CN1120970C - 制冷系统、热泵系统及所述系统的制冷剂泄漏检测方法 - Google Patents

制冷系统、热泵系统及所述系统的制冷剂泄漏检测方法 Download PDF

Info

Publication number
CN1120970C
CN1120970C CN97119243A CN97119243A CN1120970C CN 1120970 C CN1120970 C CN 1120970C CN 97119243 A CN97119243 A CN 97119243A CN 97119243 A CN97119243 A CN 97119243A CN 1120970 C CN1120970 C CN 1120970C
Authority
CN
China
Prior art keywords
cold
producing medium
temperature
hfc
evaporimeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN97119243A
Other languages
English (en)
Other versions
CN1180823A (zh
Inventor
渡部安司
安田透
若林寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1180823A publication Critical patent/CN1180823A/zh
Application granted granted Critical
Publication of CN1120970C publication Critical patent/CN1120970C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

在使用制冷剂的制冷装置和热泵型制冷装置中的一种低成本的制冷剂泄漏检测装置。该装置包括一检测蒸发器吸入口处空气温度的第一温度检测器、一检测蒸发器中间部分处制冷剂温度的第二温度检测器、一计算这些检测器测得温度的温差的温差检测器、和一储存压缩机累积运行时间的运行时间检测器,从而根据温差和运行时间来判断制冷剂泄漏与否。

Description

制冷系统、热泵系统及所述 系统的制冷剂泄漏检测方法
本发明涉及一种使用制冷剂的制冷装置和一种热泵式制冷装置,尤其是涉及一种检测制冷剂泄漏的制冷系统控制装置。
近来,从全球环境保护的立场出发,加强了对破坏臭氧层的物质的规定,其中,对公认具有特强破坏力的氯氟烃(CFC),在1995年末决定完全废弃使用。同时,对于破坏力相对较小的含氯氟烃(HCFC),于1996年开始控制其完全排放,随后也决定全部废弃使用。在这种状况下,开发了替代CFC和HCFC的制冷剂。因此,提出了使用不会破坏臭氧层的含氟烃(HFC),但迄今为止,没有一种HFC能单独用来替代目前用于制冷机和空调器中的HCFC。因此,非常希望有一种混合有两种或多种HFC制冷剂的非共沸的混合制冷剂。尤其,HFC-32和HFC-125的混合制冷剂是替代HCFC-22(以下称R22)的一种最有前景的候选方案。其代表例为R410A(HFC-32/125=50/50重量%)。
图8表示在一传统制冷装置中,R22或R410A制冷剂加液率对压缩机盘管温度影响的特性图。制冷剂加液率是指制冷机实际制冷剂量与额定制冷剂量的比。如图8所示,当使用传统R22的制冷机或空调器在缺少制冷剂的情况下运转时,随着压缩比的升高,排出温度上升,制冷剂的循环减少。结果,冷却效果降低,压缩机盘管温度上升。图中的阴影区域是指一安装有恒速压缩机的小型室内空调器的压缩机过载保护装置的压缩机停机点的一个例子。就该例子而论,可以知道,当使用R22的制冷装置中的制冷剂加液率约为70%时,也就是在制冷剂泄漏掉约30%时,压缩机停止运转。(但应注意,该比率会随过载保护装置的类型和空调负荷而多少有些变化。)因此,在一使用R22的制冷装置中,当发生制冷剂泄漏时,压缩机过载保护装置会因排出温度的升高而起动。因此可早期间接地检测出制冷剂的泄漏。
然而,在图8中,在缺少制冷剂R410A的情况下运转时,压缩机盘管排出温度的上升要小于使用R22的场合,冷却效果由制冷剂R410A循环的增加而提高。因此,在使用R410A时,其压缩机盘管的排出温度低于使用R22的场合。在缺少制冷剂R410A情况下压缩机盘管排出温度的这种特性,是HFC-32/125混合制冷剂的一个特征。由此可以看出,当在采用R410A的制冷装置中使用R22制冷机的压缩机过载保护装置时,压缩机可以在R410A制冷剂加液率约30%以下的范围内运转。因此,只要用户没有注意到因制冷剂不足而导致的功率下降,运转可长时间地连续进行。
日本专利公开62-158966、1-107070和6-137725中揭示了检测制冷剂量不足的方法。
在日本专利公开62-158966中,将换热器的输出温度和中间温度进行比较和计算,从而检测出制冷剂的过量或缺少或泄漏。
这种方法存在以下问题。图9是已有技术中一换热器的侧视图。如图9所示,在换热器80中,侧板7之间有许多翅片6,并有传热管5和U形管32-40穿透翅片6。制冷剂从入口31进入,从出口41排出。在换热器的中部设置一第二温度检测器21,用于检测换热器中的制冷剂温度。
利用检测换热器出口处40和中部36处的温度的方法,由于在制冷剂加液率约为40到70%时可产生温差ΔT,因此能检测出制冷剂泄漏,但在40%时,温差ΔT减小,因而无法检测出制冷剂泄漏。
另一方面,在日本专利公开1-107070中,除了换热器内制冷剂入口和出口处的温差,操作中还包括空气侧入口处和出口处的温差,以检测制冷剂不足和制冷剂泄漏。
然而,利用检测制冷剂入口和出口的温差,蒸发器入口处的制冷剂温度随吸入压力因制冷剂不足的减小而突然降低,因而使对制冷剂泄漏的检测不太有效。而且,这些方法需要两个或更多个传感器用来检测蒸发器中的温度,增加了成本。
或者,利用检测空气侧入口和出口温度的方法,由于室内装置侧的送气部中需要温度检测传感器,因此同样也会增加成本。
同时,在日本专利公开6-137725中,对制冷系统中的制冷剂温度进行定时间隔地检测,根据其变化量来判断制冷剂的泄漏与否。
然而,这种方法是定时间隔地检测制冷系统中的制冷剂温度,并根据过热变化量来判断制冷剂的泄漏与否,因此,与检测制冷剂入口和出口温差的方法一样,因制冷剂不足而导致的蒸发器功率下降无法被准确地检测出来。而且,在这种方法中,由于制冷系统中制冷剂温度的变化量始终被储存着,以判断制冷剂的泄漏与否,因此操作起来较为复杂。
因此,本发明的目的是提供一种低成本的、采用能可靠检测制冷剂泄漏的HFC制冷剂的制冷系统运转控制装置。
本发明的制冷装置包括一使用氢氟烃制冷剂的制冷系统,该系统具有一压缩机、一蒸发器、一膨胀装置和一冷凝器,它们通过一条管路顺序呈环形地连接于一起,该制冷装置还包括一检测蒸发器吸入口处空气温度的第一温度检测器、一检测蒸发器中间部分处制冷剂温度的第二温度检测器、和一计算从第一温度检测器和第二温度检测器输出的空气温度和制冷剂温度的温差的温差检测器,从而判断制冷剂的泄漏与否。
最好,该结构还包括一检测压缩机累积运行时间的运行时间检测器,从而根据温差和累积运行时间判断制冷剂的泄漏与否。
在该结构中,如果制冷剂产生泄漏,制冷系统中的制冷剂量变得不足,则制冷剂的循环减少,因此蒸发器内的制冷剂平均温度比正常运行状态更接近于蒸发器吸入口处的空气温度。根据可用于准确表示蒸发器内制冷剂平均温度的蒸发器中间部分内的制冷剂温度与蒸发器吸入口处空气温度的温差,可检测出因制冷剂泄漏而导致的功率下降。
另外,通过同步地监测压缩机的累积运行时间,以防在压缩机停机过程中的检测错误,制冷剂泄漏可以被早期而可靠地检测出来。
图1是本发明一实施例的制冷控制装置的结构简图。
图2是本发明一实施例的制冷控制装置在制冷剂R410A发生泄漏情况下蒸发器温度的分布特性图。
图3是本发明一实施例的制冷控制装置中制冷剂加液率与蒸发器温差(吸入空气—制冷剂)的特性图。
图4是关于本发明一实施例的制冷控制装置中的制冷剂泄漏检测的流程图。
图5是本发明一实施例的制冷控制装置中蒸发器一个侧部的说明图,表示出蒸发器中制冷剂的温度检测位置。
图6是本发明一实施例的制冷控制装置的结构简图。
图7是本发明一实施例中制冷剂加液率与换热器温差(吸入空气—制冷剂)的特性图。
图8是传统制冷装置中制冷剂加液率对压缩机盘管温度和制冷剂量影响的特性图。
图9是一已有技术中的蒸发器一个侧部的说明图,表示出制冷剂的温度检测位置。
图1示出本发明一实施例的制冷控制装置的结构。图1中,制冷装置包括一制冷系统和一控制装置。制冷系统由通过一条管路连接于一起的压缩机1、冷凝器2、膨胀装置3和蒸发器4构成。换热器,如冷凝器2和蒸发器4,通过一冷凝器风扇2a和一蒸发器风扇4a与空气进行热交换。设有一检测蒸发器吸入温度的第一温度检测器20和一检测蒸发器中间部分处制冷剂温度的第二温度检测器21,它们与一微型电子计算机10相连。该微型电子计算机具有一检测空气温度和制冷剂温度的温差的温差检测器11、一储存压缩机累积运行时间的运行时间检测器12和通过比较温差检测器11和运行时间检测器12来判断制冷剂泄漏与否的制冷剂泄漏判定装置13。微型电子计算机10还连接有一显示装置14和一运行装置15。该制冷系统充有R410A。这样,构成了制冷系统控制装置。
其工作情况如下所述。当使用R410A制冷剂发生泄漏时,检测位置和蒸发器制冷剂温度之间的关系如图2中所示。图3中的特性图表示制冷剂加液率和蒸发器之间的关系。图4中示出了制冷剂泄漏检测的流程图。图2中,当制冷剂量减少时,显然,由第二温度检测器21检测到的蒸发器中间部分处的制冷剂温度Tem(位置36)逐渐趋近于第一温度检测器20检测到的蒸发器吸入空气温度Tai。此温差ΔT(=|Tai-Tem|),也就是换热器的能力,随制冷剂量的减少而变小,如图3所示。因此,当温差ΔT低于一个特定值时,可判断制冷能力因制冷剂泄漏或制冷剂不足而降低。但是,在压缩机停止运转时,在使反相式压缩机低速运转时,或是在开动时的过渡状态中,由于温差ΔT接近于零,因而可能发生因单纯地检测温差而造成的检测错误。因此,在制冷装置需要某种制冷力的情况下,压缩机不停机,或者反相式压缩机在额定转速下连续运转,鉴于这种关系,用运行时间检测器12检测压缩机的累积运行时间t,以储存压缩机的运行状态,当累积时间t超出一特定值时,则可判断出制冷能力因制冷剂泄漏或制冷剂不足而降低。因此,如图4中的制冷剂泄漏检测流程图所示,当温差ΔT低于标准K1时,并且压缩机累积运行时间t超出标准tK1时,则可判断制冷剂有泄漏。按照这种判断,制冷剂泄漏的故障显示于图1中的显示装置14上,并且如果需要的话,运行装置15停止压缩机的运转。
下面参照附图来描述第二温度检测器21检测温度的位置。图5中表示一种有一或多排的多排多段(这里是2排10段)蒸发器的侧视图。在换热器4中,侧板7之间有许多翅片6,并有一传热管5和U形管32-40穿过这些翅片6。制冷剂从入口31送入,从出口41排出。检测蒸发器中制冷剂温度的第二温度检测器21的安装位置应排除蒸发器4的制冷剂导管入口和出口31、41,以及靠近蒸发器入口和出口的制冷剂导管。
第二温度检测器21安装位置的确定原则如下所述。
图5中,如果第二温度检测器的安装位置受蒸发器或空调器的结构限制的话,则它不能安装在蒸发器中间部分的U形管36处。在此,我们分析一下检测位置。如图2所示,随着蒸发器入口压力因制冷剂泄漏而降低,靠近蒸发器的制冷剂导管入口31的U形管32内以及导管入口中的制冷剂温度降低,而靠近蒸发器出口41的U形管40以及导管出口中的制冷剂温度因过热冷却下来而降低。然而,在其它导管(这里是U形管33-39)中的制冷剂温度没有受蒸发器入口和出口处温度下降的影响,因而蒸发器中间部分的制冷剂温度是可以检测的。因此,将第二温度检测器21安装在除制冷剂导管入口和出口处以及靠近蒸发器入口和出口的制冷剂导管处以外的其它位置,可以检测出因制冷剂泄漏而导致的制冷能力降低。
顺便提一下,例如,对于第一温度检测器和第二温度检测器,可以使用各种不同的温度传感器、元件、装置和热敏电阻。
下面参照附图来描述第二个实施例。图6表示了本发明第二个实施例的制冷装置的结构。该实施例示出一种热泵型制冷装置,作为制冷装置的一个实例。
图6中,该制冷装置包括一热泵型制冷系统和一控制装置。该热泵型制冷系统由压缩机1、换向阀51、第一换热器54、膨胀装置3和第二换热器52,它们通过一条管路连接于一起。换热器,如第二换热器52和第一换热器54,通过一第二换热器风扇52a和一第一换热器风扇54a与空气进行热交换。设有一检测第一换热器吸入温度的第一温度检测器60和一检测第一换热器中间部分处制冷剂温度的第二温度检测器61,它们与一微型电子计算机10相连。该微型电子计算机10具有一检测空气温度和制冷剂温度的温差的温差检测器11、一储存压缩机累积运行时间的运行时间检测器12和通过比较温差检测器11和运行时间检测器12来判断制冷剂泄漏与否的制冷剂泄漏判定装置13。微型电子计算机10还连接有一显示装置64和一运行装置65。该制冷系统充有R410A。这样,构成了热泵型制冷装置。
在致冷操作(实线表示)中,也就是第一换热器54用作蒸发器时,其操作与第一实施例中的相同,因此省略对其说明。在致热操作(虚线表示)中,也就是第一换热器用作冷凝器时,第一换热器制冷剂温度Tum和第一换热器吸入空气温度Tai的温差ΔT(=Tum-Tai)、制冷剂量,也就是第一换热器的能力,随制冷剂量的减少而降低,如图7中所示。因此,当温差ΔT低于一特定值时,可判断出第一换热器的能力因制冷剂泄漏和制冷剂不足而降低。
这里,压缩机运行状态的检测方法与第一实施例中的相同。因此,在图3实施例所示的制冷剂泄漏判断中,将图4中检测制冷剂泄漏的流程中的判断常数设定为用于致热操作的K2、tK2,当温差ΔT低于标准K2,并且压缩机累积运行时间t超出标准tK2时,则可判断制冷剂有泄漏。按照这种判断,制冷剂泄漏的故障显示于图6中的显示装置64上,并且如果需要的话,运行装置65停止压缩机的运转。
在上述的实施例中,使用的是R410A,但在使用一种相同温度下饱和压力大于R22的单一HFC-32制冷剂时,或是使用一种HFC-32/125混合制冷剂时,操作基本上是相同的,而且它们的使用可以不受制冷剂混合比的限制。
由本文的描述可知,按照本发明的制冷装置,在使用HFC制冷剂的制冷装置中,可以在蒸发器能力下降的同时直接检测出制冷剂的泄漏,并且通过同步地检测压缩机的运行状态,从而能早期而可靠地检测出制冷剂的泄漏,并进行故障显示或停止操作。因此,可获得以下的效果。
1)可早期而可靠地检测出制冷剂的泄漏。
2)可防止因运转在制冷剂泄漏状态下进一步拖延而导致的能量损耗。
3)可降低因在制冷剂泄漏状态下的不正常运转而造成的制冷装置发生故障的可能性。
4)可使用现有的R22制冷机装置,成本低。
5)制冷剂温度检测装置可安装在与空调器或换热器相应的位置。
另外,制冷装置蒸发器或热泵装置中的制冷剂泄漏可以在换热器能力下降的同时直接被检测出来,因而:
6)可检测出致热操作中的制冷剂泄漏;以及
7)不管是在致冷操作中还是在致热操作中,制冷剂泄漏可以由同一装置来检测,因此可提供一种简单而便宜的热泵型制冷装置。

Claims (23)

1.一种制冷系统,包括:
一压缩机、一蒸发器,该蒸发器具有一空气吸入侧,并具有可容纳制冷剂的导管、一膨胀装置和一冷凝器,它们连接于一起;
一第一温度检测器,邻近于所述蒸发器的所述空气吸入侧,用于测量进入所述蒸发器的空气的温度;
一第二温度检测器,所述第二温度检测器的安装位置不在蒸发器的制冷剂导管入口和出口以及靠近入口和出口的制冷剂导管处,用于测量所述导管内的制冷剂的温度;
一温差检测器,用于计算
a)第一温度检测器测得的温度与
b)第二温度检测器测得的温度
之间的温差,以判定制冷剂泄漏与否。
2.如权利要求1所述的制冷装置,其特征在于,所述制冷剂是以下制冷剂中的一种:
(a)HFC-32;
(b)HFC-32和HFC-125。
3.如权利要求1所述的制冷系统,其特征在于,它还包括:
一测量所述制冷系统运行时间的运行时间检测器;
第一温度检测器测得的温度与第二温度检测器测得的温度之间的温差以及所述制冷系统的累积运行时间被用来判定制冷剂泄漏与否。
4.如权利要求1或3所述的制冷系统,其特征在于,所述制冷剂是以下制冷剂中的一种:
(a)HFC-32;
(b)HFC-32和HFC-125。
5.如权利要求1或3所述的制冷系统,其特征在于,所述蒸发器具有一与所述膨胀装置相连的入口和一与所述压缩机相连的出口,所述第二温度检测器远离于所述蒸发器的所述入口和所述出口。
6.一种热泵系统,包括:
一压缩机、一换向阀、一第一换热器,该第一换热器具有一空气吸入侧,并具有可容纳制冷剂的导管、一膨胀装置和一第二换热器,它们连接于一起;
一第一温度检测器,邻近于所述第一换热器的所述空气吸入侧,用于测量进入所述第一换热器的空气的温度;
一第二温度检测器,所述第二温度检测器的安装位置不在蒸发器的制冷剂导管入口和出口以及靠近入口和出口的制冷剂导管处,用于测量所述导管内的制冷剂的温度;
一温差检测器,用于计算
a)第一温度检测器测得的温度与
b)第二温度检测器测得的温度
之间的温差,以判定制冷剂泄漏与否。
7.如权利要求6所述的系统,其特征在于,所述制冷剂是以下制冷剂中的一种:
(a)HFC-32;
(b)HFC-32和HFC-125。
8.如权利要求6所述的热泵系统,其特征在于,它还包括:
一测量所述制冷系统运行时间的运行时间检测器;
第一温度检测器测得的温度与第二温度检测器测得的温度之间的温差以及所述制冷系统的累积运行时间被用来判定制冷剂泄漏与否。
9.如权利要求6或8所述的系统,其特征在于,所述制冷剂是以下制冷剂中的一种:
(a)HFC-32;
(b)HFC-32和HFC-125。
10.如权利要求6或8所述的制冷系统,其特征在于,所述第一换热器具有一第一连接器和一第二连接器,所述第一连接器是入口或出口中的一个,所述第二连接器是入口或出口中的另一个,所述第二温度检测器位于所述蒸发器的所述入口和所述出口之间。
11.如权利要求8所述的热泵系统,其特征在于,它还包括:
所述第一换热器邻近于一第一位置;
所述第二换热器邻近于一第二位置;
在所述第一位置的温度低于所述第二位置的温度时,所述第一换热器用作蒸发器。
12.如权利要求11所述的热泵系统,其特征在于,所述制冷剂是以下制冷剂中的一种:
(a)HFC-32;
(b)HFC-32和HFC-125。
13.如权利要求6或11所述的热泵系统,其特征在于,所述第一换热器具有一第一连接器和一第二连接器,所述第一连接器是入口或出口中的一个,所述第二连接器是入口或出口中的另一个,所述第二温度检测器位于所述蒸发器的所述入口和所述出口之间。
14.一种如权利要求1所述的制冷系统的制冷剂泄漏检测方法,所述方法包括:
a)测量进入所述蒸发器的空气的温度;
b)测量所述导管内的制冷剂的温度;
c)计算步骤a)和b)中测得的温度之间的温差,从而判定制冷剂泄漏与否。
15.如权利要求14所述的制冷系统中制冷剂泄漏检测方法,其特征在于,所述制冷剂是以下制冷剂中的一种:
(a)HFC-32;
(b)HFC-32和HFC-125。
16.一种如权利要求3所述的制冷系统的制冷剂泄漏检测方法,所述方法包括:
a)测量进入所述蒸发器的空气的温度;
b)测量所述蒸发器内的制冷剂的温度;
c)计算步骤a)和b)中测得的温度之间的温差;
d)测量所述制冷系统的累积运行时间;
e)用步骤c)中测得的温差和步骤d)中测得的运行时间来判定制冷剂泄漏与否。
17.如权利要求16所述的制冷系统中制冷剂泄漏检测方法,其特征在于,所述制冷剂是以下制冷剂中的一种:
(a)HFC-32;
(b)HFC-32和HFC-125。
18.一种如权利要求6所述的热泵系统的制冷剂泄漏检测方法,所述方法包括:
a)测量进入所述第一换热器的空气的温度;
b)测量所述蒸发器内的制冷剂的温度;
c)计算步骤a)和b)中测得的温度之间的温差,从而判定制冷剂泄漏与否。
19.如权利要求18所述的热泵系统中制冷剂泄漏检测方法,其特征在于,所述制冷剂是以下制冷剂中的一种:
(a)HFC-32;
(b)HFC-32和HFC-125。
20.一种如权利要求8所述的热泵系统的制冷剂泄漏检测方法,所述方法包括:
a)测量进入所述蒸发器的空气的温度;
b)测量所述蒸发器内的制冷剂的温度;
c)计算步骤a)和b)中测得的温度之间的温差;
d)测量所述制冷系统的累积运行时间;
e)用步骤c)中测得的温差和步骤d)中测得的运行时间来判定制冷剂泄漏与否。
21.如权利要求20所述的热泵系统中制冷剂泄漏检测方法,其特征在于,所述制冷剂是以下制冷剂中的一种:
(a)HFC-32;
(b)HFC-32和HFC-125。
22.一种如权利要求11所述的热泵系统中的制冷剂泄漏检测方法,所述方法包括:
a)测量进入所述蒸发器的空气的温度;
b)测量所述蒸发器内的制冷剂的温度;
c)计算步骤a)和b)中测得的温度之间的温差;
d)测量所述制冷系统的累积运行时间;
e)用步骤c)中测得的温差和步骤d)中测得的运行时间来判定热泵系统中是否存在制冷剂泄漏。
23.如权利要求22所述的热泵系统中制冷剂泄漏检测方法,其特征在于,所述制冷剂是以下制冷剂中的一种:
(a)单一HFC-32制冷剂;
(b)HFC-32和HFC-125混合制冷剂。
CN97119243A 1996-10-18 1997-09-26 制冷系统、热泵系统及所述系统的制冷剂泄漏检测方法 Expired - Fee Related CN1120970C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP275787/1996 1996-10-18
JP8275787A JPH10122711A (ja) 1996-10-18 1996-10-18 冷凍サイクル制御装置
JP275787/96 1996-10-18

Publications (2)

Publication Number Publication Date
CN1180823A CN1180823A (zh) 1998-05-06
CN1120970C true CN1120970C (zh) 2003-09-10

Family

ID=17560409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97119243A Expired - Fee Related CN1120970C (zh) 1996-10-18 1997-09-26 制冷系统、热泵系统及所述系统的制冷剂泄漏检测方法

Country Status (5)

Country Link
US (1) US5934087A (zh)
EP (1) EP0837293A3 (zh)
JP (1) JPH10122711A (zh)
CN (1) CN1120970C (zh)
BR (1) BR9704920A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107525208A (zh) * 2017-07-10 2017-12-29 珠海格力电器股份有限公司 空调缺氟检测方法及装置

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19854060B4 (de) * 1998-11-24 2005-06-30 Behr Gmbh & Co. Kg Verfahren zur Bestimmung einer Kältemittelunterfüllung in einer Klimaanlage eines Kraftfahrzeugs
DE19935226C1 (de) 1999-07-27 2001-02-15 Daimler Chrysler Ag Verfahren zur Überwachung des Kältemittelfüllstandes in einer Kälteanlage
FR2802473B1 (fr) * 1999-12-17 2002-08-09 Valeo Climatisation Procede pour controler la charge de fluide refrigerant d'une boucle de climatisation de vehicule
FR2802472B1 (fr) * 1999-12-17 2002-08-09 Valeo Climatisation Procede de controle de l'etat d'une boucle de climatisation de vehicule automobile comprenant un compresseur a debit variable
US6260365B1 (en) * 2000-01-07 2001-07-17 Traulsen & Company, Inc. Control system and related methods for refrigeration and freezer units
US6293114B1 (en) * 2000-05-31 2001-09-25 Red Dot Corporation Refrigerant monitoring apparatus and method
US6425253B1 (en) * 2000-06-02 2002-07-30 Daimlerchrysler Corporation Method for detecting low-charge condition in air conditioning system and device incorporating same
US6442953B1 (en) * 2000-11-27 2002-09-03 Uview Ultraviolet Systems, Inc. Apparatus and method for diagnosing performance of air-conditioning systems
CN100513941C (zh) * 2001-09-19 2009-07-15 株式会社东芝 制冷冰箱的控制装置和冷媒泄漏判断方法
US6463747B1 (en) * 2001-09-25 2002-10-15 Lennox Manufacturing Inc. Method of determining acceptability of a selected condition in a space temperature conditioning system
JP3999961B2 (ja) * 2001-11-01 2007-10-31 株式会社東芝 冷蔵庫
US6868678B2 (en) * 2002-03-26 2005-03-22 Ut-Battelle, Llc Non-intrusive refrigerant charge indicator
JP2004077000A (ja) * 2002-08-14 2004-03-11 Toshiba Corp 冷蔵庫
JP4028779B2 (ja) * 2002-08-19 2007-12-26 株式会社東芝 コンプレッサの冷媒漏れ検知装置
JP2004101145A (ja) * 2002-09-12 2004-04-02 Denso Corp 蒸気圧縮式冷凍機及び圧縮機の固着検出装置
KR100494906B1 (ko) * 2002-11-11 2005-06-13 현대자동차주식회사 차량의 에어컨 냉매 부족 경고 제어장치 및 방법
US7082380B2 (en) * 2002-11-22 2006-07-25 David Wiebe Refrigeration monitor
US7832220B1 (en) * 2003-01-14 2010-11-16 Earth To Air Systems, Llc Deep well direct expansion heating and cooling system
US6907748B2 (en) * 2003-02-28 2005-06-21 Delphi Technologies, Inc. HVAC system with refrigerant venting
US7578140B1 (en) 2003-03-20 2009-08-25 Earth To Air Systems, Llc Deep well/long trench direct expansion heating/cooling system
JP4396286B2 (ja) * 2004-01-21 2010-01-13 三菱電機株式会社 機器診断装置および機器監視システム
US7412842B2 (en) 2004-04-27 2008-08-19 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system
US7275377B2 (en) 2004-08-11 2007-10-02 Lawrence Kates Method and apparatus for monitoring refrigerant-cycle systems
DE102004040570B3 (de) * 2004-08-21 2006-03-30 Daimlerchrysler Ag Vorrichtung zur Überwachung des Kältemittelfüllstands einer Kälte- oder Klimaanlage
CN101498535B (zh) * 2005-04-07 2011-01-05 大金工业株式会社 空调装置的制冷剂量判定系统
WO2007123544A1 (en) * 2006-04-25 2007-11-01 Carrier Corporation System performance correction by modifying refrigerant composition in a refrigerant system
US8590325B2 (en) 2006-07-19 2013-11-26 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
US20080216494A1 (en) 2006-09-07 2008-09-11 Pham Hung M Compressor data module
CN100451473C (zh) * 2006-10-12 2009-01-14 珠海格力电器股份有限公司 具有制冷剂缺少故障检测功能的空调器及故障检测方法
US8931295B2 (en) * 2007-01-18 2015-01-13 Earth To Air Systems, Llc Multi-faceted designs for a direct exchange geothermal heating/cooling system
US8833098B2 (en) * 2007-07-16 2014-09-16 Earth To Air Systems, Llc Direct exchange heating/cooling system
US20090037142A1 (en) 2007-07-30 2009-02-05 Lawrence Kates Portable method and apparatus for monitoring refrigerant-cycle systems
WO2009049317A2 (en) * 2007-10-11 2009-04-16 Earth To Air Systems, Llc Advanced dx system design improvements
US9140728B2 (en) 2007-11-02 2015-09-22 Emerson Climate Technologies, Inc. Compressor sensor module
WO2009062035A1 (en) * 2007-11-08 2009-05-14 Earth To Air Systems, Llc Double dx hydronic system
WO2009062056A1 (en) * 2007-11-09 2009-05-14 Earth To Air Systems, Llc Dx system with liquid filtered suction line, low superheat, and oil provisions
US8468842B2 (en) * 2008-04-21 2013-06-25 Earth To Air Systems, Llc DX system having heat to cool valve
US8402780B2 (en) * 2008-05-02 2013-03-26 Earth To Air Systems, Llc Oil return for a direct exchange geothermal heat pump
US8776543B2 (en) * 2008-05-14 2014-07-15 Earth To Air Systems, Llc DX system interior heat exchanger defrost design for heat to cool mode
JP2010007995A (ja) * 2008-06-27 2010-01-14 Daikin Ind Ltd 空気調和装置の冷媒量判定方法および空気調和装置
AU2009296789A1 (en) * 2008-09-24 2010-04-01 Earth To Air Systems, Llc Heat transfer refrigerant transport tubing coatings and insulation for a direct exchange geothermal heating/cooling system and tubing spool core size
DE102008050163A1 (de) * 2008-10-01 2010-04-08 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung oder Regelung einer Fahrzeugklimaanlage
CN101566517B (zh) * 2009-05-26 2010-11-17 宁波奥克斯电气有限公司 空调器中制冷剂泄漏的判断方法
KR101155345B1 (ko) * 2010-02-08 2012-06-11 엘지전자 주식회사 공기조화기 및 공기조화기의 제어방법
US8997509B1 (en) 2010-03-10 2015-04-07 B. Ryland Wiggs Frequent short-cycle zero peak heat pump defroster
JP2011255831A (ja) * 2010-06-11 2011-12-22 Sanden Corp 車両用空調装置及び車両用空調装置の冷媒漏出診断方法
EP2622121B1 (en) * 2010-09-30 2017-03-01 LG Electronics Inc. Diagnosing method for clothes treating apparatus and clothes treating apparatus with refrigerant leakage detecting means
CA2828740C (en) 2011-02-28 2016-07-05 Emerson Electric Co. Residential solutions hvac monitoring and diagnosis
EP2730863B1 (en) * 2011-07-07 2020-06-03 Mitsubishi Electric Corporation Refrigeration and air conditioning device and method for controlling refrigeration and air conditioning device
US8964338B2 (en) 2012-01-11 2015-02-24 Emerson Climate Technologies, Inc. System and method for compressor motor protection
CN102788403A (zh) * 2012-07-30 2012-11-21 广东美的电器股份有限公司 检测空调器缺冷媒的方法及空调器
JP2014035171A (ja) * 2012-08-10 2014-02-24 Mitsubishi Electric Corp 空気調和機、空気調和方法及びプログラム
CN103629762B (zh) * 2012-08-20 2018-11-06 快捷8咨询有限公司 一种以制冷剂为基础的系统及一种提高该系统效率的方法
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
EP2927615B1 (en) * 2012-11-30 2020-09-23 Mitsubishi Electric Corporation Air conditioning device
JP2013083437A (ja) * 2012-12-26 2013-05-09 Mitsubishi Electric Corp 空気調和装置、空気調和装置の安全管理方法
JP6146798B2 (ja) * 2013-02-26 2017-06-14 群馬県 冷凍装置の冷媒漏れ検出方法及び冷媒漏洩検知システム
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9638436B2 (en) 2013-03-15 2017-05-02 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
CA2908362C (en) 2013-04-05 2018-01-16 Fadi M. Alsaleem Heat-pump system with refrigerant charge diagnostics
JP5818849B2 (ja) * 2013-08-26 2015-11-18 三菱電機株式会社 空気調和装置および冷媒漏洩検知方法
CN103557578B (zh) * 2013-11-04 2016-02-03 宁波奥克斯电气股份有限公司 风冷模块式冷热水机组缺氟的保护方法
CN104566863A (zh) * 2014-12-30 2015-04-29 海信科龙电器股份有限公司 一种检测冷媒泄漏的方法及空调
CN104655365A (zh) * 2014-12-30 2015-05-27 海信科龙电器股份有限公司 一种检测冷媒泄漏的方法及空调
JP6582496B2 (ja) * 2015-03-31 2019-10-02 ダイキン工業株式会社 空調室内ユニット
JPWO2016157538A1 (ja) * 2015-04-03 2017-04-27 三菱電機株式会社 冷凍サイクル装置
US10323875B2 (en) 2015-07-27 2019-06-18 Illinois Tool Works Inc. System and method of controlling refrigerator and freezer units to reduce consumed energy
WO2017081735A1 (ja) * 2015-11-09 2017-05-18 三菱電機株式会社 冷凍サイクル装置及び冷媒漏洩検知方法
SG11201803484QA (en) 2015-11-17 2018-06-28 Carrier Corp Method of detecting a loss of refrigerant charge of a refrigeration system
DE202017106422U1 (de) * 2016-10-31 2018-01-22 Trane International Inc. Leckdetektion in einem Fluidkompressionssystem
JP6737295B2 (ja) * 2017-04-05 2020-08-05 株式会社デンソー 冷媒漏れ検知装置、冷凍サイクル装置
CN207050172U (zh) * 2017-07-05 2018-02-27 瑞斯康微电子(深圳)有限公司 一种空调制冷剂检测装置
CN107560100B (zh) * 2017-08-09 2019-10-01 宁波奥克斯电气股份有限公司 空调冷媒不足保护的控制方法
CN110375466B (zh) * 2018-04-13 2022-10-28 开利公司 用于空气源热泵系统的制冷剂泄露的检测装置和方法
CN110375468B (zh) 2018-04-13 2022-10-11 开利公司 风冷热泵系统、用于其的制冷剂泄漏检测方法及检测系统
CN110375467B (zh) * 2018-04-13 2022-07-05 开利公司 用于空气源单制冷系统的制冷剂泄露的检测装置和方法
CN111271935B (zh) * 2018-12-05 2021-08-27 青岛聚好联科技有限公司 一种信息检测方法及装置
US11112328B2 (en) * 2019-04-29 2021-09-07 Baker Hughes Oilfield Operations Llc Temperature based leak detection for blowout preventers
CN110160208A (zh) * 2019-05-27 2019-08-23 广东美的制冷设备有限公司 空调器及空调器的冷媒泄露检测方法、装置
CN112050429A (zh) * 2019-06-05 2020-12-08 青岛海尔空调器有限总公司 用于定频空调的控制方法及装置、定频空调
US11415358B1 (en) 2019-06-20 2022-08-16 Illinois Tool Works Inc. Adaptive perimeter heating in refrigerator and freezer units
CN112378134B (zh) * 2020-11-20 2021-09-14 珠海格力电器股份有限公司 一种冰箱及其冷媒泄漏检测方法
CN112556300B (zh) * 2020-12-15 2022-05-06 四川虹美智能科技有限公司 确定变频冰箱漏氟的方法及变频冰箱
CN112856715A (zh) * 2021-02-23 2021-05-28 珠海拓芯科技有限公司 空调器冷媒泄漏检测方法、装置、存储介质以及空调器
JP7197814B2 (ja) * 2021-05-21 2022-12-28 ダイキン工業株式会社 冷媒漏洩検知システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083197A (en) * 1976-10-14 1978-04-11 Borg-Warner Corporation Air conditioner control system
US4325223A (en) * 1981-03-16 1982-04-20 Cantley Robert J Energy management system for refrigeration systems
US5157934A (en) * 1990-06-29 1992-10-27 Kabushiki Kaisha Toshiba Controller for electrically driven expansion valve of refrigerating cycle
US5241833A (en) * 1991-06-28 1993-09-07 Kabushiki Kaisha Toshiba Air conditioning apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127605A (en) * 1976-04-19 1977-10-26 Saginomiya Seisakusho Inc Protective means for refrigeration compressors
JPS61179109U (zh) * 1985-04-30 1986-11-08
JPS6215896A (ja) * 1985-07-12 1987-01-24 松下電器産業株式会社 車載無線機の取付マウント
JPH0721374B2 (ja) * 1986-01-08 1995-03-08 株式会社日立製作所 冷媒量検知装置を備えた空気調和機
JP2564328B2 (ja) * 1987-10-21 1996-12-18 株式会社日立製作所 空気調和機の冷媒不足検知装置
JPH026972U (zh) * 1988-06-27 1990-01-17
US5009076A (en) * 1990-03-08 1991-04-23 Temperature Engineering Corp. Refrigerant loss monitor
US5157931A (en) * 1990-04-06 1992-10-27 Alsenz Richard H Refrigeration method and apparatus utilizing an expansion engine
US5150584A (en) * 1991-09-26 1992-09-29 General Motors Corporation Method and apparatus for detecting low refrigerant charge
JPH06137725A (ja) * 1992-10-28 1994-05-20 Hitachi Ltd 冷凍装置の冷媒漏れ検知方式
JPH06159869A (ja) * 1992-11-18 1994-06-07 Mitsubishi Heavy Ind Ltd 空気調和機
JP3213433B2 (ja) * 1993-04-19 2001-10-02 東芝キヤリア株式会社 冷凍サイクル装置
JPH07151429A (ja) * 1993-11-30 1995-06-16 Toshiba Corp 空気調和機
JP3219583B2 (ja) * 1994-01-18 2001-10-15 三菱重工業株式会社 空気調和機のガスロー検知装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083197A (en) * 1976-10-14 1978-04-11 Borg-Warner Corporation Air conditioner control system
US4325223A (en) * 1981-03-16 1982-04-20 Cantley Robert J Energy management system for refrigeration systems
US5157934A (en) * 1990-06-29 1992-10-27 Kabushiki Kaisha Toshiba Controller for electrically driven expansion valve of refrigerating cycle
US5241833A (en) * 1991-06-28 1993-09-07 Kabushiki Kaisha Toshiba Air conditioning apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107525208A (zh) * 2017-07-10 2017-12-29 珠海格力电器股份有限公司 空调缺氟检测方法及装置

Also Published As

Publication number Publication date
EP0837293A2 (en) 1998-04-22
JPH10122711A (ja) 1998-05-15
US5934087A (en) 1999-08-10
BR9704920A (pt) 1998-12-01
CN1180823A (zh) 1998-05-06
EP0837293A3 (en) 2000-11-15

Similar Documents

Publication Publication Date Title
CN1120970C (zh) 制冷系统、热泵系统及所述系统的制冷剂泄漏检测方法
CN1240978C (zh) 制冷机的启动方法和装置
EP3026371B1 (en) Refrigeration cycle apparatus
CN1261724C (zh) 空调器以及控制空调器的电子膨胀阀的方法
EP2407733B1 (en) Air conditioning device
CN101048713A (zh) 检测制冷系统性能降低的系统和方法
CN1111747A (zh) 热泵电动机最优化和传感器故障检测
US20100236264A1 (en) Compressor motor control
US20190170415A1 (en) Diagnostic mode of operation to detect refrigerant leaks in a refrigeration circuit
JPH11248281A (ja) 蒸気ラインの圧力制御装置及び圧力制御方法
CN1798946A (zh) 防止压缩机中液体引起的损坏
CN102884382A (zh) 热源侧热交换器用风扇的控制方法及空调装置
CN1148544C (zh) 空调器的室外风扇控制系统及其控制方法
CN109297148B (zh) 热泵机组、其制冷启动低压保护方法、计算机设备和存储介质
KR20080032870A (ko) 멀티형 공기조화기의 압축기 오일 회수장치 및오일회수방법
JP2002147905A (ja) 冷凍装置
US5806329A (en) Air conditioner and washing operation thereof
JP3219583B2 (ja) 空気調和機のガスロー検知装置
WO1997004277A1 (fr) Dispositif refrigerant basse temperature a faible variation de capacite de refrigeration
US20230077481A1 (en) Heat pump and operation method thereof
KR20070077639A (ko) 멀티 공기조화기 및 그 제어방법
KR102243654B1 (ko) 공기조화장치
Wang Refrigeration Systems
JP4675083B2 (ja) 空気調和装置
JP2006038363A (ja) エンジン駆動式空気調和装置及びその制御方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee