CN106807338B - 一种用于油水分离的改性石墨烯增强聚氨酯海绵的制备方法 - Google Patents

一种用于油水分离的改性石墨烯增强聚氨酯海绵的制备方法 Download PDF

Info

Publication number
CN106807338B
CN106807338B CN201611230559.9A CN201611230559A CN106807338B CN 106807338 B CN106807338 B CN 106807338B CN 201611230559 A CN201611230559 A CN 201611230559A CN 106807338 B CN106807338 B CN 106807338B
Authority
CN
China
Prior art keywords
water
polyurethane sponge
sponge
modified graphene
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611230559.9A
Other languages
English (en)
Other versions
CN106807338A (zh
Inventor
曹宁
李锦�
李学达
林学强
孙建波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Shichuang Technology Co ltd
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201611230559.9A priority Critical patent/CN106807338B/zh
Publication of CN106807338A publication Critical patent/CN106807338A/zh
Application granted granted Critical
Publication of CN106807338B publication Critical patent/CN106807338B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/322Volatile compounds, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明涉及高分子材料领域,特别涉及一种用于油水分离用改性石墨烯增强聚氨酯海绵的制备方法,具体采用聚多巴胺修饰氧化石墨烯,然后通过1H,1H,2H,2H‑全氟癸基硫醇等低表面能物质与聚多巴胺的迈克尔加成反应制得超疏水改性石墨烯粉末,最后将该超疏水粉末负载到市售聚氨酯海绵上,从而获得具有超疏水/亲油性质的油水分离海绵。本发明方法操作简单,制得的改性石墨烯增强聚氨酯海绵能够在水上甚至水下快速吸附油类和各种有机溶剂,实现高效的水油分离。且该海绵可通过挤压脱油的方式实现循环利用。由于该吸油海绵制备方法可操作性强,成本低廉,重复使用性好等特点,可进行规模化生产,并有望广泛用于水体油类污染物清除,缓解生态环境的巨大压力。

Description

一种用于油水分离的改性石墨烯增强聚氨酯海绵的制备方法
技术领域
本发明涉及高分子材料领域,特别涉及一种用于油水分离的改性石墨烯增强聚氨酯海绵的制备方法。
背景技术
随着石油工业和海上油运的发展,油类泄漏成为影响生态环境的一大严重问题,已充分引起了公众的重视。由此形成的大面积油膜不仅会阻隔正常的海气交换过程,使气候发生异常,还将影响食物链的循环,从而破坏海洋的生态平衡。由于油类泄漏事故无法避免,因此事故发生后及时高效的处理显得尤为重要。目前对油类泄漏问题的处理方式主要以吸附处理为主。然而目前的吸油材料存在许多缺点,如制备工艺复杂,成本高,油水选择性差,吸油能力低,重复使用率低等。因此,需要对现有吸油材料进行功能化改性。
具有3D多孔结构的聚氨酯海绵由于其柔性好,吸油能力较高,成本低廉等优点,表现出巨大的应用前景。近年来,越来越多的人通过不同的方法对聚氨酯海绵进行表面改性,使其具备超疏水/亲油的性能。如Wang等采用原位生长的方法在聚氨酯海绵骨架上固定Fe、Go、Ag等纳米粒子,并通过纳米颗粒与硫醇的反应构建了一种超疏水海绵,该海绵可用于油水分离。然而由于纳米粒子与海绵骨架之间结合力微弱,在反复使用过程中疏水层易从海绵骨架上脱落,导致其循环使用性能差(Wang B,Li J,Wang G,et al.Methodology forrobust superhydrophobic fabrics and sponges from in situ growth of transitionmetal/metal oxide nanocrystals with thiol modification and their applicationsin oil/water separation.[J].Acs Applied Materials&Interfaces,2013,5(5):1827-1839.)。
受海洋生物贻贝粘附蛋白的启发,多巴胺已被证明可在温和的碱性条件下于多种基底表面自聚合,形成的聚多巴胺层可为下一步反应提供多个活性位点,实现材料表面的进一步官能化,因此被广泛应用于生物分子的固定和超疏水材料的制备。如Wang等以聚多巴胺为二级反应平台,制备了一种还原氧化石墨烯-金纳米星@多柔比星复合材料,研究表明该复合材料对转移性乳腺癌具有良好的治疗效果(Wang,Fengyang,Sun,Qianqian,Feng,Bing,et al.Polydopamine‐Functionalized Graphene Oxide Loaded with GoldNanostars and Doxorubicin for Combined Photothermal and Chemotherapy ofMetastatic Breast Cancer[J].Advanced Healthcare Materials,2016,5(17):2227-2236.)。Wang等制备了一种碳纳米管增强聚氨酯海绵,该方法包括多巴胺的自聚合以及和疏水性分子十八胺的反应。所制备的海绵可快速和选择性吸收高达其自身重量35倍的各种油,但由于碳纳米管价格昂贵,故该制备方法成本较高难以得到广泛的推广和利用,(WangH,Wang E,Liu Z,et al.A novel carbon nanotubes reinforced superhydrophobic andsuperoleophilic polyurethane sponge for selective oil-water separationthrough a chemical fabrication[J].Journal of Materials Chemistry A,2014,3(1):266-273.)。
由此可见,有必要在以多巴胺为二级反应平台的基础上开发一种稳定、高效、可重复使用的低成本吸油材料。
发明内容
本发明针对现有技术存在的诸多问题,提供了一种用于油水分离用改性石墨烯增强聚氨酯海绵的制备方法,具体采用聚多巴胺修饰氧化石墨烯,然后通过1H,1H,2H,2H-全氟癸基硫醇等低表面能物质与聚多巴胺的迈克尔加成反应制得超疏水改性石墨烯粉末,最后将该超疏水粉末负载到市售聚氨酯海绵上,从而获得一种具有超疏水/亲油性质的油水分离海绵。本发明方法操作简单,制得的改性石墨烯增强聚氨酯海绵能够在水上甚至水下快速吸附油类和各种有机溶剂,实现高效的水油分离。且该海绵可通过挤压脱油的方式实现循环利用;由于该吸油海绵制备方法可操作性强,成本低廉,重复使用性好等特点,可进行规模化生产,并有望广泛用于水体油类污染物清除,缓解生态环境的巨大压力。
本发明的具体技术方案如下:
一种用于油水分离的改性石墨烯增强聚氨酯海绵的制备方法,其具体步骤如下:
(1)将多巴胺加入均匀分散的氧化石墨烯水溶液中,室温下超声反应2小时,离心收集固态反应产物,用去离子水和乙醇分别清洗两遍,随后溶于液态醇类溶剂中,溶液浓度为1-1.5mg/mL;
其中氧化石墨烯水溶液的浓度为1-2mg/mL,多巴胺与氧化石墨烯的质量比为1-1.5;
(2)向步骤(1)所得溶液中加入10-15mM含氨基或巯基的低表面能反应物,室温下静置24小时,进行氧化石墨烯表面接枝,反应结束后离心收集固态反应产物,随后对其进行干燥,获得改性石墨烯粉末;
其中所述的低表面能的反应物包括但不限于1H,1H,2H,2H-全氟癸基硫醇(PFDT)、(3-巯基丙基)三甲氧基硅烷(MPS)、十二硫醇、十八胺(ODA);
(3)取步骤(2)所得改性石墨烯粉末1-10mg溶于5mL醇类溶剂中制得浸液,随后将10mg干净的市售聚氨酯海绵浸没其中,超声震荡2小时,取出于50℃条件下干燥制得改性石墨烯增强聚氨酯海绵。
所述的步骤(1)的氧化石墨烯水溶液需通过交替加入Tris和10mM的HCl调节其pH为8-9。
所述的步骤(1)和(3)中的醇类物质选自甲醇或乙醇,步骤(3)中浸液浓度为0.4-2mg/mL;
步骤(1)和(3)中的超声功率为400W,频率为40kHz;
通过制备方法,以石墨烯表面的聚多巴胺层为二级反应平台,通过迈克尔加成反应接枝低表面能反应物,制备改性超疏水/亲油石墨烯粉末,并采用浸泡法将改性石墨烯粉末负载于聚氨酯海绵上;该方法与现有技术相比,操作更加简便,且成本更加低廉。该方法所制备的海绵在空气中的水接触角150-160°;该海绵能够在几秒内吸附甲苯等有机溶剂和油类,且能在水下选择性吸附氯仿等高密度有机溶剂;该海绵对各种油类及有机溶剂的吸附量能够达到自身重量21-118倍,且循环使用十次吸油能力不发生明显变化;由于聚多巴胺中儿茶酚基团强烈的粘附作用,使得改性石墨烯粉末与聚氨酯海绵紧密结合,挤压过程中不易脱落,因此该海绵可通过挤压脱油的方式实现循环利用,且循环多次吸油率不发生明显下降。
制备过程中氧化石墨烯水溶液pH必须控制在8-9范围内,该条件最有利于多巴胺自聚合反应的发生。加入的低表面能反应物的浓度不宜过小,需保证与聚多巴胺充分反应,以免存在未发生迈克尔加成反应的聚多巴胺,从而影响复合粉末的超疏水性能。聚氨酯海绵负载超疏水粉末时,要保证超声功率和频率足够大,超声时间足够长,使溶液中的改性石墨烯片层充分吸附到海绵的多孔结构内,但是为了节约成本降低能耗,一般控制超声参数如上所述。
综上所述,本发明提供的制备方法操作简单,制得的改性石墨烯增强聚氨酯海绵能够在水上甚至水下快速吸附油类和各种有机溶剂,实现高效的水油分离。且该海绵可通过挤压脱油的方式实现循环利用。由于该吸油海绵制备方法可操作性强,成本低廉,重复使用性好等特点,可进行规模化生产,并有望广泛用于水体油类污染物清除,缓解生态环境的巨大压力。
附图说明
图1为实施例1中改性石墨烯增强聚氨酯海绵的扫描电镜图片(左)及其放大形貌(右);
图2为实施例1中改性石墨烯增强聚氨酯海绵的水滴接触角,可见其在空气中的水接触角150-160°,属于超疏水材料;
图3为实施例1中改性石墨烯增强聚氨酯海绵对甲苯(苏丹红染色)的吸附过程灰度示意图;
图4为实施例1中改性石墨烯增强聚氨酯海绵对水下氯仿(亚甲基蓝染色)的吸附过程灰度示意图;
图5为实施例1中改性石墨烯增强聚氨酯海绵对各类油及有机溶剂的吸附能力;
图6为实施例2中改性石墨烯增强聚氨酯海绵重复使用过程吸附量变化图。
具体实施方式
下面结合实施例来进一步说明本发明,可以使本领域技术人员更全面的理解本发明,但不以任何方式限制本发明。
实施例1
配置100mL浓度为1mg/mL的氧化石墨烯分散液,超声(功率为400W,频率为40kHz)2小时,使其分散均匀,交替加入Tris和10mM的HCl调节其pH为8.5;
取100mg多巴胺加入上述分散液中,室温下超声反应(功率为400W,频率为40kHz)2小时,离心收集反应产物,用去离子水和乙醇分别清洗两遍,溶于100mL乙醇中;
随后加入480mg 1H,1H,2H,2H-全氟癸基硫醇(PFDT),室温下反应24小时,离心收集反应产物,并将其置于干燥箱中于50℃条件下干燥4小时得到改性石墨烯粉末;
取上述粉末4mg溶于5mL乙醇中制得浸液,将10mg干净的市售聚氨酯海绵浸泡于其中,室温下超声(功率为400W,频率为40kHz)震荡2小时,取出置于干燥箱中于50℃条件下干燥6小时制得改性石墨烯增强聚氨酯海绵。
本实施例中得到的改性石墨烯增强聚氨酯海绵在扫描电镜下的照片及其放大形貌如图1所示。可以看出,改性后的聚氨酯海绵扔保持其原有的多孔形貌,负载的改性石墨烯呈层片状结构。该海绵表面水滴接触角为160°,具备超疏水性能,如图2所示。该海绵能够快速吸附甲苯(苏丹红染色)并能高效吸附水下的氯仿(亚甲基蓝染色),吸附过程分别如图3和图4所示;而未经修饰的初始海绵吸油的同时也会吸收大量的水,即不能在水体系中选择性吸油。该海绵对各种油类及有机溶剂的吸附量为自身重量的21-118倍(图5),与报道过的现有其他吸油材料吸油能力相当或略有提高。采用挤压脱油法,该海绵可重复使用十次以上,且油吸附量不发生明显减少,如图6所示。
实施例2
配置100mL浓度为1mg/mL的氧化石墨烯分散液,超声(功率为400W,频率为40kHz)2小时,使其分散均匀,交替加入Tris和10mm的HCl调节其pH为8.5;
取100mg多巴胺加入上述分散液中,室温下超声(功率为400W,频率为40kHz)反应2小时,离心收集反应产物,用去离子水和乙醇分别清洗两遍,同时将溶剂替换为乙醇;
随后加入720mg 1H,1H,2H,2H-全氟癸基硫醇(PFDT),室温下反应24小时,离心收集反应产物,并将其置于干燥箱中于50℃条件下干燥4小时得到改性石墨烯粉末;
取上述粉末5mg溶于5mL乙醇中制得浸液,将10mg干净的市售聚氨酯海绵浸泡于其中,室温下超声(功率为400W,频率为40kHz)震荡2小时,取出置于干燥箱中于50℃条件下干燥6小时制得改性石墨烯增强聚氨酯海绵。
本实施例中得到的改性石墨烯增强聚氨酯海绵对汽油和氯仿的吸附量分别为自身重量的40倍和120倍。
实施例3
配置100mL浓度为1mg/mL的氧化石墨烯分散液,超声(功率为400W,频率为40kHz)2小时,使其分散均匀,交替加入Tris和10mm的HCl调节其pH为8.5;
取150mg多巴胺加入上述分散液中,室温下超声(功率为400W,频率为40kHz)反应2小时,离心收集反应产物,用去离子水和乙醇分别清洗两遍,同时将溶剂替换为乙醇;
随后加入270mg十八胺(ODA),室温下反应24小时,离心收集反应产物,并将其置于干燥箱中于50℃条件下干燥4小时得到改性石墨烯粉末;
取上述粉末8mg溶于5mL乙醇中制得浸液,将10mg干净的市售聚氨酯海绵浸泡于其中,室温下超声(功率为400W,频率为40kHz)震荡2小时,取出置于干燥箱中于50℃条件下干燥6小时制得改性石墨烯增强聚氨酯海绵。
本实施例中得到的改性石墨烯增强聚氨酯海绵对汽油和氯仿的吸附量分别为自身重量的35倍和100倍。
实施例4
配置100mL浓度为1mg/mL的氧化石墨烯分散液,超声(功率为400W,频率为40kHz)2小时,使其分散均匀,交替加入Tris和10mm的HCl调节其pH为8.5;
取150mg多巴胺加入上述分散液中,室温下超声(功率为400W,频率为40kHz)反应2小时,离心收集反应产物,用去离子水和乙醇分别清洗两遍,同时将溶剂替换为乙醇;
随后加入202mg十二硫醇,室温下反应24小时,离心收集反应产物,并将其置于干燥箱中于50℃条件下干燥4小时得到改性石墨烯粉末;
取上述粉末10mg溶于5mL乙醇中制得浸液,将10mg干净的市售聚氨酯海绵浸泡于其中,室温下超声(功率为400W,频率为40kHz)震荡2小时,取出置于干燥箱中于50℃条件下干燥6小时制得改性石墨烯增强聚氨酯海绵。
本实施例中得到的改性石墨烯增强聚氨酯海绵对汽油和氯仿的吸附量分别为自身重量的37倍和115倍。

Claims (1)

1.一种用于油水分离的改性石墨烯增强聚氨酯海绵的制备方法,其特征在于:具体步骤如下:
(1)将多巴胺加入均匀分散的氧化石墨烯水溶液中,室温下超声反应2小时,离心收集固态反应产物,用去离子水和乙醇分别清洗两遍,随后溶于液态醇类溶剂中,溶液浓度为1-1.5mg/mL;
(2)向步骤(1)所得溶液中加入10-15mM含氨基或巯基的低表面能反应物,室温下静置24小时,进行氧化石墨烯表面接枝,反应结束后离心收集固态反应产物,随后对其进行干燥,获得改性石墨烯粉末;
(3)取步骤(2)所得改性石墨烯粉末1-10mg溶于5mL醇类溶剂中制得不同浓度的浸液,随后将10mg干净的市售聚氨酯海绵浸没其中,超声震荡2小时,取出于50℃条件下干燥制得改性石墨烯增强聚氨酯海绵;
其中步骤(1)和(3)中的超声功率为400W,频率为40kHz;
步骤(2)中所述低表面能反应物为1H,1H,2H,2H-全氟癸基硫醇;
步骤(1)中的氧化石墨烯水溶液通过交替加入Tris和10mM的HCl调节其pH为8-9;
步骤(1)中所述氧化石墨烯水溶液的浓度为1-2mg/mL,多巴胺与氧化石墨烯的质量比为1-1.5;
步骤(1)和(3)中所述的醇类物质选自甲醇或乙醇,其中步骤(3)中的浸液浓度为0.4-2mg/mL;
所制备的改性石墨烯增强聚氨酯海绵在空气中的水接触角为150-160°;对各种油类及有机溶剂的吸附量能够达到自身重量21-118倍。
CN201611230559.9A 2016-12-27 2016-12-27 一种用于油水分离的改性石墨烯增强聚氨酯海绵的制备方法 Active CN106807338B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611230559.9A CN106807338B (zh) 2016-12-27 2016-12-27 一种用于油水分离的改性石墨烯增强聚氨酯海绵的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611230559.9A CN106807338B (zh) 2016-12-27 2016-12-27 一种用于油水分离的改性石墨烯增强聚氨酯海绵的制备方法

Publications (2)

Publication Number Publication Date
CN106807338A CN106807338A (zh) 2017-06-09
CN106807338B true CN106807338B (zh) 2019-09-27

Family

ID=59110401

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611230559.9A Active CN106807338B (zh) 2016-12-27 2016-12-27 一种用于油水分离的改性石墨烯增强聚氨酯海绵的制备方法

Country Status (1)

Country Link
CN (1) CN106807338B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108102133A (zh) * 2017-11-17 2018-06-01 浙江工业大学 一种油墨废水的资源化处理方法
CN108607520A (zh) * 2018-04-18 2018-10-02 浙江工业大学 一种超疏水性海绵及其制备方法与应用
CN108940231A (zh) * 2018-07-05 2018-12-07 中科广化(重庆)新材料研究院有限公司 一种聚多巴胺修饰的密胺海绵油水分离材料及制法与应用
CN109848192A (zh) * 2018-10-25 2019-06-07 华南师范大学 一种改性聚氨酯海绵在修复非水有机相液体污染土壤中的应用及其修复方法
CN109735200B (zh) * 2018-12-10 2020-12-22 华南理工大学 一种环氧防腐涂料组合物及其制备方法和应用
CN109621906B (zh) * 2018-12-15 2021-09-03 同济大学 一种制备可吸收粘稠态原油的复合海绵的方法
CN111318172B (zh) * 2018-12-17 2022-01-25 中国石油化工股份有限公司 一种高分子修饰的石墨烯过滤膜的制备方法
CN111318185B (zh) * 2018-12-17 2022-04-05 中国石油化工股份有限公司 一种增强亲水性的石墨烯过滤膜材料的涂装工艺
CN111167421B (zh) * 2020-01-16 2021-09-17 南通纺织丝绸产业技术研究院 一种负载石墨烯的聚氨酯海绵吸附材料及其制备方法
CN111203001B (zh) * 2020-02-18 2021-04-02 武汉大学 一种新型氟功能化开管毛细管色谱柱的制备方法
CN111420566B (zh) * 2020-03-03 2022-04-01 浙江工业大学 含氟化有机纳米粒子聚酰胺耐溶剂纳滤膜的制备方法
CN112144273B (zh) * 2020-09-30 2021-09-24 福州大学 一种具有超疏水导电的多功能织物表面的制备方法
CN112791697B (zh) * 2020-12-16 2022-08-05 中山市华锌工材料科技有限公司 一种弹性超疏水石墨烯凝胶球及其制备方法与应用
CN113072064B (zh) * 2021-04-02 2022-11-18 中国科学院上海高等研究院 一种改性石墨烯、石墨烯膜及其制备方法和用途
CN113121789B (zh) * 2021-04-22 2022-05-27 慕思健康睡眠股份有限公司 一种除螨石墨烯聚氨酯海绵及其制备方法和应用
CN113651315A (zh) * 2021-08-18 2021-11-16 成都富安纳新材料科技有限公司 易于分散的活性纳米碳粉末及其制备方法
CN114558458B (zh) * 2021-12-27 2023-03-24 长安大学 一种HNTs/油胺复合膜的制备方法
CN115820091B (zh) * 2022-11-30 2023-08-25 南昌航空大学 一种制备GO-PDA-CeO2/PU耐磨超疏水长效防腐蚀涂层的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102847510A (zh) * 2012-08-31 2013-01-02 中国科学院金属研究所 一种石墨烯基净水材料及其制备方法和应用
CN104338519A (zh) * 2014-09-17 2015-02-11 上海大学 改性石墨烯负载聚氨酯海绵及其制备方法
CN104607161A (zh) * 2015-02-05 2015-05-13 苏州大学 一种石墨烯修饰的超疏水吸附材料的制备方法
CN105170132A (zh) * 2015-07-24 2015-12-23 河海大学 聚氨酯海绵负载银石墨烯二氧化钛纳米粒子复合材料、制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160121299A1 (en) * 2014-10-29 2016-05-05 National Taiwan University Reduced graphene oxide composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102847510A (zh) * 2012-08-31 2013-01-02 中国科学院金属研究所 一种石墨烯基净水材料及其制备方法和应用
CN104338519A (zh) * 2014-09-17 2015-02-11 上海大学 改性石墨烯负载聚氨酯海绵及其制备方法
CN104607161A (zh) * 2015-02-05 2015-05-13 苏州大学 一种石墨烯修饰的超疏水吸附材料的制备方法
CN105170132A (zh) * 2015-07-24 2015-12-23 河海大学 聚氨酯海绵负载银石墨烯二氧化钛纳米粒子复合材料、制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于三维基底和多巴胺原位聚合反应制备超疏水材料及其溶剂吸附性能研究;王小慧;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20160715(第07期);第34页3.2.3ME/pDA/DM超疏水海绵的制备,第47页3.4本章小结,第52页4.2.3Ni-3DG/pDA/DM超疏水石墨烯的制备,第54页4.3.3 Ni-3DG/pDA/DM超疏水海绵的性能考察,第57-58页4.4本章小结,第61页5.1引言 *

Also Published As

Publication number Publication date
CN106807338A (zh) 2017-06-09

Similar Documents

Publication Publication Date Title
CN106807338B (zh) 一种用于油水分离的改性石墨烯增强聚氨酯海绵的制备方法
Xia et al. Facile one-pot synthesis of superhydrophobic reduced graphene oxide-coated polyurethane sponge at the presence of ethanol for oil-water separation
Zhou et al. One-pot synthesis of robust superhydrophobic, functionalized graphene/polyurethane sponge for effective continuous oil–water separation
Kong et al. Superhydrophobic cuprous oxide nanostructures on phosphor-copper meshes and their oil–water separation and oil spill cleanup
Zhang et al. Thiolated graphene-based superhydrophobic sponges for oil-water separation
Wei et al. Synthesis of polyurethane foams loaded with TiO2 nanoparticles and their modification for enhanced performance in oil spill cleanup
Li et al. Facile immobilization of Ag nanocluster on nanofibrous membrane for oil/water separation
Zhu et al. Simple and green fabrication of a superhydrophobic surface by one-step immersion for continuous oil/water separation
Tran et al. Selective adsorption of oil–water mixtures using polydimethylsiloxane (PDMS)–graphene sponges
Han et al. Graphene and its derivative composite materials with special wettability: Potential application in oil-water separation
Song et al. Self-driven one-step oil removal from oil spill on water via selective-wettability steel mesh
Yi et al. Thermoresponsive polyurethane sponges with temperature-controlled superwettability for oil/water separation
Shami et al. Structure–property relationships of nanosheeted 3D hierarchical roughness MgAl–layered double hydroxide branched to an electrospun porous nanomembrane: a superior oil-removing nanofabric
Rather et al. Sustainable polymeric material for the facile and repetitive removal of oil-spills through the complementary use of both selective-absorption and active-filtration processes
Cheng et al. Magnetically directed clean-up of underwater oil spills through a functionally integrated device
Gao et al. Bio-inspired magnetic superhydrophobic PU-PDA-Fe3O4-Ag for effective oil-water separation and its antibacterial activity
Ahmed et al. Facile surface treatment and decoration of graphene-based 3D polymeric sponges for high performance separation of heavy oil-in-water emulsions
Li et al. Superhydrophobic metal–organic framework nanocoating induced by metal-phenolic networks for oily water treatment
Lv et al. Fabrication of magnetically inorganic/organic superhydrophobic fabrics and their applications
Yin et al. Microphone-like Cu-CAT-1 hierarchical structures with ultra-low oil adhesion for highly efficient oil/water separation
Liu et al. L-lysine functionalized Ti3C2Tx coated polyurethane sponge for high-throughput oil–water separation
CN112108130B (zh) 一种智能超疏水材料及其制备方法和应用
Mu et al. Facile preparation of melamine foam with superhydrophobic performance and its system integration with prototype equipment for the clean-up of oil spills on water surface
Shami et al. Durable light-driven three-dimensional smart switchable superwetting nanotextile as a green scaled-up oil–water separation technology
Yu et al. Magnetically enhanced superhydrophobic functionalized polystyrene foam for the high efficient cleaning of oil spillage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230815

Address after: 266000 2021-1468 (a), first floor, East office building, No. 45 Beijing Road, Qianwan bonded port area, Qingdao, China (Shandong) pilot Free Trade Zone, Qingdao, Shandong

Patentee after: Qingdao Shichuang Technology Co.,Ltd.

Address before: 266580 No. 66 Changjiang West Road, Huangdao District, Qingdao, Shandong.

Patentee before: CHINA University OF PETROLEUM (EAST CHINA)