CN112117970B - 电路装置、振荡器、电子设备以及移动体 - Google Patents

电路装置、振荡器、电子设备以及移动体 Download PDF

Info

Publication number
CN112117970B
CN112117970B CN202010563989.2A CN202010563989A CN112117970B CN 112117970 B CN112117970 B CN 112117970B CN 202010563989 A CN202010563989 A CN 202010563989A CN 112117970 B CN112117970 B CN 112117970B
Authority
CN
China
Prior art keywords
circuit
output
voltage
current
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010563989.2A
Other languages
English (en)
Other versions
CN112117970A (zh
Inventor
野宫崇
井伊巨树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of CN112117970A publication Critical patent/CN112117970A/zh
Application granted granted Critical
Publication of CN112117970B publication Critical patent/CN112117970B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/02Details
    • H03B5/04Modifications of generator to compensate for variations in physical values, e.g. power supply, load, temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/36Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/36Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device
    • H03B5/362Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device the amplifier being a single transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/06Frequency selective two-port networks including resistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/54Modifications of networks to reduce influence of variations of temperature

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Amplifiers (AREA)

Abstract

本发明提供电路装置、振荡器、电子设备以及移动体,能够进行温度补偿电压的噪声降低并且能够小型化。电路装置包含:电流生成电路,其根据温度检测电压而生成温度补偿电流;以及电流电压转换电路,其通过对温度补偿电流进行电流电压转换而输出温度补偿电压。电流电压转换电路具有运算放大器和反馈电路。运算放大器具有:差动部,其具有电流镜电路和差动对晶体管;输出部,其输出温度补偿电压;以及RC低通滤波器,其将对差动部的输出信号进行低通滤波处理后的信号输出到输出部的输入节点。

Description

电路装置、振荡器、电子设备以及移动体
技术领域
本发明涉及电路装置、振荡器、电子设备以及移动体等。
背景技术
在专利文献1中,公开了在输出用于根据温度检测电路的输出来控制振荡电路的频率的控制电压的电路装置中,使用RC低通滤波器来降低噪声的方法。
专利文献1:日本特开2002-280833号公报
在RC低通滤波器中包含的电阻中产生热噪声。为了抑制热噪声,期望减小电阻的电阻值。另一方面,为了提高噪声成分的降低效果,需要降低RC低通滤波器的截止频率。其结果是,RC低通滤波器中包含的电容器的尺寸变大,难以使包含电路装置的振荡器等设备小型化。
发明内容
本公开的一个方式涉及一种电路装置,其包含:电流生成电路,其根据温度检测电压而生成温度补偿电流;以及电流电压转换电路,其通过对所述温度补偿电流进行电流电压转换而输出温度补偿电压,所述电流电压转换电路具有:运算放大器,其具有供所述温度补偿电流输入的第1输入节点和输出所述温度补偿电压的输出节点;以及反馈电路,其设置在所述运算放大器的所述第1输入节点与所述输出节点之间,所述运算放大器具有:差动部,其具有电流镜电路和差动对晶体管;输出部,其输出所述温度补偿电压;以及RC低通滤波器,其将对所述差动部的输出信号进行低通滤波处理后的信号输出到所述输出部的输入节点。
附图说明
图1是电路装置的结构例。
图2是温度补偿电路和振荡电路的详细结构例。
图3是电流电压转换电路的详细结构例。
图4是对降低热噪声的情况进行说明的图。
图5是说明输出噪声的频率特性的图。
图6是可变电阻电路的结构例。
图7是包含调节器的电路装置的详细结构例。
图8是调节器的结构例。
图9是说明本实施方式的控制时机的图。
图10是电子设备的结构例。
图11是移动体的结构例。
图12是说明电路装置的比较例的图。
标号说明
4:振荡器;10:振子;20:电路装置;30:振荡电路;32:驱动电路;35:输出电路;40:温度传感器;60:温度补偿电路;61:电流生成电路;62:一次校正电路;63:高次校正电路;64:电流电压转换电路;65:差动部;66:电流镜电路;67:差动对晶体管;68:RC低通滤波器;69:输出部;70:非易失性存储器;80:调节器;85:第2差动部;86:第2电流镜电路;87:第2差动对晶体管;88:第2RC低通滤波器;89:第2输出部;206:汽车;207:车身;208:控制装置;209:车轮;220:处理装置;500:电子设备;510:通信接口;520:处理装置;530:操作界面;540:显示部;550:存储器;600:比较例的温度补偿电路;ANT:天线;C0、CC、Cn、Cn2:电容器;CCOMP:可变电容式电容器;FB:反馈电路;L1、L2、N1~N5:节点;NIN、NIN2:第1输入节点;OUT、OUT2:输出节点;OPC、OPC2:运算放大器;OSC:振荡信号;R0、R3、Rn1、Rn2:电阻;R4、R5、Rn:可变电阻电路;SW1、SW2:开关;T1、T2、TCK:端子;Tr4~Tr6、Tr8、Tr9、Tr13:P型晶体管;Tr1~Tr3、Tr7、Tr10~Tr12:双极晶体管;VCOMP:温度补偿电压;VDD:高电位侧电源电压;VRC:基准电压;VREG:调节电压;VSS:低电位侧电源电压;VTS:温度检测电压。
具体实施方式
以下,对实施方式进行说明。另外,以下所说明的本实施方式并不对权利要求书的记载的内容进行不当限定。另外,在本实施方式中说明的结构不一定全部是必需构成要件。
1.电路装置
以下,以将基于温度检测电压VTS的温度补偿电压VCOMP用于振荡器4中的温度补偿的情况为例进行说明。换言之,对温度补偿电压VCOMP被输出到使振子10振荡的振荡电路30的结构进行说明。但是,本公开的电路装置20的应用对象并不限于此。即,利用了温度补偿电压VCOMP的电路不限于振荡电路30,可以扩展到需要温度补偿的其他电路。
图1是电路装置20以及包含电路装置20的振荡器4的结构例。振荡器4包含振子10和电路装置20。振子10与电路装置20电连接。例如,使用收纳振子10和电路装置20的封装的内部布线、接合线或金属凸块等,将振子10与电路装置20电连接。另外,电路装置20并不限于图1的结构,能够实施省略它们的一部分的构成要素、或者追加其他构成要素等各种变形。例如,本实施方式的电路装置20也可以具有相当于温度补偿电路60的结构,省略振荡电路30、输出电路35、温度传感器40、非易失性存储器70等。
振子10是通过电信号产生机械振动的元件。振子10例如能够通过石英振动片等振动片来实现。例如,振子10能够通过切角为AT切割或SC切割等厚度切变振动的石英振动片等来实现。例如,振子10也可以是SPXO(Simple Packaged Crystal Oscillator:简单封装的晶体振荡器)的振子。或者,振子10可以是内置于具有恒温槽的恒温槽型石英振荡器(OCXO)的振子,也可以是内置于不具有恒温槽的温度补偿型石英振荡器(TCXO)的振子。另外,本实施方式的振子10例如能够通过厚度切变振动型以外的振动片、由石英以外的材料形成的压电振动片等各种振动片来实现。例如,作为振子10,也可以采用SAW(SurfaceAcoustic Wave:表面声波)谐振器、使用硅基板形成的作为硅制振子的MEMS(MicroElectro Mechanical Systems:微机电系统)振子等。
电路装置20是被称为IC(Integrated Circuit:集成电路)的集成电路装置。例如,电路装置20是通过半导体工艺制造的IC,是在半导体基板上形成有电路元件的半导体芯片。电路装置20包含振荡电路30、输出电路35、温度传感器40、温度补偿电路60、非易失性存储器70以及端子T1、T2、TCK。
端子T1、T2、TCK是电路装置20的例如焊盘。端子T1与振子10的一端电连接,端子T2与振子10的另一端电连接。例如,使用收纳振子10和电路装置20的封装的内部布线、接合线或金属凸块等,将振子10与端子T1、T2电连接。端子TCK是输出由电路装置20生成的时钟信号CK的端子。端子TCK与振荡器4的外部连接用的外部端子电连接。例如使用封装的内部布线、接合线或金属凸块等,将端子TCK与外部端子电连接。而且,振荡器4的外部端子与外部器件电连接。
温度传感器40是检测温度的传感器。具体而言,温度传感器40通过使用PN结的正向电压所具有的温度依赖性,输出电压值根据温度而变化的温度检测电压VTS。另外,温度传感器40根据存储在非易失性存储器70中的零次校正数据,进行温度检测电压VTS的偏移(offset)校正。即,温度传感器40将温度检测电压VTS的偏移调整零次校正数据所表示的偏移的量。另外,温度检测电压VTS的偏移校正在振荡频率的温度补偿中与零次校正对应。
温度补偿电路60根据温度检测电压VTS而输出温度补偿电压VCOMP,由此对振荡电路30的振荡频率进行温度补偿。温度补偿电压VCOMP是消除或降低振荡频率的温度特性的电压。温度补偿电路60通过以温度作为变量的多项式近似而输出温度补偿电压VCOMP。例如在通过五次多项式来近似温度检测电压VTS的情况下,多项式的零次系数、一次系数、二次系数、三次系数、四次系数以及五次系数分别作为零次校正数据、一次校正数据、二次校正数据、三次校正数据、四次校正数据以及五次校正数据而存储在非易失性存储器70中。温度补偿电路60根据一次校正数据、二次校正数据、三次校正数据、四次校正数据以及五次校正数据进行温度补偿。另外,如上所述,零次校正由温度传感器40进行。另外,多项式近似并不限于五次。
非易失性存储器70存储用于振荡频率的温度补偿的温度补偿数据。温度补偿数据是上述零次校正数据、一次校正数据、二次校正数据、三次校正数据、四次校正数据以及五次校正数据。例如在振荡器4的制造时等,测试装置根据振荡器4所输出的时钟信号CK来测定振荡频率的温度特性。测试装置对测定出的温度特性进行多项式近似而求出各项的系数,并将该系数作为温度补偿数据而写入非易失性存储器70中。
非易失性存储器70例如是EEPROM(Electrically Erasable Programmable ReadOnly Memory:电可擦除可编程只读存储器)、闪存等。EEPROM例如能够通过浮栅型的存储器单元等来实现。闪存例如能够通过MONOS(Metal-Oxide-Nitride-Oxide-Silicon:金属-氧化物-氮化物-氧化物-硅)的存储器单元等来实现。或者,非易失性存储器70也可以是使用了熔断器单元的存储器。在该类型的存储器中,作为存储器单元的熔断器单元包含电阻以及与电阻串联连接的选择器元件。选择器元件例如是PN结的二极管或MOS晶体管。例如,电阻的一端与位线连接,电阻的另一端与二极管的阳极连接。二极管的阴极与字线连接。作为熔断器元件而发挥功能的电阻是电阻值可变的可编程电阻。通过该可变的电阻值,在熔断器单元中存储数据。
振荡电路30是使振子10振荡的电路。例如,振荡电路30与端子T1和端子T2电连接,使振子10振荡。作为振荡电路30,例如可以使用皮尔斯型、科耳皮兹型、反相器型或哈特莱型等各种类型的振荡电路。振荡电路30根据温度补偿电压VCOMP来消除或降低振荡频率的温度特性。例如,振荡电路30包含通过两端的电位差可变地控制电容的可变电容式电容器CCOMP。可变电容式电容器CCOMP的一端与端子T1或端子T2电连接,温度补偿电压VCOMP被输入到可变电容式电容器CCOMP的另一端。振荡电路30输出振荡信号OSC。
输出电路35经由连接布线与振荡电路30电连接。然后,输出电路35通过缓冲来自振荡电路30的振荡信号OSC而输出时钟信号CK。在该情况下,输出电路35能够以各种信号形式将时钟信号CK输出到外部。例如,输出电路35将时钟信号CK以LVDS(Low VoltageDifferential Signaling:低电压差分信号)、PECL(Positive Emitter Coupled Logic:正发射极耦合逻辑)、HCSL(High Speed Current Steering Logic:高速电流导引逻辑)或差动的CMOS(Complementary MOS:互补MOS)等信号形式输出到外部。例如,输出电路35也可以是能够以LVDS、PECL、HCSL以及差动的CMOS中的至少两种信号形式输出时钟信号CK的电路。另外,输出电路35所输出的时钟信号CK的信号形式不限于差动的信号形式,例如也可以是单端的CMOS或削波正弦波等不是差动的信号形式。
另外,本实施方式中的连接是电连接。电连接是电信号可传递地连接,是能够通过电信号传递信息的连接。电连接可以是经由有源元件等的连接。
2.温度补偿电路
2.1温度补偿电路的详细结构例
图2是温度补偿电路60和振荡电路30的详细结构例。振荡电路30包含驱动电路32和可变电容式电容器CCOMP。
驱动电路32经由节点L1与端子T1连接,经由节点L2与端子T2连接。驱动电路32通过驱动与端子T1、T2连接的振子10,使振子10振荡。驱动电路32可以通过双极晶体管等晶体管和电容器或电阻等无源元件来实现。
可变电容式电容器CCOMP的一端与节点L1连接。或者,可变电容式电容器CCOMP的一端也可以与节点L2连接。可变电容式电容器CCOMP的另一端与温度补偿电路60的输出节点连接。可变电容式电容器CCOMP例如是MOS电容器。MOS电容器的一端是MOS晶体管的栅极,MOS电容器的另一端是MOS晶体管的源极和漏极。
温度补偿电路60包含电流生成电路61和电流电压转换电路64。电流生成电路61包含一次校正电路62和高次校正电路63。另外,在本实施方式中,“函数”是以温度作为变量的函数。
一次校正电路62根据温度检测电压VTS而输出对一次函数进行近似的一次电流。一次校正电路62例如包含运算放大器、第1可变电阻电路、第2可变电阻电路、第3可变电阻电路。运算放大器、第1可变电阻电路以及第2可变电阻电路构成正相放大电路。正相放大电路以基准电压VRC为基准对温度检测电压VTS进行放大。正相放大电路经由第3可变电阻电路向电流电压转换电路64的输入节点输出一次电流。
高次校正电路63根据温度检测电压VTS,将对三次函数进行近似的三次电流输出到电流电压转换电路64的输入节点。高次校正电路63例如包含第1差动电路和第2差动电路,该第1差动电路根据温度检测电压VTS进行差动动作,该第2差动电路通过根据第1差动电路的输出电压和温度检测电压VTS进行差动动作而输出三次电流。
电流电压转换电路64将一次电流和三次电流相加,并且对该相加电流进行电流电压转换,由此输出温度补偿电压VCOMP。由此,得到对多项式函数进行近似的温度补偿电压VCOMP。温度补偿电压VCOMP被输入到可变电容式电容器CCOMP的另一端。通过温度补偿电压VCOMP控制可变电容式电容器CCOMP的电容值,由此对振荡电路30的振荡频率进行温度补偿。电流电压转换电路64包含运算放大器OPC、电阻R3以及电容器CC。电阻R3和电容器CC并联连接在运算放大器OPC的输出节点与反相输入节点之间。基准电压VRC被输入到运算放大器OPC的非反相输入节点。运算放大器OPC的输出节点与温度补偿电路60的输出节点连接。
另外,高次校正电路63也可以还包含进行四次以上的校正的校正电路。例如,高次校正电路63也可以还包含输出对四次函数进行近似的四次电流的四次校正电路和输出对五次函数进行近似的五次电流的五次校正电路。
这样,通过使用包含电流生成电路61和电流电压转换电路64的温度补偿电路60,能够输出适当的温度补偿电压VCOMP。在振荡器4中包含温度补偿电路60的情况下,能够抑制随着温度变化的时钟信号CK的频率变动,输出精度高的时钟信号CK。
图12是说明电路装置的比较例的图。另外,对与本实施方式相同的结构,标注与图2相同的标号。在比较例中,由电阻R0和电容器C0构成RC低通滤波器。电阻R0设置在温度补偿电路600的输出节点与振荡电路30之间。另外,电容器C0设置在电阻R0的一端与给定的基准电位之间。这里的基准电位例如是低电位侧电源电压VSS,狭义上来说是地。在比较例中,在温度补偿电路600的外部设置有RC低通滤波器。通过设置RC低通滤波器,能够降低温度补偿电压中包含的噪声。
如果考虑温度补偿电压为DC电压,则优选低通滤波器的截止频率为低到某种程度的值。即,期望增大电阻R0的电阻值与电容器C0的电容值之积。
但是,在使用图12所示的结构的情况下,需要考虑在电阻R0中产生的热噪声。已知电阻值越大,电阻R0中的热噪声越大。因此,为了抑制温度补偿电压的精度因热噪声而降低,优选减小电阻R0的电阻值。因此,为了提高低通滤波器的噪声降低效果,需要增大电容器C0的电容值。其结果是,电容器C0大型化。例如电容器C0是在设置电路装置20的IC芯片外分立设置的层叠陶瓷电容器。这样,在比较例中,由于设置在芯片外的外部部件变大,因此包含电路装置20的装置难以小型化。
另外,在图12所示的结构中,电阻R0与振荡电路30连接。根据振荡电路30生成的振荡信号,有可能在电阻R0中流动AC电流。因此,在图12所示的结构中,还需要考虑在电阻R0中产生的闪变噪声(flicker noise)。电阻R0的面积越大,闪变噪声越小。因此,在比较例中,为了降低闪变噪声,需要增大电阻R0的面积,因而仍然难以实现电路装置20的小型化。
图3是示出本实施方式中的电流电压转换电路64的结构的图。如使用图2上述的那样,电路装置20包含电流生成电路61和电流电压转换电路64。电流生成电路61根据温度检测电压VTS而生成温度补偿电流。电流生成电路61例如是一次校正电路62和高次校正电路63,但电流生成电路61的结构不限于此。电流电压转换电路64包含运算放大器OPC和反馈电路FB。运算放大器OPC具有被输入温度补偿电压的第1输入节点NIN和输出温度补偿电压VCOMP的输出节点OUT。反馈电路FB设置在运算放大器OPC的第1输入节点NIN与输出节点OUT之间。第1输入节点NIN具体地是运算放大器OPC的反相输入节点。反馈电路FB例如是并联设置的电阻R3和电容器CC,但反馈电路FB的结构不限于此。电流电压转换电路64通过对温度补偿电流进行电流电压转换而输出温度补偿电压VCOMP。
而且,运算放大器OPC包含差动部65、输出部69以及RC低通滤波器68。RC低通滤波器68包含电阻和电容器Cn。以下,对RC低通滤波器68所包含的电阻为可变电阻电路Rn的例子进行说明,但该电阻的电阻值也可以是固定的。差动部65具有电流镜电路66和差动对晶体管67。如图3所示,电流镜电路66包含P型晶体管Tr4和P型晶体管Tr5。输出部69输出温度补偿电压VCOMP。RC低通滤波器68设置在差动部65的输出节点N1与输出部69的输入节点N2之间。RC低通滤波器68对差动部65的输出信号进行低通滤波处理后输出到输出部69的输入节点N2。
本实施方式的RC低通滤波器68设置在运算放大器OPC的差动部65与输出部69之间。因此,通过运算放大器OPC的反馈,能够降低热噪声。
图4是说明可变电阻电路Rn中的热噪声的图,是示意性地表示电流电压转换电路64的结构的图。图4中的VIN和VOUT表示电流电压转换电路64的输入电压和输出电压。VA表示运算放大器OPC的差动部65的输入电压。VRn表示在可变电阻电路Rn中产生的热噪声电压。α表示运算放大器OPC的差动部65中的增益。β表示反馈增益。γ表示运算放大器OPC的输出部69中的增益。在图4的例子中,VOUT和VA可以分别如下式(1)和(2)那样进行表示,根据下式(1)和(2)导出下式(3)。
【数学式1】
VOUT=αγVA+γVRn
…(1)
【数学式2】
VA=VIN-β×VOUT
…(2)
【数学式3】
Figure BDA0002547112380000091
作为三个增益的积的αβγ充分大于1,因此上式(3)能够如下式(4)那样进行变形。由下式(4)的右边第2项可知,通过运算放大器OPC的反馈,能够将热噪声降低到1/(αβ)。由于运算放大器OPC的增益非常大,因此能够充分降低热噪声。
【数学式4】
Figure BDA0002547112380000092
为了降低热噪声,在本实施方式中,与比较例相比,能够增大RC低通滤波器68所包含的电阻的电阻值。因此,能够减小实现期望的截止频率所需的电容器Cn的电容值。由此,能够将电容器Cn内置于芯片中,从而能够实现电路装置20的小型化。
另外,在本实施方式的方法中,RC低通滤波器68所包含的可变电阻电路Rn的一端与输出部69的输入节点N2连接。输出部69的输入节点N2例如是P型晶体管Tr6的栅极,因此是高阻抗。即,在本实施方式的方法中,能够认为在可变电阻电路Rn中没有电流流动,因此能够抑制闪变噪声的影响。因此,不需要增大可变电阻电路Rn的面积,容易实现电路装置20的小型化。
图5是对本实施方式的方法的效果进行说明的图。图5是横轴与频率对应、纵轴与温度补偿电路60的输出噪声对应的双对数曲线图。如图5所示,通过开启本实施方式的RC低通滤波器68的功能,与关闭功能的情况相比,能够降低给定的频率f0以上的频率范围内的输出噪声。
另外,给定的频率f0是与运算放大器OPC的开环增益为0dB的单位增益频率对应的频率。温度补偿电路60的频率特性不仅需要考虑RC低通滤波器68的截止频率,还需要考虑运算放大器OPC整体的频率特性。但是,通过降低运算放大器OPC中包含的RC低通滤波器68的截止频率,能够降低运算放大器OPC的单位增益频率。因此,在本实施方式中,为了适当地降低噪声成分,降低RC低通滤波器68的截止频率也是重要的。
如图3所示,输出部69也可以包含P型晶体管Tr6和双极晶体管Tr7。P型晶体管Tr6设置在高电位侧电源电压VDD与运算放大器OPC的输出节点OUT之间,输出部69的输入节点N2与P型晶体管Tr6的栅极连接。双极晶体管Tr7设置在运算放大器OPC的输出节点OUT与低电位侧电源电压VSS之间,基极被输入偏置电压。
另外,差动部65也可以包含第1双极晶体管Tr1和第2双极晶体管Tr2作为差动对晶体管67。第1双极晶体管Tr1在基极上连接有运算放大器OPC的第1输入节点NIN。第2双极晶体管Tr2在基极上连接有被输入基准电压VRC的第2输入节点PIN。
另外,差动部65也可以包含第3双极晶体管Tr3,该第3双极晶体管Tr3设置在第1双极晶体管Tr1和第2双极晶体管Tr2与低电位侧电源电压VSS之间,基极被输入偏置电压。
如上所述,也可以在差动部65和输出部69的任一方或双方中,使用双极晶体管。双极晶体管与MOS晶体管相比,产生的噪声小。本实施方式是使用RC低通滤波器68进行噪声降低的方法,因此在电流电压转换电路64的各部使用双极晶体管来降低噪声的优点较大。但是,Tr1~Tr3、Tr7所示的各双极晶体管不是必需的结构,可以实施将一部分或全部置换为MOS晶体管等的变形。
另外,本实施方式的方法能够应用于包含上述电路装置20和振子10的振荡器4。这样,能够实现能够输出精度高的时钟信号CK的振荡器4。
2.2可变电阻电路
另外,如图3所示,RC低通滤波器68具有:电阻值可变的可变电阻电路Rn,其设置在差动部65的输出节点N1与输出部69的输入节点N2之间;以及电容器Cn,其一端与差动部65的输出节点N1连接。可变电阻电路Rn的一端与差动部65的输出节点N1连接,另一端与输出部69的输入节点N2连接。在本实施方式中,电容器Cn的一端经由可变电阻电路Rn与差动部65的输出节点N1连接,另一端与运算放大器OPC的输出节点OUT连接。通过使用可变电阻电路Rn,可以灵活地变更滤波器特性。电容器Cn的另一端并不一定需要与运算放大器OPC的输出节点OUT连接,也可以与低电位侧电源电压VSS的供给线连接。
图6是示出包含可变电阻电路Rn的电流电压转换电路64的结构例的图。如图6所示,可变电阻电路Rn也可以具有电阻Rn1和开关SW1。电阻Rn1设置在差动部65的输出节点N1与输出部69的输入节点N2之间。开关SW1与电阻Rn1并联设置在差动部65的输出节点N1与输出部69的输入节点N2之间。通过使用图6所示的结构,能够进行切换在差动部65与输出部69之间连接有电阻Rn1的状态和该电阻Rn1被旁路的状态的控制。
图6的开关SW1在规定的等待期间之后从接通变为断开。即,可变电阻电路Rn的电阻值在经过规定的等待期间前为0Ω,在经过规定的等待期间后成为电阻Rn1的电阻值。换言之,在经过规定的等待期间之前滤波功能关闭,在经过规定的等待期间之后滤波功能开启。
这里的规定的等待期间也可以是在电路装置20起动时设定的期间。例如,在振荡器4中包含电路装置20的情况下,通过电路装置20的起动,振荡电路30开始振子10的驱动。当基于振子10的振荡信号OSC稳定时,输出电路35开始输出时钟信号CK。由此,在电路装置20中流动的电流急剧增加,因此以输出电路35等为热源产生温度变化。为了使温度补偿电压VCOMP高速跟随该温度变化,优选关闭滤波功能。而且,在对上述温度变化的追随完成后,为了进行噪声降低而开启滤波功能。这样,通过根据规定的等待期间将开关SW1从接通切换为断开,能够在起动期间等使电路装置20适当地进行动作。另外,关于详细的控制时机,使用图9在后面说明。
这里,电阻Rn1也可以是电阻值固定的电阻。在该情况下,可变电阻电路Rn的电阻值以两个阶段进行切换。但是,Rn1自身也可以是电阻值可变的可变电阻。在该情况下,可变电阻电路Rn不仅能够切换是否旁路电阻Rn1,而且能够进行切换电阻Rn1的电阻值的控制。即,可变电阻电路Rn也可以采用能够以3个阶段以上切换电阻值的结构。该情况下的电阻Rn1能够广泛地应用公知的可变电阻电路的结构。
从进行考虑了对温度变化的追随程度和噪声降低程度的平衡的控制的观点出发,本实施方式的方法只要采用RC低通滤波器68的滤波功能随着时间经过而变高的结构即可。即,在可变电阻电路Rn的电阻值能够以3个阶段以上进行控制的情况下,该电阻值被控制为随着时间经过而变大。
另外,可变电阻电路Rn并不限于能够通过开关SW1来旁路电阻Rn1的结构。即,可以实施省略图6中的开关SW1等各种变形。
2.3调节器
图7是示出电路装置20的其他结构例的图。如图7所示,电路装置20除了图2所示的结构之外,还可以包含调节器80。调节器80根据高电位侧电源电压VDD而输出调节电压VREG。调节电压VREG用作电流生成电路61的电源电压。另外,调节电压VREG也可以用作振荡电路30等电路装置20的其他结构的电源电压。
调节器80如后述的图8所示那样包含第2运算放大器OPC2。在本实施方式中,关于调节器80所包含的第2运算放大器OPC2,也可以设置与电流电压转换电路64的运算放大器OPC相同的结构。即,本实施方式的电路装置20包含向电流生成电路61提供调节电压VREG的调节器80,该调节器80具有第2RC低通滤波器88。
图8是示出调节器80所包含的第2运算放大器OPC2的结构的图。第2运算放大器OPC2包含第2差动部85、第2输出部89以及第2RC低通滤波器88。第2差动部85具有第2电流镜电路86和第2差动对晶体管87。第2电流镜电路86包含P型晶体管Tr8和P型晶体管Tr9。第2输出部89输出调节电压VREG。第2RC低通滤波器88设置在第2差动部85的输出节点N3与第2输出部89的输入节点N4之间。第2RC低通滤波器88将对第2差动部85的输出信号进行了低通滤波处理后的信号输出到第2输出部89的输入节点N4。
这样,在调节器80的第2运算放大器OPC2中也通过在第2差动部85与第2输出部89之间设置第2RC低通滤波器88,而能够在降低噪声成分的同时使电路装置20小型化。第2RC低通滤波器88例如采用与图6的RC低通滤波器68相同的结构,包含电阻Rn2、开关SW2、电容器Cn2。但是,关于第2RC低通滤波器88的结构,与RC低通滤波器68同样地能够实施各种变形。
另外,在图8中,第2差动对晶体管87包含第4双极晶体管Tr10和第5双极晶体管Tr11。另外,在第2差动对晶体管87与低电位侧电源电压VSS之间设置有第6双极晶体管Tr12。通过使用双极晶体管,能够降低噪声成分。但是,与运算放大器OPC同样地能够实施将各双极晶体管置换成MOS晶体管等变形。
另外,在图8中,第2运算放大器OPC2包含P型晶体管Tr13、可变电阻电路R4以及可变电阻电路R5。P型晶体管Tr13设置在高电位侧电源电压VDD与第2运算放大器OPC2的输出节点OUT2之间。
可变电阻电路R4和R5串联设置在输出节点OUT2与低电位侧电源电压VSS之间。通过将可变电阻电路R4与可变电阻电路R5之间的节点N5与第2运算放大器OPC2的第1输入节点NIN2连接来进行反馈。输入信号被输入到第2运算放大器OPC2的第2输入节点PIN2。但是,与第2输出部89、反馈相关的结构不限于图8的结构,可以实施各种变形。
2.4控制时机
图9是说明本实施方式的电路装置20的控制时机的图。另外,图9的横轴表示时间。通过接通电源,开始高电位侧电源电压VDD的提供(A1)。POR_MV是将高电位侧电源电压VDD作为电源电压进行动作的电路的通电复位信号。在VDD达到给定的电压值的时机,执行通电复位(A2)。图9的EN_BIAS是偏置电路(BIAS)的使能信号。偏置电路例如包含带隙参考电路、基准电流生成电路等。在执行通电复位后,偏置电路(A3)被使能,开始电压供给(A4)。
图9的POR_LV表示以调节电压VREG作为电源电压进行动作的电路的通电复位信号,EN_LV表示该电路的使能信号。在A4所示的电压供给开始后,在该电压达到给定的电压值的时机(A5),执行通电复位(A6),在调节电压VREG下进行动作的电路的使能信号导通(A7)。
另外,由于起动时振子10的振荡不稳定,因此IC的内部振荡器进行动作(A8),根据该内部振荡器所输出的时钟信号,从非易失性存储器70读出控制用数据(A9)。
图9的EN_OUT是输出电路35的使能信号,CLKO表示输出的时钟信号CK。作为振子10的输出的振荡信号OSC的振幅随着时间的经过而增加。在振幅值达到给定的值的时机(A10),输出电路35(A11)被使能。由此,输出电路35开始输出时钟信号CK(A12)。
如上所述,虽然通过在温度补偿电路60、调节器80所包含的运算放大器的内部设置低通滤波器,能够降低噪声成分,但对输入信号的变化的追随性降低。具体而言,通过运算放大器OPC的RC低通滤波器68发挥功能,对温度变化的追随性降低。在电路装置20包含被输入温度补偿电压VCOMP的振荡电路30以及根据作为振荡电路30的输出信号的振荡信号OSC输出时钟信号CK的输出电路35的情况下,由于温度补偿电压VCOMP无法充分追随温度变化,因此时钟信号CK的精度降低。因此,温度补偿电路60的运算放大器OPC所包含的开关SW1在从输出电路35开始输出时钟信号CK起经过规定的等待期间后,从接通变为断开。这样,能够根据电路装置20的状态适当地切换滤波功能的开启/关闭。例如,在开始输出时钟信号CK的情况下,因电流增加而温度上升。通过在上述规定的等待期间使开关SW1接通而旁路电阻Rn1,能够提高对该温度变化的追随性。
另外,在电路装置20包含调节器80的情况下,对于调节器80的第2运算放大器OPC2所包含的第2RC低通滤波器88,也期望在振子10的输出稳定后使滤波功能打开。这是因为,通过振子10的输出稳定,消耗电流稳定。具体而言,调节器80所包含的第2RC低通滤波器88在A10所示的时机之后经过了规定的期间之后被使能。所谓使第2RC低通滤波器88使能,具体地表示使开关SW2从接通变为断开的控制。
如上所述,调节器80所输出的调节电压VREG用于电流生成电路61的动作。考虑到温度补偿电压VCOMP的精度,优选首先使调节器80的第2RC低通滤波器88的动作有效,然后使电流电压转换电路64的RC低通滤波器68的动作有效。此时,优选使RC低通滤波器68在第2RC低通滤波器88的动作有效后经过了规定的等待期间后有效。具体而言,可变电阻电路Rn的开关SW1在第2RC低通滤波器88的动作有效后经过了规定的等待期间后,从接通变为断开。这样,能够抑制开关噪声的影响。
在图9的例子中,REG滤波器使能是调节器80中包含的第2RC低通滤波器88的使能信号,VCOMP滤波器使能是电流电压转换电路64中包含的RC低通滤波器68的使能信号。在A13所示的时机,调节器80的第2RC低通滤波器88的动作有效,之后,在A14所示的时机,电流电压转换电路64的RC低通滤波器68的动作有效。如上所述,本实施方式中的规定的等待期间也可以是从作为时钟信号CK的输出使能信号的EN_OUT的上升时机A11到RC低通滤波器68的动作有效的时机A14为止的期间WT1。A11所示的时机与振子10的输出稳定的时机A10对应。另外,规定的等待期间也可以是从调节器80的第2RC低通滤波器88的动作有效的时机A13到RC低通滤波器68的动作有效的时机A14为止的期间WT2。另外,期间WT1是将期间WT3和期间WT2相加后的期间,该期间WT3是从EN_OUT的上升时机A11到第2RC低通滤波器88的动作有效的时机A13为止的期间,该期间WT2从第2RC低通滤波器88的动作有效的时机A13到RC低通滤波器68的动作有效的时机A14为止的期间。另外,这里对以各使能信号的上升开始时机为基准来设定规定的等待期间的例子进行了说明。但是,成为基准的时机也可以为使能信号达到给定的基准电压值的时机。或者,也可以代替A11所示的时机,将实际上开始时钟信号CLKO的输出的时机A12作为WT1和WT3的起点。此外,关于规定的等待期间的设定,可以实施各种变形。
3.电子设备、移动体
另外,本实施方式的方法能够应用于包含上述电路装置20和根据来自电路装置20的输出信号进行处理的处理装置的电子设备或移动体。
在图10中示出了包含本实施方式的电路装置20的电子设备500的结构例。电子设备500包含本实施方式的电路装置20和通过基于电路装置20的振荡电路30的振荡信号OSC的时钟信号CK进行动作的处理装置520。具体而言,电子设备500包含具有本实施方式的电路装置20的振荡器4,处理装置520根据来自振荡器4的时钟信号进行动作。另外,电子设备500可以包含天线ANT、通信接口510、操作界面530、显示部540以及存储器550。另外,电子设备500并不限于图10的结构,能够实施省略它们的一部分的构成要素、或者追加其他构成要素等各种变形。
电子设备500例如是基站或路由器等网络关联设备、计测距离、时间、流速或流量等物理量的高精度的计测设备、测定生物体信息的生物体信息测定设备、或者车载设备等。生物体信息测定设备例如是超声波测定装置、脉搏计或血压测定装置等。车载设备是自动驾驶用的设备等。另外,电子设备500也可以是头部佩戴型显示装置或钟表关联设备等可穿戴设备、机器人、印刷装置、投影装置、智能手机等便携信息终端、分发内容的内容提供设备、或者数码相机或摄像机等影像设备等。
另外,作为电子设备500,存在用于5G等下一代移动通信系统的设备。可以将本实施方式的电路装置20用于例如下一代移动通信系统的基站、远程无线电头(RRH)或便携通信终端等各种设备。在下一代移动通信系统中,为了时刻同步等,要求高精度的时钟频率,适合作为能够生成高精度的时钟信号的本实施方式的电路装置20的应用例。
通信接口510进行经由天线ANT从外部接收数据、或者向外部发送数据的处理。作为处理器的处理装置520进行电子设备500的控制处理、经由通信接口510收发的数据的各种数字处理等。处理装置520的功能能够通过例如微型计算机等处理器来实现。操作界面530用于供用户进行输入操作,能够通过操作按钮、触摸面板显示器等来实现。显示部540显示各种信息,能够通过液晶、有机EL等显示器来实现。存储器550存储数据,其功能能够通过RAM、ROM等半导体存储器来实现。
另外,在图10中,以电子设备500包含振荡器4的情况为例进行了说明,但电子设备500的结构并不限于此。电子设备500只要包含根据来自温度传感器40的温度检测电压VTS而生成温度补偿电压VCOMP的电路装置20以及根据该温度补偿电压VCOMP进行动作的处理装置即可。
在图11中示出了包含本实施方式的电路装置20的移动体的例子。移动体包含本实施方式的电路装置20和通过基于电路装置20的振荡电路30的振荡信号OSC的时钟信号CK进行动作的处理装置220。具体而言,移动体包含具有本实施方式的电路装置20的振荡器4,处理装置220根据来自振荡器4的时钟信号进行动作。本实施方式的电路装置20例如能够组装到汽车、飞机、摩托车、自行车、或船舶等各种移动体中。移动体是具有例如发动机或马达等驱动机构、方向盘或舵等转向机构、各种电子设备来在地面上或天空或海上移动的设备/装置。图11概略性地示出了作为移动体的具体例的汽车206。在汽车206中组装有本实施方式的电路装置20。具体而言,作为移动体的汽车206包含控制装置208,控制装置208具有包含本实施方式的电路装置20的振荡器4和根据由振荡器4生成的时钟信号进行动作的处理装置220。控制装置208例如根据车身207的姿势对悬架的软硬进行控制、或者对各个车轮209的制动进行控制。例如,可以利用控制装置208实现汽车206的自动驾驶。另外,组装有本实施方式的电路装置20的设备并不限于这样的控制装置208,也能够组装到汽车206等移动体上设置的仪表面板设备、导航设备等各种车载设备中。
另外,在图11中,以移动体包含振荡器4的情况为例进行了说明,但移动体的结构并不限于此。移动体只要包含根据来自温度传感器40的温度检测电压VTS而生成温度补偿电压VCOMP的电路装置20和根据该温度补偿电压VCOMP进行动作的处理装置即可。
如以上所说明的那样,本实施方式的电路装置20包含电流生成电路和电流电压转换电路。电流生成电路根据温度检测电压而生成温度补偿电流。电流电压转换电路具有运算放大器和反馈电路,该运算放大器具有被输入温度补偿电流的第1输入节点和输出温度补偿电压的输出节点,该反馈电路设置在运算放大器的第1输入节点与输出节点之间,该电流电压转换电路通过对温度补偿电流进行电流电压转换而输出温度补偿电压。运算放大器具有:差动部,其具有电流镜电路和差动对晶体管;输出部,其输出温度补偿电压;以及RC低通滤波器,其将对差动部的输出信号进行低通滤波处理后的信号输出到输出部的输入节点。
根据本实施方式,由于在运算放大器的内部设置有RC低通滤波器,因此能够通过反馈来降低电阻的热噪声。由于能够增大电阻值,因此能够实现RC低通滤波器的电容器的小型化。另外,通过在电阻中没有电流流动,能够抑制闪变噪声的影响。因此,能够减小电阻的面积。
另外,在本实施方式中,RC低通滤波器也可以具有:电阻值可变的可变电阻电路,其设置在差动部的输出节点与输出部的输入节点之间;以及电容器,其一端与差动部的输出节点连接。
这样,能够在差动部与输出部之间适当地设置RC低通滤波器、以及能够将RC低通滤波器的电阻作为可变电阻电路。通过使用可变电阻电路,能够灵活地调整电路装置的频率特性。
另外,在本实施方式中,可变电阻电路也可以具有电阻和开关,该电阻设置在差动部的输出节点与输出部的输入节点之间,该开关与电阻并联设置在差动部的输出节点与输出部的输入节点之间。
这样,通过控制开关的接通/断开,能够调整可变电阻电路的电阻值。
另外,在本实施方式中,电路装置也可以包含向电流生成电路提供调节电压的调节器,该调节器具有第2RC低通滤波器。电流电压转换电路的运算放大器中包含的开关也可以在第2RC低通滤波器的动作有效后经过了规定的等待期间后,从接通变为断开。
这样,能够在作为调节器的输出的调节电压稳定后,使RC低通滤波器的滤波功能开启。
另外,在本实施方式中,调节器也可以包含第2运算放大器。第2运算放大器具有:第2差动部,其具有第2电流镜电路和第2差动对晶体管;第2输出部,其输出调节电压;以及第2RC低通滤波器。第2RC低通滤波器将对第2差动部的输出信号进行了低通滤波处理后的信号输出到第2输出部的输入节点。
这样,对于调节器中包含的运算放大器,也能够兼顾小型化和噪声降低。
另外,在本实施方式中,输出部也可以具有:P型晶体管,其设置在高电位侧电源电压与运算放大器的输出节点之间,栅极与输出部的输入节点连接;以及双极晶体管,其设置在运算放大器的输出节点与低电位侧电源电压之间,基极被输入偏置电压。
这样,通过在输出部使用双极晶体管,能够降低噪声。
另外,在本实施方式中,差动部也可以具有第1双极晶体管和第2双极晶体管来作为差动对晶体管,该第1双极晶体管的基极与第1输入节点连接,该第2双极晶体管的基极与被输入基准电压的第2输入节点连接。
这样,通过在差动部中使用双极晶体管,能够降低噪声。
另外,在本实施方式中,差动部也可以包含第3双极晶体管,该第3双极晶体管设置在第1双极晶体管和第2双极晶体管与低电位侧电源电压之间,基极被输入偏置电压。
这样,通过在差动部中使用双极晶体管,能够降低噪声。
另外,在本实施方式中,电路装置也可以包含使振子振荡的振荡电路和根据振荡电路的输出信号而输出时钟信号的输出电路。振荡电路被输入来自电流电压转换电路的温度补偿电压。电流电压转换电路的运算放大器中包含的开关在从输出电路开始输出时钟信号起经过了规定的等待期间后,从接通变为断开。
这样,通过提高对随着时钟信号的输出开始的温度变化的追随性、以及在温度稳定后开启滤波功能,能够进行噪声降低。
另外,本实施方式的振荡器包含上述电路装置和振子。
另外,本实施方式的电子设备包含上述任一项所述的电路装置和根据来自电路装置的输出信号进行动作的处理装置。
另外,本实施方式的移动体包含上述任一项所述的电路装置和根据来自电路装置的输出信号进行动作的处理装置。
另外,如上述那样对本实施方式进行了详细地说明,但本领域技术人员能够容易理解到,可以进行实质上不脱离本公开的新颖事项和效果的许多变形。因此,这样的变形例全部包含在本公开的范围内。例如,在说明书或附图中,对于至少一次地与更广义或同义的不同用语一起记载的用语,在说明书或附图的任何部位处,均可以将其置换为该不同的用语。另外,本实施方式和变形例的所有组合也包含在本公开的范围内。另外,电路装置、振荡器、电子设备以及移动体的结构和动作等也不限于在本实施方式中进行了说明的内容,可以实施各种变形。

Claims (12)

1.一种电路装置,其特征在于,
该电路装置包含:
电流生成电路,其根据温度检测电压而生成温度补偿电流;以及
电流电压转换电路,其通过对所述温度补偿电流进行电流电压转换而输出温度补偿电压,
所述电流电压转换电路具有:
运算放大器,其具有供所述温度补偿电流输入的第1输入节点和输出所述温度补偿电压的输出节点;以及
反馈电路,其设置在所述运算放大器的所述第1输入节点与所述输出节点之间,
所述运算放大器具有:
差动部,其具有电流镜电路和差动对晶体管;
输出部,其输出所述温度补偿电压;以及
RC低通滤波器,其将对所述差动部的输出信号进行低通滤波处理后的信号输出到所述输出部的输入节点。
2.根据权利要求1所述的电路装置,其特征在于,
所述RC低通滤波器具有:
电阻值可变的可变电阻电路,其设置在所述差动部的输出节点与所述输出部的所述输入节点之间;以及
电容器,其一端与所述差动部的所述输出节点连接。
3.根据权利要求2所述的电路装置,其特征在于,
所述可变电阻电路具有:
电阻,其设置在所述差动部的所述输出节点与所述输出部的所述输入节点之间;以及
开关,其与所述电阻并联设置在所述差动部的所述输出节点与所述输出部的所述输入节点之间。
4.根据权利要求3所述的电路装置,其特征在于,
该电路装置包含向所述电流生成电路提供调节电压的调节器,该调节器具有第2RC低通滤波器,
所述开关在从所述第2RC低通滤波器的动作变为有效起经过了规定的等待期间后,从接通变为断开。
5.根据权利要求4所述的电路装置,其特征在于,
所述调节器包含第2运算放大器,
所述第2运算放大器具有:
第2差动部,其具有第2电流镜电路和第2差动对晶体管;
第2输出部,其输出所述调节电压;以及
所述第2RC低通滤波器,
所述第2RC低通滤波器将对所述第2差动部的输出信号进行低通滤波处理后的信号输出到所述第2输出部的输入节点。
6.根据权利要求1至5中的任意一项所述的电路装置,其特征在于,
所述输出部具有:
P型晶体管,其设置在高电位侧电源电压与所述运算放大器的所述输出节点之间,栅极与所述输出部的所述输入节点连接;以及
双极晶体管,其设置在所述运算放大器的所述输出节点与低电位侧电源电压之间,基极被输入偏置电压。
7.根据权利要求1所述的电路装置,其特征在于,
所述差动部具有第1双极晶体管和第2双极晶体管作为所述差动对晶体管,该第1双极晶体管的基极与所述第1输入节点连接,该第2双极晶体管的基极与被输入基准电压的第2输入节点连接。
8.根据权利要求7所述的电路装置,其特征在于,
所述差动部包含第3双极晶体管,该第3双极晶体管设置在所述第1双极晶体管和所述第2双极晶体管与低电位侧电源电压之间,基极被输入偏置电压。
9.根据权利要求3所述的电路装置,其特征在于,
该电路装置包含:
振荡电路,其使振子振荡;以及
输出电路,其根据所述振荡电路的输出信号而输出时钟信号,
所述振荡电路被输入来自所述电流电压转换电路的所述温度补偿电压,
所述开关在从所述输出电路开始所述时钟信号的输出起经过了规定的等待期间后,从接通变为断开。
10.一种振荡器,其特征在于,
该振荡器包含:
权利要求9所述的电路装置;以及
所述振子。
11.一种电子设备,其特征在于,
该电子设备包含:
权利要求1至9中的任意一项所述的电路装置;以及
处理装置,其根据来自所述电路装置的输出信号而进行动作。
12.一种移动体,其特征在于,
该移动体包含:
权利要求1至9中的任意一项所述的电路装置;以及
处理装置,其根据来自所述电路装置的输出信号而进行动作。
CN202010563989.2A 2019-06-21 2020-06-19 电路装置、振荡器、电子设备以及移动体 Active CN112117970B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-115187 2019-06-21
JP2019115187A JP7346930B2 (ja) 2019-06-21 2019-06-21 回路装置、発振器、電子機器及び移動体

Publications (2)

Publication Number Publication Date
CN112117970A CN112117970A (zh) 2020-12-22
CN112117970B true CN112117970B (zh) 2023-06-02

Family

ID=73799494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010563989.2A Active CN112117970B (zh) 2019-06-21 2020-06-19 电路装置、振荡器、电子设备以及移动体

Country Status (3)

Country Link
US (1) US11108357B2 (zh)
JP (1) JP7346930B2 (zh)
CN (1) CN112117970B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113467564B (zh) * 2021-07-07 2022-11-04 思瑞浦微电子科技(苏州)股份有限公司 基于lpf的电荷双向补偿电路
CN114545998B (zh) * 2022-04-27 2022-07-19 成都世源频控技术股份有限公司 一种恒温晶体振荡器自适应保护温度控制电路及实现方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206288A (ja) * 2009-02-27 2010-09-16 Citizen Holdings Co Ltd 固体振動子発振回路およびこれを用いた物理量センサ
JP2013214960A (ja) * 2012-03-08 2013-10-17 Fujitsu Semiconductor Ltd 水晶発振回路及び水晶発振回路の制御方法
CN104682871A (zh) * 2013-11-27 2015-06-03 精工爱普生株式会社 时钟信号生成电路、检测装置、电子设备及移动体
CN105991128A (zh) * 2015-03-16 2016-10-05 精工爱普生株式会社 振荡器、电子设备以及移动体
CN107017838A (zh) * 2015-11-12 2017-08-04 精工爱普生株式会社 电路装置、振荡器、电子设备和移动体
JP2018007165A (ja) * 2016-07-07 2018-01-11 セイコーエプソン株式会社 温度補償型発振回路、発振器、電子機器、移動体及び発振器の製造方法
CN108075731A (zh) * 2016-11-18 2018-05-25 精工爱普生株式会社 电路装置、振荡器、电子设备和移动体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3883796A (en) * 1972-09-05 1975-05-13 Acme Cleveland Corp Proximity probe with output proportional to target distance
JP3641792B2 (ja) * 1997-11-28 2005-04-27 株式会社ルネサステクノロジ オーディオテープ再生回路
JPH11251838A (ja) * 1998-03-04 1999-09-17 Toyo Commun Equip Co Ltd 温度補償型水晶発振器
JP4171552B2 (ja) 1999-03-08 2008-10-22 シチズンホールディングス株式会社 温度補償型水晶発振器
JP2002280833A (ja) 2001-03-19 2002-09-27 Citizen Watch Co Ltd 発振器
JP2003163577A (ja) 2001-11-27 2003-06-06 Kawasaki Microelectronics Kk 遮断周波数可変フィルタ
JP4807369B2 (ja) 2008-03-17 2011-11-02 Tdk株式会社 光電流・電圧変換回路
TWI377779B (en) * 2009-01-06 2012-11-21 Ite Tech Inc Low temperature coefficient oscillator
JP2011013726A (ja) 2009-06-30 2011-01-20 Ricoh Co Ltd 定電圧回路
JP5764922B2 (ja) 2010-12-24 2015-08-19 セイコーエプソン株式会社 温度制御回路、恒温槽型圧電発振器、電子機器及び温度制御方法
JP6081286B2 (ja) * 2012-07-09 2017-02-15 日本電波工業株式会社 恒温槽付水晶発振器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206288A (ja) * 2009-02-27 2010-09-16 Citizen Holdings Co Ltd 固体振動子発振回路およびこれを用いた物理量センサ
JP2013214960A (ja) * 2012-03-08 2013-10-17 Fujitsu Semiconductor Ltd 水晶発振回路及び水晶発振回路の制御方法
CN104682871A (zh) * 2013-11-27 2015-06-03 精工爱普生株式会社 时钟信号生成电路、检测装置、电子设备及移动体
CN105991128A (zh) * 2015-03-16 2016-10-05 精工爱普生株式会社 振荡器、电子设备以及移动体
CN107017838A (zh) * 2015-11-12 2017-08-04 精工爱普生株式会社 电路装置、振荡器、电子设备和移动体
JP2018007165A (ja) * 2016-07-07 2018-01-11 セイコーエプソン株式会社 温度補償型発振回路、発振器、電子機器、移動体及び発振器の製造方法
CN108075731A (zh) * 2016-11-18 2018-05-25 精工爱普生株式会社 电路装置、振荡器、电子设备和移动体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曾志林,韩振杰,蒋松涛.一种超稳晶体振荡器的设计与实现.无线电工程.2017,第47卷(第06期),全文. *

Also Published As

Publication number Publication date
JP2021002734A (ja) 2021-01-07
US11108357B2 (en) 2021-08-31
CN112117970A (zh) 2020-12-22
US20200403571A1 (en) 2020-12-24
JP7346930B2 (ja) 2023-09-20

Similar Documents

Publication Publication Date Title
CN111800120B (zh) Lvds驱动器电路、集成电路装置、振荡器、电子设备以及移动体
CN112117970B (zh) 电路装置、振荡器、电子设备以及移动体
US10027331B2 (en) Oscillator, electronic apparatus, and moving object
CN111800088B (zh) 集成电路装置、振荡器、电子设备以及移动体
CN111751029B (zh) 温度传感器、电路装置、振荡器、电子设备以及移动体
CN111697925B (zh) 电路装置、振荡器、电子设备以及移动体
US11863124B2 (en) Circuit device and oscillator
CN111800087B (zh) 集成电路装置、振荡器、电子设备以及移动体
CN111200399A (zh) 电路装置、电源电路、振荡器、电子设备及移动体
CN111726083B (zh) 电路装置、振荡器、电子设备以及移动体
US20230275546A1 (en) Circuit Device And Oscillator
CN114793092A (zh) 集成电路装置和振荡器
JP2023090099A (ja) 回路装置及び発振器
CN114257174A (zh) 电路装置和振荡器
CN114257175A (zh) 电路装置和振荡器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant