CN112108130B - 一种智能超疏水材料及其制备方法和应用 - Google Patents

一种智能超疏水材料及其制备方法和应用 Download PDF

Info

Publication number
CN112108130B
CN112108130B CN202010946712.8A CN202010946712A CN112108130B CN 112108130 B CN112108130 B CN 112108130B CN 202010946712 A CN202010946712 A CN 202010946712A CN 112108130 B CN112108130 B CN 112108130B
Authority
CN
China
Prior art keywords
biocl
intelligent
hydrophobic
acid
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010946712.8A
Other languages
English (en)
Other versions
CN112108130A (zh
Inventor
许旭
李响
张蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN202010946712.8A priority Critical patent/CN112108130B/zh
Publication of CN112108130A publication Critical patent/CN112108130A/zh
Application granted granted Critical
Publication of CN112108130B publication Critical patent/CN112108130B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0259Compounds of N, P, As, Sb, Bi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0288Halides of compounds other than those provided for in B01J20/046
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提供一种智能响应型超疏水材料及其制备方法和应用,制备方法为:将五水合硝酸铋完全溶解于硝酸中,加入盐酸分离得到白色沉淀,加入冰醋酸静置后洗涤,烘干得到羟基化的3D‑C‑BiOCl微球;加入无水乙醇和3‑氨丙基三甲氧基硅烷,活化后加入MS搅拌,烘干得到3D‑C‑BiOCl@MS;将十二烷二羧酸和疏水性月桂酸在超声处理下溶于无水乙醇中作为修饰溶液,将3D‑C‑BiOCl@MS放入修饰溶液中室温浸泡,取出烘干得到目标产物S‑3D‑C‑BiOCl@MS。本发明所述的制备方法生产成本低,合成的材料具有超疏水特性、pH响应性和光催化降解能力,油水分离实验中对油的吸附效率高以及光催化降解污染物测试中对污染物的降解效率极高。

Description

一种智能超疏水材料及其制备方法和应用
技术领域
本发明涉及一种智能超疏水材料及其制备方法和应用,具体涉及一种利用超疏水微球和表面修饰技术对基底材料进行修饰制备超疏水材料的通用方法,属于材料技术领域。
背景技术
随着人类社会工业化进程速度的加快,工业生产过程中排放的大量的含有机污染物的废水以及石油开采和炼制过程中泄露的原油,对水资源以及生态环境造成了严重的污染,导致全球范围内严重的环境破坏。因此,开发一种高效且环保的方法用来处理和回收油类污染物具有深远的意义。传统的油水分离技术操作繁琐、残留率高,很难实现对油类污染物快速高效地回收。超疏水材料作为一种新型的油水分离材料具有良好的润湿性、高分离效率、高选择性、操作简单、适用范围广、绿色环保等优点而备受人们的关注。分离层状污染物以及降解可溶性污染物是当前废水处理的两个关键步骤。然而,传统的超疏水材料的功能较为单一,只适用于层状油水混合物的分离,尚不能满足复杂污染体系中油水分离的需求,因此需要开发一种多功能、具有智能响应能力且环保的新型油水分离材料。
目前,超疏水/超亲油材料是一类典型的油水分离材料。超疏水/超亲油材料其表面与水滴之间的接触角大于150°,而与油滴间的接触角接近或者等于0°。超疏水-超亲油的性能使得油相能够很容易地在材料表面铺展、吸收以及渗透,而水相会被排斥,这样油相就能从水油混合体系中分离出来。由于材料本身具有较高的孔隙率,使其具有大的饱和吸附量,从而可以实现高效率的油水分离。然而目前的超疏水/超亲油材料在制备过程中,通常使用氟化物等有害药品进行改性,污染环境,对人体健康有害。
发明内容
本发明的目的在于提供一种工艺简单、使用方便且可重复使用的智能超疏水材料的制备方法。本发明的超疏水材料具有高吸油能力、选择性分离油水混合物能力、光降解污染物能力和材料循环利用的性能。
一种智能超疏水材料,通过简单搅拌的方法合成了具有可见光响应的羟基化的三维细胞状BiOCl微球(3D-C-BiOCl)并以3-氨丙基三甲氧基硅烷(APTES)作为交联剂将其固定在三聚氰胺海绵(MS)表面,在构建粗糙表面的同时将光催化降解的能力引入到海绵中。经过具有pH响应能力的十二烷二羧酸(DDA)以及疏水性月桂酸(LA)的修饰接枝,合成了兼具光催化降解功能及pH响应能力的智能超湿润性S-3D-C-BiOCl@MS材料。
一种智能超疏水材料,制备方法如下:
1)将五水合硝酸铋完全溶解于硝酸中,逐滴加入盐酸并持续搅拌,离心分离后得到白色沉淀,洗涤至中性,加入冰醋酸静置4h后洗涤至中性,烘干得到羟基化的3D-C-BiOCl微球;
2)向装有羟基化的3D-C-BiOCl微球的容器中加入无水乙醇和3-氨丙基三甲氧基硅烷,进行活化,活化后加入三聚氰胺海绵在室温下持续搅拌,12h后将三聚氰胺海绵取出烘干得到了3D-C-BiOCl涂覆的3D-C-BiOCl@MS;
3)将十二烷二羧酸和疏水性月桂酸在超声处理下溶于无水乙醇中作为修饰溶液,将 3D-C-BiOCl@MS放入修饰溶液中室温浸泡,取出烘干得到目标产物S-3D-C-BiOCl@MS。
上述的一种智能超疏水材料,步骤1)中,按摩尔比,硝酸铋:硝酸:盐酸=1:20: 6。
上述的一种智能超疏水材料,步骤2)中,按质量比,将羟基化的3D-C-BiOCl微球:无水乙醇:3-氨丙基三甲氧基硅烷=1:30-35:0.2-0.5。
上述的一种智能超疏水材料,步骤2)中,所述的活化为在60℃条件下活化1h。
上述的一种智能超疏水材料,步骤2)中,所述的烘干是在50-70℃条件下烘干4-12h。
上述的一种智能超疏水材料,步骤3)中,修饰溶液中,十二烷二羧酸和疏水性月桂酸的浓度分别为0.08mol·L-1、0.1mol·L-1
上述的一种智能超疏水材料,羟基化的3D-C-BiOCl微球:十二烷二羧酸:月桂酸=20:4:5。
上述的一种智能超疏水材料,步骤3)中,所述的浸泡时间为2-8h。
上述的任一种智能超疏水材料在分离油水混合物中的应用,方法如下:在油水混合物中加入上述的任一种智能超疏水材料,进行吸附。
上述的任一种智能超疏水材料在光催化降解水溶性污染物或油溶性污染物中的应用,方法如下:分别在亚甲基蓝的水溶液和苏丹Ⅲ的四氯化碳溶液中加入上述的任一种智能超疏水材料,进行光催化降解。
本发明的有益效果是:
1、本发明采用三聚氰胺海绵作为基底材料,在基底材料表面交联三维细胞结构的3D- C-BiOCl微球,从而提高基底材料整体三维结构的粗糙度,经过DDA与LA的修饰后构建出了具有光催化降解能力的pH响应型智能超疏水海绵。
2、采用本发明的制备方法制备超疏水材料不需要使用昂贵的试剂、设备以及苛刻的实验条件,生产成本低,合成的材料具有超疏水特性,油水分离实验中对油的吸附效率高,解决了现有制备超疏水材料的方法存在生产成本高和使用有毒有害试剂的问题。
3、本发明制备的智能超疏水材料选择吸附容量大,采用低廉环保的三聚氰胺海绵作为基底材料,改性之后依旧保持原来的吸附能力。
4、本发明制备的智能超疏水材料,不使用传统进行超疏水改性的氟化物等有害药品,合成方法环保经济。
附图说明
图1是MS,3D-C-BiOCl@MS以及S-3D-C-BiOCl@MS的扫描电镜照片;其中,(a)、 (d)是原始MS海绵SEM图(a:低倍,b:高倍);(b)、(e)是3D-C-BiOCl@MS材料SEM图 (b:低倍,e:高倍);(c)、(f)是S-3D-C-BiOCl@MS材料SEM图(c:低倍,f:高倍)。
图2是不同修饰程度的海绵湿润性能图;其中,(a)是MS海绵;(b)经DDA和LA修饰的MS海绵;(c)是3D-C-BiOCl@MS;(d)是S-3D-C-BiOCl@MS;(e)是S-3D-C-BiOCl@MS 材料浸入水下的照片。
图3是S-3D-C-BiOCl@MS在不同pH条件下对水的润湿性能图;其中,(a)是S-3D-C-BiOCl@MS材料对不同pH值水滴的润湿性对比图;(b)是S-3D-C-BiOCl@MS材料在不同 pH条件下润湿性循环实验图。
图4是S-3D-C-BiOCl@MS对不同油品的吸附动力学曲线图及动力学拟合曲线图;其中,(a)是材料的吸附动力学曲线图;(b)是材料的吸附动力学拟合曲线图。
图5是S-3D-C-BiOCl@MS对不同密度油品静态及动态油水分离的照片;其中,(a-d)是材料对不同密度的有机物选择性吸附过程;(e-h)是材料对不同密度有机物的连续分离过程。
图6是S-3D-C-BiOCl@MS材料对不同油品的饱和吸附容量。
图7是分离效率(正己烷/水及二氯甲烷/水混合物)与吸附过程循环次数之间的关系。
图8是S-3D-C-BiOCl@MS对水溶性及油溶性污染物的光催化降解能力图;其中,(a)自制光催化降解设备图;(b)是S-3D-C-BiOCl@MS材料对亚甲基蓝的光降解曲线;(c)是S-3D- C-BiOCl@MS材料对苏丹Ⅲ的光降解曲线。
图9是S-3D-C-BiOCl@MS材料随pH改变湿润性机理图以及材料的多种应用图。
具体实施方式
实施例1一种智能超疏水材料S-3D-C-BiOCl@MS的制备
(一)制备S-3D-C-BiOCl@MS
称取9.70g的五水合硝酸铋,在磁力搅拌条件下溶解于400mL,1mol/L的硝酸中。当硝酸铋完全溶解后,向烧杯中逐滴加入20mL,6mol/L的盐酸并持续搅拌2h。2h后将得到的白色沉淀用离心机分离出来,并用去离子水清洗直至中性。随后向其中加入50mL,99.8%的冰醋酸,静置4h后离心并用去离子水清洗至中性,然后将其置于60℃的烘箱中干燥12 h,便得到了羟基化的3D-C-BiOCl微球。
称取0.750g的3D-C-BiOCl微球置于烧杯中并向其中加入30mL的无水乙醇以及225μL 的APTES。随后将烧杯置于60℃的水浴中进行活化,1h后取出烧杯并放入一块3cm×1cm×1cm大小的三聚氰胺海绵(MS)在室温下持续搅拌。12h后将海绵取出并置于烘箱中60℃烘干得到了3D-C-BiOCl涂覆的MS即3D-C-BiOCl@MS。
称取0.921g的DDA和1.00g的LA并在超声处理下溶于50mL无水乙醇中用作修饰溶液,将3D-C-BiOCl@MS放入修饰溶液中室温浸泡4h后取出烘干便制得了S-3D-C- BiOCl@MS。
(二)检测
1、MS,3D-C-BiOCl@MS以及S-3D-C-BiOCl@MS的微观形态使用扫描电子显微镜对其进行观察。
由图1所示,(a)-(c)分别是MS,3D-C-BiOCl@MS以及S-3D-C-BiOCl@MS材料结构的整体形貌(测试电压为10.0kV,标尺为50μm),三者具有相同的孔隙尺寸和微观结构,表明温和的化学反应并不会破坏MS原有的孔隙结构。(d)-(f)分别是MS,3D-C-BiOCl@MS以及S-3D-C-BiOCl@MS材料结构的局部形貌(测试电压为10.0kV,标尺为10μm)。如图1(e) 所示,MS海绵的骨架上均匀地覆盖上了一层3D-C-BiOCl微球。由图1(f) 可以清晰地看出经过DDA以及LA的修饰后的3D-C-BiOCl微球表面均匀地覆盖上了一层DDA和LA。
2、海绵材料的疏水性及pH响应性用接触角进行表征,在德国KRUSS光学接触角测量仪DSA100上用5μL去离子水测试其表面润湿性能,测其接触角。
如图2所示,(a)-(d)分别是不同修饰程度的海绵的润湿性对比(水滴pH=7),(e)为S-3D- C-BiOCl@MS材料浸入水下的照片。MS具有亲水性,当水滴滴在表面时水滴会迅速被海绵吸收(图2(a) )。当海绵修饰上3D-C-BiOCl微球仍表现出良好的亲水性,这是因为3D-C- BiOCl微球的表面存在大量的亲水性羟基(图2(b) )。当MS经过DDA以及LA的处理后其原有的亲水性并没有改变(图2(c) )。S-3D-C-BiOCl@MS材料的润湿能力如图2(d) 所示,水滴可以在其表面上长时间保持完整的球型,接触角为151.5°。当将S-3D-C-BiOCl@MS材料完全浸入水中时,可以在海绵与水的界面观察到被一层空气膜,这层空气膜包裹在海绵的表面使得海绵不会被水浸湿(图2(e) )。
如图3(a) 所示,pH≤7的水滴被排斥在海绵的外部,而pH>7的水滴则会完全浸入到材料的内部。如图3(b) 所示,通过在酸溶液中对材料进行质子化并经过烘干处理后S-3D-C- BiOCl@MS材料会由亲水性转变为疏水性,并且可以在pH为2和10的外部刺激下实现润湿性由疏水性到亲水性的连续转换。这些现象表明所制备的S-3D-C-BiOCl@MS材料具有灵敏的pH响应的智能润湿能力。
3、吸附量是评估吸油材料性能的标准。吸附量可以通过以下程序测量。将S-3D-C-BiOCl@MS样品称重,然后放入不同类型的油类及有机溶剂中进行吸附试验,随后将样品取出,用滤纸擦去表面的油类和有机溶剂,然后再次称量吸油样品。吸附容量(Q)通过以下等式计算:
Q=(mt-m0)/m0其中,m0和mt分别是吸附前后样品的重量。
通过将样品放置到油中,然后计算样品的吸附容量作为吸附时间的函数来测试样品的吸附动力学。它可以用下面的表观一级动力学模型来描述:
ln(Q-Qt)=lnQ-Kt
其中,Q是饱和吸附容量,Qt是在时间t的吸附容量,t是吸附时间,K是吸附常数。
图4(a) 和图4(b) , 图4(a) 揭示了S-3D-C-BiOCl@MS材料对六种油类的吸附量与时间的关系,S-3D-C-BiOCl@MS材料对于不同种类的油类以及有机物的吸附容量随时间的增加而增大,直到5s达到吸附平衡。此外对S-3D-C-BiOCl@MS材料的吸附过程进行了动力学的拟合,如图4(b) 所示,通过计算-ln(Q-Qt)与吸附时间t线性回归曲线的斜率评定了吸附常数 k,表明了S-3D-C-BiOCl@MS材料的吸附行为符合准一级动力学,证明材料对油类的吸附为物理吸附。
实施例2智能超疏水材料S-3D-C-BiOCl@MS在分离油水混合物中的应用
1、为了考察超疏水材料的溢油清理的实际应用,模拟了在自然条件下将混合油从混合物中分离出来的情况。选择性吸附实验分别采用苏丹III染色的正己烷(轻油)和二氯甲烷 (重油)与水混合,结果如图5。如图5(a)-(b),正己烷相漂浮于水相上方,当材料与其接触时,正己烷在毛细作用下被海绵吸附到内部,从而实现了正己烷与水的静态分离。作为对比如图5(c)-(d),二氯甲烷相沉于水相下方,材料与二氯甲烷接触的时,二氯甲烷迅速地被海绵吸进内部,实现了二氯甲烷与水的静态分离。简单的挤压过程可以容易地收集物料中吸收的油类,实现油类与水的静态分离,水中未观察到任何红色污染物,表明该物质分离效率高,无二次污染。S-3D-C-BiOCl@MS材料连续油水分离性能的测试如图5(e)-(h)所示。开启蠕动泵后,将塞入S-3D-C-BiOCl@MS材料的导管一端置于有机物一层,由于S-3D-C-BiOCl@MS材料的超疏水性及超亲油性,在蠕动泵的驱动下,正己烷和二氯甲烷会被全部转移并收集到导管另一端的烧杯中。分离结束后,在水中和有机物中彼此并无残留。
2、考察了S-3D-C-BiOCl@MS材料对六种油类(润滑油、大豆油、硅油)以及有机溶剂(正己烷、环己烷、二氯甲烷)的饱和吸附容量。结果如图6。由图6可见,S-3D-C- BiOCl@MS材料对不同油类及有机溶剂的饱和吸附容量高达自身质量的5.76-12.94倍,具有较高的吸附容量。
3、考察了S-3D-C-BiOCl@MS材料的循环使用次数。通过材料对不同种类的油类或有机溶剂的饱和吸附后,将材料置于盛有去离子水(pH=8)的烧杯中实现可控脱附,进而重新进行吸附实验以进行循环使用测试。结果如图7,随着循环次数的增加,饱和吸附量逐渐减少并达到稳定状态,回收的材料可在油水分离中重复使用10个循环,分离效率略有下降但仍然大于90%。
实施例3智能超疏水材料S-3D-C-BiOCl@MS在催化降解水溶性污染物或油溶性污染物中的应用
1、考查了S-3D-C-BiOCl@MS材料对水溶性污染物以及油溶性污染物的光催化降解能力。结果如图8,图8(a) 为光催化降解实验的设备。取一块(1cm×1cm×1cm)大小的S-3D-C- BiOCl@MS材料置于盛有100mL,10μg/mL,pH=10的亚甲基蓝水溶液的反应池中。将反应池体系置于黑暗处静止30min以达到材料对亚甲基蓝的自吸附-解吸平衡。30min后将反应池置于500W氙灯的照射下用以模拟太阳光。每照射60min取4mL的亚甲基蓝溶液并利用紫外分光光度计测定溶液中亚甲基蓝的含量。同样考查了S-3D-C-BiOCl@MS材料对四氯化碳中溶解的苏丹III的光催化降解能力,具体的实验操作同上,将亚甲基蓝的水溶液换为苏丹III的四氯化碳溶液(100mL,10μg/mL)并取下氙灯上的滤光片。如图8(b)-(c)所示,在光照4h后S-3D-C-BiOCl@MS材料对亚甲基蓝以及苏丹Ⅲ的降解效率高达99%以上,溶液均变为无色透明状。

Claims (10)

1.一种智能超疏水材料,其特征在于,制备方法如下:
1)将五水合硝酸铋完全溶解于硝酸中,逐滴加入盐酸并持续搅拌,离心分离后得到白色沉淀,洗涤至中性,加入冰醋酸静置4h后洗涤至中性,烘干得到羟基化的3D-C-BiOCl微球;
2)向装有羟基化的3D-C-BiOCl微球的容器中加入无水乙醇和3-氨丙基三甲氧基硅烷,进行活化,活化后加入三聚氰胺海绵在室温下持续搅拌,12h后将三聚氰胺海绵取出烘干得到了3D-C-BiOCl涂覆的3D-C-BiOCl@MS;
3)将十二烷二羧酸和疏水性月桂酸在超声处理下溶于无水乙醇中作为修饰溶液,将3D-C-BiOCl@MS放入修饰溶液中室温浸泡,取出烘干得到目标产物S-3D-C-BiOCl@MS。
2.根据权利要求1所述的一种智能超疏水材料,其特征在于,步骤1)中,按摩尔比,硝酸铋:硝酸:盐酸=1:20:6。
3.根据权利要求2所述的一种智能超疏水材料,其特征在于,步骤2)中,按质量比,将羟基化的3D-C-BiOCl微球:无水乙醇:3-氨丙基三甲氧基硅烷=1:30-35:0.2-0.5。
4.根据权利要求3所述的一种智能超疏水材料,其特征在于,步骤2)中,所述的活化为在60℃条件下活化1h。
5.根据权利要求4所述的一种智能超疏水材料,其特征在于,步骤2)中,所述的烘干是在50-70℃条件下烘干4-12h。
6.根据权利要求5所述的一种智能超疏水材料,其特征在于,步骤3)中,修饰溶液中,十二烷二羧酸和疏水性月桂酸的浓度分别为0.08mol·L-1、0.1mol·L-1
7.根据权利要求6所述的一种智能超疏水材料,其特征在于,羟基化的3D-C-BiOCl微球:十二烷二羧酸:月桂酸=20:4:5。
8.根据权利要求7所述的一种智能超疏水材料,其特征在于,步骤3)中,所述的浸泡时间为2-8h。
9.权利要求1-8所述的任一种智能超疏水材料在分离油水混合物中的应用,其特征在于,方法如下:在油水混合物中加入权利要求1-7所述的任一种智能超疏水材料,进行吸附。
10.权利要求1-8所述的任一种智能超疏水材料在光催化降解水溶性污染物或油溶性污染物中的应用,其特征在于,方法如下:分别在亚甲基蓝的水溶液和苏丹Ⅲ的四氯化碳溶液中加入权利要求1-7所述的任一种智能超疏水材料,进行光催化降解。
CN202010946712.8A 2020-09-10 2020-09-10 一种智能超疏水材料及其制备方法和应用 Active CN112108130B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010946712.8A CN112108130B (zh) 2020-09-10 2020-09-10 一种智能超疏水材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010946712.8A CN112108130B (zh) 2020-09-10 2020-09-10 一种智能超疏水材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112108130A CN112108130A (zh) 2020-12-22
CN112108130B true CN112108130B (zh) 2021-11-30

Family

ID=73802486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010946712.8A Active CN112108130B (zh) 2020-09-10 2020-09-10 一种智能超疏水材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112108130B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113318759B (zh) * 2021-05-08 2023-09-05 华能(广东)能源开发有限公司海门电厂 一种多巴胺介导的氯氧化铋光催化剂及其制备方法与应用
CN113426430B (zh) * 2021-07-30 2023-11-10 辽宁大学 一种智能型油水分离材料及其制备方法和应用
CN115228470A (zh) * 2022-07-01 2022-10-25 重庆工商大学 一种超疏水超亲油羰基铁负载纳米二氧化钛光催化剂的制备方法
CN115093673A (zh) * 2022-07-15 2022-09-23 辽宁大学 一种基于溴氧铋制备的三维超疏水材料及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195183A (zh) * 2015-10-19 2015-12-30 太原理工大学 一种Co3O4@ACSs/BiOCl球形吸附-光催化复合催化剂的制备方法
CN106698583A (zh) * 2017-02-23 2017-05-24 西南大学 一种超疏水三聚氰胺海绵吸附型油水分离材料的制备方法及其产品和应用
CN108940332A (zh) * 2018-06-04 2018-12-07 东北大学 一种高活性MoS2/g-C3N4/Bi24O31Cl10复合光催化剂的制备方法
CN110606980A (zh) * 2019-10-11 2019-12-24 西南石油大学 一种超疏水ldh/三聚氰胺海绵的制备方法
CN111135806A (zh) * 2019-12-26 2020-05-12 安徽圩码网络科技有限公司 一种用于油水分离的超疏水海绵材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195183A (zh) * 2015-10-19 2015-12-30 太原理工大学 一种Co3O4@ACSs/BiOCl球形吸附-光催化复合催化剂的制备方法
CN106698583A (zh) * 2017-02-23 2017-05-24 西南大学 一种超疏水三聚氰胺海绵吸附型油水分离材料的制备方法及其产品和应用
CN108940332A (zh) * 2018-06-04 2018-12-07 东北大学 一种高活性MoS2/g-C3N4/Bi24O31Cl10复合光催化剂的制备方法
CN110606980A (zh) * 2019-10-11 2019-12-24 西南石油大学 一种超疏水ldh/三聚氰胺海绵的制备方法
CN111135806A (zh) * 2019-12-26 2020-05-12 安徽圩码网络科技有限公司 一种用于油水分离的超疏水海绵材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"A durable superhydrophobic BiOBr/PFW cotton fabric for visible light response degradation and oil/water separation performance";Bo Ge et al.;《Colloids and Surfaces A》;20190928;第585卷;第1-7页 *
"超疏水材料的制备及其去除水中污染物性能的研究进展";赵霞等;《化工环保》;20181231;第38卷(第1期);第13-18页 *

Also Published As

Publication number Publication date
CN112108130A (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
CN112108130B (zh) 一种智能超疏水材料及其制备方法和应用
Li et al. Rapid adsorption for oil using superhydrophobic and superoleophilic polyurethane sponge
Li et al. Flexible 3D porous superhydrophobic composites for oil-water separation and organic solvent detection
CN113426430B (zh) 一种智能型油水分离材料及其制备方法和应用
CN106807338B (zh) 一种用于油水分离的改性石墨烯增强聚氨酯海绵的制备方法
Lu et al. Magnetic superhydrophobic polyurethane sponge modified with bioinspired stearic acid@ Fe3O4@ PDA nanocomposites for oil/water separation
Song et al. Halloysite nanotubes functionalized cotton fabric for oil/water separation
US20170129786A1 (en) Materials, apparatuses, and methods for separating immiscible liquids
He et al. Mussel-inspired durable superhydrophobic/superoleophilic MOF-PU sponge with high chemical stability, efficient oil/water separation and excellent anti-icing properties
CN109621923A (zh) 一种超疏水亲油海绵材料及其制备方法和油水分离应用
Xu et al. Fabricated smart sponge with switchable wettability and photocatalytic response for controllable oil-water separation and pollutants removal
CN105107468A (zh) 一种超疏水超亲油秸秆纤维的制备方法
CN106700121B (zh) 一种高效油水分离壳聚糖海绵及其制备方法
CN104629079B (zh) 具有弹性的超疏水壳聚糖吸油海绵及其制备方法和应用
CN108484967A (zh) 一种聚二甲基硅氧烷/氧化石墨烯多孔复合材料的制备工艺和应用
CN111116978A (zh) 一种超耐用疏水性三维多孔油水分离海绵材料及其制备方法和应用
Wang et al. Superhydrophobic carbon black-loaded polyurethane sponge for efficient oil-water separation and solar-driven cleanup of high-viscosity crude oil
Dong et al. Photothermal and Concus Finn capillary assisted superhydrophobic fibrous network enabling instant viscous oil transport for crude oil cleanup
CN113731375A (zh) 一种3d微纳松针状超疏水材料的制备及其应用
CN112221476A (zh) 一种贻贝仿生改性聚氨酯海绵多功能吸附剂、其制备方法及其应用
CN110237827B (zh) 一种利用天然木材构建水油分离材料的制备方法
CN116272399B (zh) 一种多尺度结构的超疏水亚胺聚合物膜的制备方法及应用
CN115093673A (zh) 一种基于溴氧铋制备的三维超疏水材料及其应用
CN103877952A (zh) 类软糖状聚硅氧烷吸附材料及其表面改性海绵的制备与应用
CN111875840A (zh) 一种光控“开-关”型三维多孔材料的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant