHz,1.5小时后得到改性混合液B;继而对改性混合液B进行过滤,然后放入72℃鼓风干燥箱中干燥,2.5小时后取出研细即得到0.22g改性Sm2O3粉末;
按照质量百分比分别称取AlN粉体8.77g、改性纳米AlN粉末0.32g、改性Sm2O3粉末0.05g、TiO2粉末0.08g、炭黑粉末0.51g、单层碳纳米管0.27g;并将所有原料组分倒入卧式行星球磨机的陶瓷罐中;然后称取50g锆球倒入到陶瓷罐中,并量取30ml无水乙醇加入到陶瓷罐中进行球磨,转速为600r/min,频率为50HZ,球磨时间3h,得到混合均匀的浆料A;
将浆料A倒入培养皿,放入真空干燥箱中,70℃条件下干燥8h后取出,并先后使用50、100目的标准筛进行筛分,得到干燥后粒度均匀的浆料B;然后将将浆料B进行干压成型,成型压力为150MPa,保压50s后得到AlN陶瓷圆片状胚体;
将压制成型的AlN坯体置于1600℃硅钼棒发热体箱式炉进行烧结,保温3h后得到直径为12.31mm,厚度为5.26mm的高致密/高导热AlN陶瓷片。
经测试所得电子封装用高致密/高导热AlN陶瓷片密度为3.43g/cm3,热导率为263W/m.K。
实施例2
一种电子封装用高致密/高导热AlN陶瓷,其各组分与质量百分比如下:
Figure BDA0002677753050000051
一种电子封装用高致密/高导热AlN陶瓷的制备方法,将0.25g十二烷基二甲基苄基溴化铵加入到7.5g四氢呋喃溶液中进行超声分散,超声功率为180W,超声频率为50KHz,30分钟后得到阳离子表面活性剂溶液;然后在真空手套箱中将0.5g纳米AlN粉末加入到阳离子表面活性剂溶液进行超声分散,超声功率为180W,超声频率为50KHz,30分钟后得到改性混合液A;继而在真空手套箱中对改性混合液A进行过滤,然后放入75℃真空干燥箱中干燥,2.5小时后取出研细即得到0.72g改性纳米AlN粉末;
将0.02g硅烷偶联剂加入到4g四氢呋喃溶液中进行磁力搅拌,搅拌速率为70r/min,25分钟后得到偶联剂溶液;然后将0.2g Sm2O3粉末与0.02g鳞片状碳粉加入到偶联剂溶液中进行超声分散,超声功率为180W,超声频率为50KHz,1.8小时后得到改性混合液B;继而对改性混合液B进行过滤,然后放入76℃鼓风干燥箱中干燥,1.5小时后取出研细即得到0.21g改性Sm2O3粉末;
按照质量百分比分别称取AlN粉体8.83g、改性纳米AlN粉末0.41g、改性Sm2O3粉末0.07g、TiO2粉末0.07g、炭黑粉末0.43g、单层碳纳米管0.19g;并将所有原料组分倒入卧式行星球磨机的陶瓷罐中;然后称取50g锆球倒入到陶瓷罐中,并量取30ml无水乙醇加入到陶瓷罐中进行球磨,转速为700r/min,频率为50HZ,球磨时间3h,得到混合均匀的浆料A;
将浆料A倒入培养皿,放入真空干燥箱中,65℃条件下干燥7h后取出,并先后使用50、100目的标准筛进行筛分,得到干燥后粒度均匀的浆料B;然后将将浆料B进行干压成型,成型压力为150MPa,保压50s后得到AlN陶瓷圆片状胚体;
将压制成型的AlN坯体置于1600℃硅钼棒发热体箱式炉进行烧结,保温3h后得到直径为12.13mm,厚度为5.21mm的高致密/高导热AlN陶瓷片。
经测试所得电子封装用高致密/高导热AlN陶瓷片密度为3.39g/cm3,热导率为258W/m.K。
实施例3
一种电子封装用高致密/高导热AlN陶瓷,其各组分与质量百分比如下:
Figure BDA0002677753050000061
一种电子封装用高致密/高导热AlN陶瓷的制备方法,将0.25g十二烷基二甲基苄基溴化铵加入到7.5g四氢呋喃溶液中进行超声分散,超声功率为180W,超声频率为50KHz,30分钟后得到阳离子表面活性剂溶液;然后在真空手套箱中将0.5g纳米AlN粉末加入到阳离子表面活性剂溶液进行超声分散,超声功率为180W,超声频率为50KHz,30分钟后得到改性混合液A;继而在真空手套箱中对改性混合液A进行过滤,然后放入80℃真空干燥箱中干燥,2小时后取出研细即得到0.71g改性纳米AlN粉末;
将0.02g硅烷偶联剂加入到4g四氢呋喃溶液中进行磁力搅拌,搅拌速率为80r/min,20分钟后得到偶联剂溶液;然后将0.2g Sm2O3粉末与0.02g鳞片状碳粉加入到偶联剂溶液中进行超声分散,超声功率为180W,超声频率为50KHz,2小时后得到改性混合液B;继而对改性混合液B进行过滤,然后放入75℃鼓风干燥箱中干燥,2小时后取出研细即得到0.23g改性Sm2O3粉末;
按照质量百分比分别称取AlN粉体8.57g、改性纳米AlN粉末0.37g、改性Sm2O3粉末0.06g、TiO2粉末0.06g、炭黑粉末0.64g、单层碳纳米管0.30g;并将所有原料组分倒入卧式行星球磨机的陶瓷罐中;然后称取50g锆球倒入到陶瓷罐中,并量取30ml无水乙醇加入到陶瓷罐中进行球磨,转速为650r/min,频率为50HZ,球磨时间3h,得到混合均匀的浆料A;
将浆料A倒入培养皿,放入真空干燥箱中,60℃条件下干燥6h后取出,并先后使用50、100目的标准筛进行筛分,得到干燥后粒度均匀的浆料B;然后将将浆料B进行干压成型,成型压力为150MPa,保压50s后得到AlN陶瓷圆片状胚体;
将压制成型的AlN坯体置于1600℃硅钼棒发热体箱式炉进行烧结,保温3h后得到直径为12.21mm,厚度为5.14mm的高致密/高导热AlN陶瓷片。
经测试所得电子封装用高致密/高导热AlN陶瓷片密度为3.41g/cm3,热导率为267W/m.K。
以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种电子封装用高致密/高导热AlN陶瓷,其特征在于:各组分的质量百分比如下:
Figure FDA0003092324810000011
制备所述的一种电子封装用高致密/高导热AlN陶瓷的方法,具体步骤如下:
步骤一、按照质量百分比分别称取AlN粉体、改性纳米AlN粉末、改性Sm2O3粉末、TiO2粉末、炭黑粉末、单层碳纳米管,使其总重为10g,并将所有原料组分倒入卧式行星球磨机的陶瓷罐中;
步骤二、按球料比5:1称取锆球,并将锆球倒入到上述陶瓷罐中,并按料液比1:3量取30ml无水乙醇加入到上述陶瓷罐中进行球磨,转速为600~700r/min,频率为50Hz,球磨时间3h,得到混合均匀的浆料A;
步骤三、将浆料A倒入培养皿,放入真空干燥箱中,60~70℃条件下干燥6~8h后取出,并先后使用50、100目的标准筛进行筛分,得到干燥后粒度均匀的粉体B;
步骤四、将粉体B进行干压成型,成型压力为150MPa,保压50s后得到AlN陶瓷圆片状坯体;
步骤五、将压制成型的AlN坯体置于1600℃硅钼棒发热体箱式炉进行烧结,保温时间3h后得到高致密/高导热AlN陶瓷片;
所述改性纳米AlN粉末的制备方法为:按质量比1:30将十二烷基二甲基苄基溴化铵加入到四氢呋喃溶液中进行超声分散,超声功率为180W,超声频率为50KHz,30分钟后得到阳离子表面活性剂溶液;然后在真空手套箱中按纳米AlN粉末与十二烷基二甲基苄基溴化铵的质量比为2:1将纳米AlN粉末加入到阳离子表面活性剂溶液进行超声分散,超声功率为180W,超声频率为50KHz,30分钟后得到改性混合液A;继而在真空手套箱中对改性混合液A进行过滤,然后放入70~80℃真空干燥箱中干燥,1~3小时后取出研细即得到改性纳米AlN粉末;
所述改性Sm2O3粉末的制备方法为:按质量比1:200将硅烷偶联剂加入到四氢呋喃溶液中进行磁力搅拌,搅拌速率为60~80r/min,20~30分钟后得到偶联剂溶液;然后按硅烷偶联剂、Sm2O3粉末与鳞片状碳粉的质量比为1:10:1将Sm2O3粉末与鳞片状碳粉加入到偶联剂溶液中进行超声分散,超声功率为180W,超声频率为50KHz,1~2小时后得到改性混合液B;继而对改性混合液B进行过滤,然后放入70~80℃鼓风干燥箱中干燥,1~3小时后取出研细即得到改性Sm2O3粉末。
2.如权利要求1所述的陶瓷,其特征在于:组分中AlN粉体的粒径为10~20μm,改性纳米AlN粉末的平均粒径小于50nm。
CN202010953289.4A 2020-09-11 2020-09-11 一种电子封装用高致密/高导热AlN陶瓷及其制备方法 Active CN112142475B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010953289.4A CN112142475B (zh) 2020-09-11 2020-09-11 一种电子封装用高致密/高导热AlN陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010953289.4A CN112142475B (zh) 2020-09-11 2020-09-11 一种电子封装用高致密/高导热AlN陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN112142475A CN112142475A (zh) 2020-12-29
CN112142475B true CN112142475B (zh) 2021-09-28

Family

ID=73890829

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010953289.4A Active CN112142475B (zh) 2020-09-11 2020-09-11 一种电子封装用高致密/高导热AlN陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN112142475B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196067A (ja) * 1987-10-08 1989-04-14 Nec Corp 窒化アルミニウム焼結体の製造方法
CN101570437B (zh) * 2009-04-30 2013-01-09 潮州三环(集团)股份有限公司 一种连续式低温烧结高导热率AlN陶瓷的方法及其产品
CN103204682B (zh) * 2012-01-16 2015-07-01 佛山市陶瓷研究所有限公司 一种高导热氮化铝陶瓷散热基片及其制备方法
CN103436864A (zh) * 2013-04-01 2013-12-11 洪亮 一种用于化学镀的纳米陶瓷粉体浆料
US9928963B2 (en) * 2015-03-13 2018-03-27 Avx Corporation Thermally conductive encapsulant material for a capacitor assembly
KR102098193B1 (ko) * 2018-03-12 2020-04-07 한국교통대학교 산학협력단 표면이 개질된 탄소 분말을 이용한 모터용 탄소 브러쉬 및 이의 제조방법

Also Published As

Publication number Publication date
CN112142475A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
CN109851369A (zh) 一种制备高热导率氮化硅陶瓷的方法
CN103553691A (zh) 一种颗粒弥散增韧氮化铝陶瓷基板及其制备方法
CN109836141B (zh) 一种高热导率低温共烧陶瓷材料及其制备方法
CN103204682B (zh) 一种高导热氮化铝陶瓷散热基片及其制备方法
JPH09157773A (ja) 低熱膨張・高熱伝導性アルミニウム複合材料及びその製造方法
CN105236982B (zh) 氮化铝增强的石墨基复合材料及制备工艺
CN110079708B (zh) 一种纳米石墨片/Al合金基复合材料的粉末冶金制备方法
CN112225186B (zh) 一种球形氮化硼的制备方法
CN105503199A (zh) 一种高热导率氮化硅-氮化铝复合材料及其制备方法
CN113354418B (zh) 一种真空热压烧结法制备的高性能氮化铝陶瓷基板及制备方法
CN101565308A (zh) 氮化硼纳米管增强的氮化硅陶瓷及其制备方法
CN112142474A (zh) 一种水基流延成型高导热氮化铝陶瓷基板的制备方法
CN116969767A (zh) 氮化硅陶瓷和硅化物辅助烧结制备氮化硅陶瓷的方法
CN112142475B (zh) 一种电子封装用高致密/高导热AlN陶瓷及其制备方法
CN109627014A (zh) 一种高强度、高导热性的Si3N4陶瓷材料及其制备方法
CN110423122A (zh) 一种低损耗、高导热氮化硅陶瓷的制备方法
CN113149658B (zh) 一种氮化钛基复合陶瓷材料及其制备方法
CN113443917B (zh) 一种放电等离子烧结制备的二硼化钛-氮化硼-碳化硅陶瓷复合材料及其制备方法
CN113121252A (zh) 一种高导热SiC-AlN复合陶瓷的制备方法
CN1087010C (zh) 一种用流延法制造高热导率集成电路氮化铝陶瓷基片的方法
CN106542828A (zh) 一种低温烧结高热导率的氮化铝陶瓷及其制备方法
CN109592983A (zh) 一种高热导液相烧结碳化硅陶瓷及其制备方法
CN107604192A (zh) 一种氮化铝/铝复合材料的制备方法
CN108395257B (zh) 一种氮化硅基复合材料及其制备方法
CN114315358B (zh) 一种全致密无粘结剂碳化钨陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant